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ABSTRACT

Today, air quality monitoring is a global concern. The World
Health Organization (WHO) defined standards for each pollu-
tant and each member state is committed to monitoring them
continuously and reliably to protect the population. This re-
sponsibility is delegated to air quality monitoring associa-
tions. To achieve the objectives of reliable, accurate, and
continuous measurements, these associations rely on conven-
tional measuring stations with demanding specifications to
serve as scientific references and decision supports for the
authorities. However, because of heavy investments and re-
quired qualified staff, there are few stations and the coverage
is coarse for territories of several thousand km². To circum-
vent this difficulty, measurement network architectures us-
ing Low-Cost Sensors (LCS) have been deployed. Low cost
and requiring less qualification, This alternative technology to
conventional measuring stations makes it possible to target lo-
cal pollution that could not otherwise be detected. Although it
is more accurate on the spatial dimension, this technology has
several drawbacks, notably in terms of measurement repeata-
bility and hardware quality. It is also subject to measurement
drifts over time. To overcome these drawbacks, a resilient
and reliable architecture based on LCS and triple redundancy
has been proposed. The basic principle is based on the imple-
mentation of three smart sensors (SmS) using LCS measuring
the same parameters on the same perimeter. These SmS com-
municate with an Aggregator that aggregates the data sent by
SmS. The aggregator includes also detection and voting tasks
allowing to compare, cross the data, detect faults of LCS on-
line, and provide data that are ready for processing. In this
paper, a pre-processing algorithm in four steps is presented.
It identifies hardware faults from one or more LCS and re-
ports outliers for verification by an expert. It is configurable
and can identify failure behaviors (LCS or air quality). Fi-
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nally, the proposed algorithm excludes the outliers data from
faulty LCS and presents only reliable ones.

1. INTRODUCTION

Air pollution is the cause of 4.2 million deaths every year,
not to mention the impact on wildlife. Based on this fact, air
pollution is continuously monitored in a reliable and accu-
rate way by air quality associations. As a scientific reference,
these associations allow the authorities to take decisions in
case of alert and to protect the population. However, these
measuring stations require heavy investments and qualified
personnel, and only few stations are deployed. As a conse-
quence, the monitoring coverage is coarse and, despite ex-
trapolations, local pollutant phenomena on territories of sev-
eral km² are not detected.

In addition to the monitoring of air quality associations, de-
ployments of measurement networks are carried out with low
cost sensors (LCS) (Morawska et al., 2018). These deploy-
ments were facilitated as the LCS are inexpensive aspect (in
the order of x10 to x100) and require less qualified personnel.
The spatial dimension of these networks is a strong advan-
tage, in particular for detecting local pollution and specifying
the extrapolations of air quality associations (Castell et al.,
2017). However, the measurements, at the level of a geo-
graphical point, present problems of precision and reliability.
Indeed, LCSs have several drawbacks with respect to their
material quality, measurement drift, cross-interference with
other pollutants and their lifetime (Lewis et al., 2016). As
a consequence, the reliability of each point of the network is
questioned and the continuity of the measurement depends on
the random lifetime of the LCS.

To overcome these problems, a resilient and reliable measur-
ing station based on LCS and triple redundancy was devel-
oped. The station monitors the pollutant concentrations at a
geographical point of the measurement network. It is located
in a measurement perimeter where the environmental param-
eters do not vary at any point within the perimeter. It is com-
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Figure 1. Measuring station composition.

posed of three (and can be extended to more) smart sensors
(SmS) and an Aggregator, as shown in the figure 1.

The redundancy is active and is located at the level of the
SmS. With a minimum of three, each SmS measures the same
number N of parameters under the same environmental condi-
tions. The SmS is composed of a microcontroller and the LCS
measuring the N parameters (φi). The microcontroller con-
catenates and aggregates the LCS measurements into a vector
φ and then communicates with the Aggregator and transmits
the data at a frequency F, as shown in figure 2.

Figure 2. Processing of SmS measurements.

The Aggregator receives the vectors φ from each SmS, re-
structures the data by parameters (φi), and stores them. This
first processing aggregates the raw data of the relevant LCS
measurements from each SmS. The figure 3 gives an example
of raw data after the restructuration step.

Figure 3. PM2.5 concentration measurements over one day.

However, the sending of data to the Aggregator by the SmS
is not synchronized. Indeed, each SmS communicates with
its own P-period making comparisons between measurements
difficult. Moreover, the variable quality of the sensitive ele-

ments leads to repeatability problems. The detection of cer-
tain peaks can also be questioned. Finally, the failure of an
LCS can affect the global synthesis for the targeted parame-
ter (as shown by the black curve in figure 3). In summary, the
problem of the synthesis of the measuring station is at three
levels: measurement comparison, outliers detection to keep
the most reliable data, and finally, the final synthesis which
must be the most faithful image of the air quality measured
while targeting the failing LCS or in a drift phase.

To remedy to the above mentioned issues, a method is pro-
posed in this paper. It consists of four steps: Restructuring,
Detection, Filtering, and Aggregation. It exploits the inde-
pendence of the SmS and provides a global synthesis of the
measurement station. An algorithm exploiting this method is
implemented in the aggregator. At the input, the LCS mea-
surements are grouped by parameters and, at the output, a
synthesis exploitable in real-time is provided with the dis-
carded data for identification of the failures. A confidence
index Ic, based on the number of LCS errors, is also intro-
duced. It is an indicator of the measuring station health state.
Indeed, the station works continuously, despite the state of
its components and the difficulty to maintain them because of
their difficult access. The confidence index Ic is then a quick
way to assess the integrity of the station operation and the
reliability of the acquired data.

This paper is structured as follows: the relevant state of the
art concerning detection and voting algorithms is presented
in section 2, the methodology and the description of the al-
gorithm are presented in section 3, section 4 presents the first
results obtained from our case study and section 5 concludes
the paper and gives some perspectives about the presented
work.

2. STATE OF THE ART

The architecture of the measuring station is inspired by the
triple modular redundancy (TMR) which is widely used in
the industry for high availability and reliability of critical ap-
plications. The principle behind it is based on three identi-
cal and independent modules operating in parallel and hav-
ing same inputs. The output of these modules is submitted
to a voting unit to create an output and generate a synthesis.
The aggregations performed by the voting unit are generally
the majority vote, the median vote, and the weighted average
vote (Lorczak, Caglayan, & Eckhardt, 1989).

The majority voting algorithms make the system fault-tolerant
by selecting the output corresponding to the majority of the
modules’ outputs. Otherwise, the output is a safety code to
safely shut down the system. The latest developments of the
majority voting algorithm use the historical data to optimize
the choice and thus make the system more reliable. However,
this kind of majority voting algorithm has two major draw-
backs. The first drawback is that when the outputs of the
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modules are not close (which is the case for LCS), a thresh-
old must be defined in order to group the close values so that
the algorithm considers them identical and, when the majority
is not reached, the system is stopped. The second disadvan-
tage comes from the fact that the failures are masked. Indeed,
the output corresponds to the most frequent value but the dis-
carded values are not exploited.

Weighted average voting algorithms average the outputs of
the modules with weights assigned to each output. These
weights are calculated from their respective deviations. The
larger the deviation, the smaller the weight. New algorithms
are proposed (Latif-Shabgahi, 2004) and are more reliable ac-
cording to their authors than majority voting when errors are
present. Their main advantage is to provide an output what-
ever the number of modules present (contrary to the voting al-
gorithms). However, when the errors are large, the number of
incorrect outputs of the algorithm increases. This observation
comes from the use of the average. Indeed, the mean is influ-
enced by the extremes, and the more outliers in the inputs, the
more the mean will be influenced (Leys, Ley, Klein, Bernard,
& Licata, 2013). Moreover, the performance of these algo-
rithms depends on the choice of weights.

The median voting algorithms are more efficient than those
based on the weighted average. Indeed, the use of the median
can allow getting rid of the influence of outliers. But the reli-
ability of such an algorithm is diminished when the majority
of the values are outliers (Bass, Latif-Shabgahi, & Bennett,
1997).

Each type of voting algorithm performs well when the input
errors are a minority of the total output. They are optimized
to provide an output with the least error. The combination of
algorithms and the use of classification to find the best out-
put increases the reliability but also the computational com-
plexity and the processing time (Kassab, Hashad, Taha, &
Shedied, 2013). However, for real-time processing, computa-
tion time must be taken into account. Nevertheless, whatever
the combination of algorithms, they retain their weakness and
remain influenced by the errors in the inputs. Finally, the
common point of these algorithms is the masking of errors.
This is why, in order to increase the performance of the al-
gorithms, a step of data-driven fault detection is proposed
and implemented upstream of the aggregation in the voting
unit. Indeed, according to the authors of this study (Kucera,
Hyncica, Cidl, & Vasatko, 2006), this configuration allows to
make a TMR system more reliable.

For fault detection methods, the closest domain of the appli-
cation addressed in this paper is the Wireless sensor networks
(WSN). Indeed, when several stations are deployed, each sta-
tion can be assimilated to a sink node where the SmS corre-
spond to sensor nodes. The configuration is even more similar
because the SmS transmit the measurements with their period
P. There are various fault detection techniques and a qualita-

tive comparison of the latest fault detection algorithms for the
deployment of WSN is listed in this reference (Muhammed
& Shaikh, 2017). Among all possible techniques, the choice
is motivated by a distributed self-fault diagnostic of sensor
nodes, which are the SmS in this paper. For a large-scale
deployment, each measuring station must identify its faults
in order not to increase the computational complexity at the
global network level. Thus, in (Panda & Khilar, 2015), an
algorithm is proposed using the normalized median standard
deviation to detect and discard the outliers. Consisting of two
phases, the first phase of the algorithm aims to harvest mea-
surements during an estimation time and associate them with
LCS identification. The second phase discards the outliers
by a statistical method using the Normalized Median Abso-
lute Deviation (MADN). However, although the first phase
is inspiring for the detection step, the calculation of MADN
assumes that the distribution of the measurements is normal,
which is not the case of measurements related to natural phe-
nomena.

In conclusion, in order to make the Aggregator synthesis more
reliable, it is important to incorporate a fault detection step
upstream of the voting unit in order to decrease the output
errors. Then, for the most reliable data provided at the out-
put, a filtering will be applied to decrease the noise. Finally,
a median voting algorithm is proposed. It is less sensitive to
the extreme values compared to the average and is also more
reliable than the majority voting algorithms. Therefore, the
contribution of this paper consists in the development of the
algorithm in four steps:

• Data restructuring of SmS vectors φ;
• Fault Detection and storage of outliers;
• Filtering (curve smoothing);
• Aggregation by the median voter.

3. METHOD

For the input data (measurements) of the SmS, the following
assumptions are made:

• Being implemented in a measurement perimeter, the LCS
measure the same parameters under the same environ-
mental conditions;

• The output data of the SmS from a parameter φi are the
result of measurements and uncertainties of the corre-
sponding LCS;

• The air pollution phenomenon is slow by its physical
nature. Therefore, a sampling of the order of a minute
would be sufficient.

In the propose method, the Aggregator receives the data from
each SmS, stores them and restructures them. Then, a detec-
tion step is applied to detect faulty components and discard
outliers to provide useful data. These date are then filtered
and aggregated with the median voting method. As output,
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we obtain a reliable synthesis, a list of errors detected with
the identified components, and a confidence index correlated
to the number of reliable LCS. Figure 4 summarizes the set
of steps handling the input/output within the Aggregator.

Figure 4. Aggregator’s functions.

3.1. Data restructuration

Each SmS transmits to the Aggregator a measurement vector
φj at a period P. This first step consists in reading the values
of the vector and then storing them by parameter (φi) by as-
sociating the SmS identifier and the time of the measurement.
This classification is essential to find the corresponding LCS
from the SmS identification since each measured parameter
is associated with a specific sensor. Thus, at the end of this
restructuration step, for each SmS numbered j and for each
parameter (φi), a time-series Xj is created, where xh is the
measurement and t the associated timestamp (Eq. (1)). The
obtained time-series are then used by the fault detection step.

Xj = [x1,t, x2,t+P , ..., xh,t+hP , ...xn,t+nP ] (1)

3.2. Fault detection step

The fault detection step applies for every parameter. It con-
sists of two phases: initialization and detection.

Figure 5. Raw data after initialisation step

The first phase consists in retrieving the measurements for
an estimation time τ corresponding to the desired number of
points. During initialization, τ is used to define the window
size to apply a rolling window on the data set as a step-time.
Its size is defined with respect to the periods of the SmS and
the average time of the monitored air pollution evolution. It
also must be greater than the largest value of the SmS periods
P to group at least one value of each LCS. Figure 5 illustrates
raw data sampling for the parameter (φi) with τ = 7P . Due
to the difference in the P period between SmS, the third SmS
gives seven points instead of eight for the others.

Figure 6. Raw data after initialisation step.

The second phase (detection) allows to identify the outlier
data from the failed LCS. It consists, first of all, in checking
the size of the time-series Xj . Indeed, missing data means
that a hardware fault occurred on the associated SmS num-
ber j leading to a non-transmission of its data. The fault
could be due to network failure, power failure or SmS fault.
This detection triggers an alert at the output of the Aggregator
which is then stored in the Alert series with the correspond-
ing timestamp. The number of alerts in this series influences
the confidence index which is correlated to the number of er-
rors of LCS in service. Then, after checking the size of the
times-series, the next step consists in calculating the median
of all the concatenated measurement values. The median has
been chosen in order to follow as closely as possible the pol-
lution peaks, which is not the case of the mean that tends to
crush them. Then a threshold deviation Th is set to calculate
the MedianMax and MedianMin values. This deviation,
defined in percentage, is estimated from the historical data. It
corresponds to the maximum variability allowed between the
LCS values and improves the sensitivity of the detection, as
indicated in figure 6.

The values outside the area delimited by MedianMax and
MedianMin are considered as outliers. They are stored in
a time-series XjOut associated to the SmS number j. The
conservation of these values at the output of the Aggregator
will allow to contextualize them with the following window
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in order to be able to differentiate if they are anomalies due
to measurements or to LCS errors. The values in the bounded
area are the ones considered reliable. They are stored in a new
Xjr time series also associated with the SmS. These data are
then processed by the filtering step.

3.3. Filtering step

This step allows to attenuate the perturbations or the measure-
ment noise specific to the LCS. The filtering using a kernel
regression is applied to theXjr time-series for curve smooth-
ing. The use of Nadaraya-Watson Kernel Regression on these
data is motivated by the fact that they are statistically non-
parametric (measurements on environmental systems). More-
over, this approach is optimized for small numbers of points
and suffers less from bias problems at the extreme points of
the time-series (Nadaraya, 1964). Once the data are reliable
and filtered, they are stored in a new time-series Xjrf asso-
ciated with the corresponding SmS number and presented as
inputs to the aggregation step.

3.4. Aggregation step

This step consists in applying a median voting algorithm on
the reliable and filtered data obtained after the four previous
steps. It consists of three tasks:

1. The values of the time-series Xjrf are concatenated into
a vector of values named Srf ;

2. The values of Srf are arranged in ascending order;
3. If the number of elements of S is odd, the (n + 1)/2

element is selected for the output. If the number of ele-
ments of S is even then the average is calculated between
the n/2 and (n+ 1)/2 elements.

The output of this voting algorithm is then stored in a time-
series Outagg with the timestamp equal to t+ τ , as its index.
This output corresponds to the rolling window synthesis de-
fined in the detection step. For the whole data, the Aggregator
synthesis is the set of output values from the aggregation step
stored in the Outagg time-series.

These four subsections describe each step of the proposed
method for processing SmS data concluded by the aggrega-
tion step. The measurement vectors (φi) constitute the inputs
of the algorithm. After these steps, various outputs are pro-
duced: the time-series Alert for alerts, the reliable synthe-
sis of the data by the time-series Outagg , and the time-series
XjOut to perform post-processing. The whole method leads
to an algorithm implemented within the Agreggator which
will be presented in the next subsection.

3.5. Algorithm description

The proposed Aggregator algorithm is implemented for three
SmS transmitting measurement vectors φ1, φ2, and φ3 with
their own period P. For clarity of presentation, the algorithm

described hereafter will start after the data restructuring step
and has as input the raw data from a single parameter φi.

3.5.1. Rolling windows

The StartT ime data and EndTime data variables corre-
spond to the start and end timestamps of the raw data. Figure
7 shows the main algorithm and, more precisely, the rolling
window for the raw data. The Processing and Output steps
are detailed in figure 8.

Figure 7. The main algorithm.

The initialization step consists in declaring the variables τ ,
Th and the time-series described in the method section. The
time-series Xjout, Alert and Outagg are global and indepen-
dent of the rolling window. They are used to store the Out-
puts when running the raw data with the Time variable. Then,
the rolling window is initialized and its size is set to τ . The
raw data is stored in the time-series X1, X2 and X3 as long
as the Time variable is less than τ . When the variable Time
reaches the size of the window or the end of the raw data, the
treatments on X1, X2 and X3 are done and the outputs are
stored. Finally, as long as the Time variable is less than the
last Timestamps of the raw data, a new window is set and the
times series X1, X2 and X3 are reset to store data again.

3.5.2. Processing and output

This part of the algorithm starts from the second phase of the
fault detection step with the data having been stored in X1,
X2 and X3. The size of the series is evaluated to detect the
lack of data. The alerts are stored in the Alert time-series
and the number of elements present is subtracted from the to-
tal number of series (3 in this application) for the confidence
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index. Then, the remaining values are compared against the
thresholds calculated with the median and the deviation (Th)
defined upstream. The outliers are stored in X − jout corre-
sponding to the Xj timestamp. The values having passed this
first filter are considered reliable and are stored in Xjr. They
are then smoothed by using a Nadaraya-Watson estimator and
stored inXjrf . Finally, the smoothed values are concatenated
to evaluate the median which will be saved in Outagg . The
algorithm is repeated for each rolling window.

Figure 8. Processing and detailed output functions.

This subsection presents the method and the description of
the algorithm. The data from the SmS are presented as input
to the algorithm to be restructured by parameters. A rolling
window whose size is defined upstream allows browsing the
dataset. A detection module recovers the data in the first
phase with a rolling window and then uses them to detect
hardware faults and discard outliers in a second phase. The
remaining data are filtered and presented to the voting algo-
rithm which finalizes the synthesis for a time slot equal to the
size of the rolling window.

4. RESULTS

The proposed algorithm is intended to work in real-time. To
test it, the data corresponding to the measurements of PM2.5
concentration during one day are used (figure 3). The algo-
rithm steps are programmed under Python and the code is
provided in the Appendix section. The maximum period of
the SmS is set to six minutes and the window size is ten min-
utes (τ = 10 min). The threshold value setting is defined
according to the variability of the LCS observed on the data
set. Initially, based on the uncertainty defined by the manu-
facturer, it is refined as observations are made until a thresh-

old is set. Thus, the threshold deviation Th for the detection
of aberrations is fixed at 30% for the LCS in charge of the
PM2.5 measurements. Indeed, the starting value chosen is
10% based on the uncertainty defined by the manufacturer
then it is adjusted to be able to make the first detections. The
output of the algorithm using the dataset and based on the
previous settings is presented in figure 9. Figure 10 shows
the algorithm output when τ = 20min and Th = 30%. The
size of the rolling windows has low impact on the number of
errors collected by the algorithm. Indeed, the smaller the step
size, the more peaks are included in the synthesis of the ag-
gregator. A larger step size will flatten the synthesis curve and
increase the number of outliers. The comparison of the two
figures shows that when the step size is large, the peaks devi-
ate from the synthesis but the numbers of errors on SmS 1 and
2 are approximately identical. This factor makes it possible to
conclude that the anomalies are due to the measured param-
eter because the errors are grouped in a small time interval.
The errors of SmS 3 are more frequent than those of the two
others and its higher number indicates a loss of reliability of
the component by its return to zero. The confidence index of
this LCS can be calculated from the ratio of error to the total
number of measurements. The lifting of alerts on hardware
faults can also be done on the size of the time-series. Indeed,
when a SmS does not send any more its data the size of its
time-series will decrease compared to the other SmS.

Figure 9. The algorithm output obtained on the raw data by
using outliers detection with τ = 10min and Th = 30%.

The parameter Th has a significant impact on the number of
outliers. The comparisons between figures 9 and 11 and fig-
ures 10 and 12 confirm that the higher the parameter Th is,
the more the deviations between measurements will be toler-
ated. However, this parameter can be decisive in detecting a
possible offset of an LCS. Indeed, depending on the setting
of Th, a high number of measurements may be detected as
outliers compared to other LCS leading in a shift compared
to all collected measurements.

For the synthesis of the Aggregator, the step size is an impor-
tant factor. Depending on the objective of the measurement,
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Figure 10. The algorithm output obtained on the raw data by
using outliers detection with τ = 20min and Th = 30%

Figure 11. The algorithm output obtained on the raw data by
using outliers detection with τ = 10min and Th = 35%

it will be adapted either to avoid peak detection or to obtain a
synthesis over a larger time range. This Aggregator’s output
is only slightly influenced by the τ parameter because of the
robustness of the median on the extremes. The combination
of the synthesis and the time-series outliers allows us to ob-
serve failure typologies at the hardware level but also at the
air quality level. A confidence index can therefore be calcu-
lated from the number of LCS errors and the size of the input
data.

5. CONCLUSION

In this paper an algorithm allowing to process pollutant con-
centration measurements provided by a measuring station has
been proposed. It allows to have a reliable synthesis of the
measurements at a given spacial point and to beyond the hard-
ware faults of the LCS composing the SmS. The algorithm
offers the possibility to adapt the purpose of measurement
and the outliers detection by adjusting two parameters. The
first parameter is the rolling window size τ and the second
parameter is the tolerance threshold Th. The setting of Th
impacts the outliers detection, which are given in a synthesis

Figure 12. The algorithm output obtained on the raw data by
using outliers detection with τ = 20min and Th = 35%

to identify the topology of failures. Moreover, a confidence
index based on the number of errors can be calculated and
associated with the synthesis. Its purpose is to quickly iden-
tify the health state of the LCS in service and thus the state
of the measuring station in general. Note that in this version
of the algorithm, the Th and τ values are chosen empirically
due to lack of long-term observation of the measuring station
behavior. Therefore, as a future work, data collection through
several seasons will allow to better set the detection threshold
and to observe failure typologies. The stored outliers will be
processed to differentiate the anomalies due to air pollution
or to LCS. The classification of failures and their identifica-
tion by experts will eventually allow the creation of an auto-
matic failure identification module for preventive and predic-
tive maintenance to be carried out on the measuring stations.
The reliable data will be used to predict abnormal behaviors
on a larger scale and thus to determine the air quality and
eventually to predict future pollution to protect the popula-
tion.
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