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Martin Hervé de Beaulieu1, Mayank Shekhar Jha2, Hugues Garnier3 and Farid Cerbah4
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ABSTRACT

Prediction of the Remaining Useful Life (RUL) for indus-
trial systems has been facilitated by the acquisition of large
amounts of real-time data and the use of deep learning meth-
ods. However, the vast majority of these methods rely on the
availability of extensive RUL-labeled data, which is not the
case for most of real industrial applications. The goal of this
paper is to show how unsupervised learning can provide al-
ternative ways to address this issue. The proposed method
is essentially made of two steps. First, a Virtual Health In-
dex (VHI) is extracted in an unsupervised manner from the
raw sensor data using a Deep Convolutional Neural Network
(CNN) autoencoder. Secondly, an Long-Short Term Memory
(LSTM) Encoder-Decoder predicts the future values of the
VHI, until an End-of-Life (EOL) pattern is recognized (using
a sliding window DTW algorithm). The suggested method is
tested on the C-MAPSS dataset and offers promising results
with a great potential to be applicable on real-life use cases.

1. INTRODUCTION

The increase in data collection and storage capabilities has
led to the use of deep learning methods in predictive mainte-
nance strategies. Two main indicators are used in the Prog-
nostic and Health Management (PHM) community (Lee et
al., 2014). The first is the Health Index (HI). Health Index is
an indicator which represents the State of Health (SOH). It is
built from the measured data collected by the sensors placed
on the system (Lei et al., 2018). It is a critical indicator, as it
should reveal the degradation process hidden within the dif-
ferent signals. A common approach for constructing such an
HI from multiple signals is to fuse them into a single indica-
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tor, using for example a deep neural network based compres-
sion technique (C. Hu, Youn, Wang, & Yoon, 2012). Such
an HI is called “Virtual Health Index” (VHI). It worth noting
that a VHI is an implicit representation of the degradation but
it cannot be interpreted from a physical point of view.

Autoencoder models are very efficient in extracting VHI from
raw sensors data, being well adapted for the treatment of mul-
tivariate non-stationary data. It has been shown that auto-
extracted features are preferable over the handcrafted fea-
tures in the case of bearing vibrations (Y. Hu, Palmé, & Fink,
2016), exhibiting monotonicity and clear trendability. Such
an AI-based extraction of VHI can then be employed to per-
form RUL prediction (Gensler, Henze, Sick, & Raabe, 2016),
in a two-stage framework similar to the method we present
in this paper. Moreover, CNN is a particular deep learn-
ing model which has shown great ability on feature extrac-
tion, especially in the domain of image classification, speech
recognition and time series prediction (LeCun, Bengio, et al.,
1995). CNN has also been successfully applied to health
monitoring and prognostics (Babu, Zhao, & Li, 2016) (Li,
Ding, & Sun, 2018), in the context of direct mapping of raw
sensor data to health state indicators. Therefore, there is good
reason to think that the combination of CNN and autoen-
coders would offer very good VHI extraction capabilities from
raw sensor data.

The second important indicator in PHM is the Remaining
Useful Life (RUL) which is defined as the remaining oper-
ating time before the End Of Life (EOL) of the system is
reached (Si, Wang, Hu, & Zhou, 2011). A large number of
contributions have been published in the recent years in or-
der to propose methods for RUL prediction, based on deep
learning approaches, using various types of neural networks.
The vast majority of these papers relies on the direct mapping
between the sensor values and the RUL prediction. These ap-
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proaches are supervised and thus require large RUL-labeled
dataset for training. However, in practice, these labels are,
most of the time, not available. In fact, to obtain the genuine
value of the RUL, it is necessary to take measurements of
the degradation level until the EOL of the machinery. This is
time consuming and extremely costly, as it requires numerous
(possibly complete) failure tests. Consequently, such meth-
ods, although theoretically sound, are hardly applicable in an
industrial environment. A few projects have already been car-
ried out with a perspective of avoiding of labeled data. A
RUL estimation method based on a Health Index obtained by
using the reconstruction error has been proposed (Malhotra
et al., 2016). In this paper, an LSTM-based encoder-decoder
is trained to reconstruct the time series corresponding to the
healthy state of the system. With increasing degradation, the
reconstruction error also increases, resulting in a Health In-
dex. Other suggestions also involve Unsupervised Kernel
Regression (UKR) (Khelif, Malinowski, Chebel-Morello, &
Zerhouni, 2014) or Adversarial Regressive Domain Adapta-
tion (ARDA) (Jiang, Xia, Wang, Fang, & Xi, 2022) for RUL
prediction.

The current paper addresses the problem of RUL prediction
in the absence of RUL-labeled data. To this end, an unsu-
pervised method of RUL prediction in two steps is proposed.
First, a VHI is extracted using a pruned CNN autoencoder in
a non-supervised manner. Secondly, long-range prediction of
this VHI is performed by an LSTM encoder-decoder. Such
a structure leverages the recurrent nature of the data, and has
already proven its efficiency on similar use cases (Yu, Kim,
& Mechefske, 2019). Prediction continues until an end-of-
life pattern is recognized. For this recognition task, Dynamic
Time Warping (DTW) similarity measure is employed. As a
result, the RUL can be estimated without using any labeled
data during the training phase. This paper extends and im-
proves upon our previous work (Herve de Beaulieu, Jha, Gar-
nier, & Cerbah, 2022), incorporating two major new contribu-
tions, namely: the VHI extraction using a CNN autoencoder
and the EOL pattern recognition with DTW.

The rest of the paper is organized as follows. The problem
statement and background are presented in Section 2. The ar-
chitecture of the proposed method is introduced in Section 3.
Application results to the C-MAPSS dataset, including tech-
nical choices and data processing are presented in Section 4.
Conclusion and future work are discussed in Section 5.

2. PROBLEM STATEMENT AND BACKGROUND

In this section, the fundamental background necessary for the
understanding of the proposed approach will be briefly intro-
duced.

2.1. Problem statement

Let us suppose that we have N identical category equipment,
e.g. N engines with index 1 ≤ i ≤ N for which we col-
lect data from K sensors with index 1 ≤ k ≤ K. Each data
record is made until the End of Life (EOL), denoted as Ti,
of the equipment is reached, with index 1 ≤ t ≤ Ti. The
set of data is thus a collection of objects {X(i)|i ∈ [1, N ]}
with each data sample X(i) ∈ RTi×K . Therefore, the k-th
column Xk

(i) corresponds to the vector of values of sensor k
for all time steps 1 ≤ t ≤ Ti and the t-th row Xt(i) corre-
sponds to the vector of values of all sensor 1 ≤ k ≤ K for the
given time step t. Finally, the scalar Xt

k
(i) is the single value

recorded by sensor k at time step t on equipment i. The prob-
lem can then be formulated as follows: from an initial subset
(or window) Xt1 (i) to Xt2 (i) with 1 ≤ t1 ≤ t2 ≤ Ti, the
corresponding set of VHI values V HIt1

(i)
to V HIt2

(i)
must

be extracted. Based on this VHI set, the RUL value for the
last time step of the window t2, denoted asRULt2 (i) must be
predicted.

2.2. CNN AutoEncoder

An encoder-decoder is a neural network structure which is
composed of two elements. First, an encoding function fθe
compresses the input data to a subspace called latent space.
Second, the compressed representation is expanded through
a decoding function gθd . The learning process can then be
formalized as follows:

y = gθd(fθe(x)). (1)

with y the output of the encoder-decoder and x the input data.
A special case of encoder-decoder is the autoencoder, where
the output y is learned to be the reconstruction of the input x,
which we note y = x′. The loss (also called “reconstruction
error”) is therefore obtained via a function of x and x′:

JAE(θe, θd) =
∑

L(x, x′) =
∑

L(x, gθd(fθe(x))) (2)

where L is a loss function such as the mean squared error
(Bengio, Courville, & Vincent, 2013). Note that an autoen-
coder is trained in an unsupervised manner since the cost cal-
culation does not require any labeled data.

CNN autoencoder is a particular case of autoencoder where
the encoding and decoding functions are achieved by CNN
structures. It consists of performing a convolution product
between the input I and a kernel F (also called filter). For
time series, a one-dimensional convolution is applied along
the time. The expression of the process is as follows:

S(t) = (I ∗ F )(t) =
T∑

t=1

I(t)F (t− T ) (3)

with S the output (also called feature map), I the input, F the
kernel, T the overall length of the input and ∗ the convolution
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product (Goodfellow, Bengio, & Courville, 2016).

Since the time series areK-dimensional, theK different vari-
ables (e.g. K different sensors) are treated as multiple chan-
nels. An independent kernel is thus assigned to each channel,
resulting in K feature maps. By varying the number of ker-
nels, the dimensionality of the data can then be extended or
reduced. In particular, in the case of CNN autoencoders, care
should be taken to reduce the number of dimensions to obtain
a latent space of reduced size.

2.3. LSTM Encoder-Decoder

Recurrent neural network (RNN) is a neural network structure
adapted to sequential learning. It uses prior knowledge along
with current input to make the prediction of the desired out-
put. Therefore, RNN models are widely used for sequential
data learning such as time series. A recurrent model is made
of multiple standard cells whose states are affected by both
past states and current input. The most used version of this
kind of cell is called “Long-Short Term Memory” (LSTM)
(Hochreiter & Schmidhuber, 1997). LSTM have been widely
used for RUL prediction as well (Wu, Yuan, Dong, Lin, &
Liu, 2018), (Zhang, Zhang, Shao, Niu, & Yang, 2020).

Similarly to CNN autoencoder, LSTM encoder decoder is
nothing else than a special case of encoder-decoder where
the encoding and decoding functions are performed by RNN
models (Cho et al., 2014). Therefore, the RNN-encoder trans-
forms the input time series into a fixed-dimensional vector
representation (usually referred to as “context vector”) while
the RNN-decoder maps this context vector to the target time
series.

For a univariate source time series X = {x1, x2, ..., xT }, ht
is the hidden state of the RNN-encoder at time t. The RNN-
encoder captures relevant information as the source time se-
ries is scanned and when its last time step T is reached, the
hidden state hT is the vector representation of the entire source
time series X . The RNN-decoder, in a mirroring operation,
takes the final encoding hidden state hT as initial decoding
hidden state. It then constructs the desired output time se-
ries. The desired output can be a reconstruction of the in-
put (X ′ = {x′1, x′2, ..., x′T }), in this case it is called RNN-
autoencoder and it is an unsupervised process. The output
can also be a prediction of the future values of the source
time series (Du, Li, Yang, & Horng, 2020). Then, it is a su-
pervised learning task requiring a training set containing the
labels of future time series values.

Regardless of the type of output chosen, the model is trained
to minimize an error (which is called “reconstruction error”
in the case of RNN-autoencoder) between the target and the

result of the model. It can be written as:

E =

N∑

i=1

T∑

t=1

(yt − y′t) (4)

for N time series of length T , with yt the target value and y′t
the value obtained from the model.

Different recurrent structures and options can be used for the
encoding and decoding process, such as stacked-RNN and/or
bidirectional RNN (Yu et al., 2019).

2.4. Sliding DTW pattern recognition

Dynamic Time Warping (DTW) is a similarity measuring tech-
nique for time series traditionally used in speech recogni-
tion (Sakoe & Chiba, 1978). Let us consider two time series
X = (x1, x2, ...xN ), and Y = (y1, y2, ...yM ) of lengths N
and M . A local cost matrix C representing all pairwise dis-
tances between X and Y is built. To do so, a local cost mea-
sure c is computed between each pair of elements of the se-
quences X and Y . Thus, the local cost matrix can be denoted
as C ∈ RN×M and is defined by C(n,m) = dist(xn, ym)
with n ∈ [1 : N ],m ∈ [1 :M ] and dist being a local distance
measure (e.g. dist(xn, ym) = ∥xn − ym∥).
The goal is then to find the alignment path which runs through
the low-cost areas of the local cost matrix. A warping path is
formally defined as a sequence of points p = (p1, p2, ..., pL)
with pl = (pn, pm) ∈ [1 : N ]× [1 : M ] for l ∈ [1 : L]. Any
warping path must respect three conditions:

1. Boundary condition: p1 = (1, 1) and pL = (N,M).
This basically means that the starting and ending points
of the warping path are effectively the first and the last
points of the two sequences X and Y .

2. Monotonicity condition: n1 ≤ n2 ≤ ... ≤ nL and m1 ≤
m2 ≤ ... ≤ mL. This condition ensures that the points
are correctly time-ordered.

3. Step size condition: pl+1−pl ∈ {(1, 0), (0, 1), (1, 1)} for
l ∈ [1 : L− 1]. This criterion prevents the warping from
doing big shifts in time while aligning the two sequences.

The total cost of a warping path p is expressed as:

Cp(X,Y ) =

L∑

l=1

dist(xnl
, yml

) (5)

The DTW distance between two time series X and Y is then
the total cost of the optimal warping path denoted as p∗, which
is the warping path having the minimal total cost among all
the possibilities. The major benefit of DTW is that it mini-
mizes the effects of shifting and distortion in time by allowing
a flexible transformation of time series with the intention of
detecting similar shapes. A simplified comparison between
euclidean and DTW distances is illustrated in Figure 1. The
Python library used in this work is from (Giorgino, 2009).
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Figure 1. Simplified comparison between the Euclidean dis-
tance and the DTW distance.

The DTW is used in the proposed approach in order to recog-
nise a pattern Y in a time series X . Therefore, DTW is ap-
plied by using a sliding time window mechanism. A window
denoted W (X) (i.e. a sub-sequence of X) is sliding over the
full sequence X , with a stride s. At each step, the DTW dis-
tance is computed between the sliding window W (X) and
the pattern (i.e. template time series) Y .

3. PROPOSED METHOD

The main advantage of the method proposed in this paper is
to provide a prediction of RUL in an unsupervised way, i.e.
without needing RUL-labeled data. To do this, we proceed in
two steps.

Step 1: a CNN autoencoder model is used to extract from
the raw sensor data a univariate Virtual Health Index (VHI)
which is a compression of the multi-variate input data. The
excellent feature extraction abilities of such a structure enable
to highlight a so called “End-of-Life-pattern” which charac-
terizes the moment when the EOL of the studied equipment
occurs.

More specifically, for the suggested method, the CNN en-
coder model is made of 9 convolution layers. In order to ex-
tract deep features, the first layers increase the depth of the
data by expanding the number of channels from K = 7 to
K = 56 and then compress it to obtain a univariate VHI in
the latent space (K = 1). The CNN decoder is built as a mir-
ror of the encoder. The hyper parameters of the convolutions
layers are chosen so that the initial length of the time series
remains unchanged over the convolution operations. Specif-
ically : stride s = 1 ; kernel length kl = 23 ; symmetrical
padding p = 11. Between each convolution, a ReLU activa-
tion function is apply to ensure non-linearity. Figure 2 shows
the overall CNN autoencoder structure.

Step 2: an LSTM encoder-decoder is used in order to predict
the future values of the VHI. This structure is made of deep-
stacked LSTM (3 layers of 120 hidden units) whose role is to
extract the deep temporal features of the VHI time series and
to output a prediction window of length P . This has already
been presented in (Herve de Beaulieu et al., 2022). The final
objective is to estimate the RUL. To do so, for each predic-
tion window, the presence of the EOL pattern is checked. As
long as the pattern announcing the end of life is not detected,

the prediction continues, using previously predicted values as
input for subsequent predictions. The detection of the EOL-
pattern is achieved by measuring the DTW distance between
the prediction windows and the EOL-pattern that have been
extracted by the CNN autoencoder. The prediction continues
step by step until the EOL-pattern is recognized with a suf-
ficiently high similarity (meant as a threshold). When that
time is reached, this means that the equipment has reached
its EOL. The RUL can thus be inferred recursively by count-
ing the number of prediction cycles that were necessary. The
proposed RUL inference process is summarized by Figure 3.
Min-similarity threshold, stride and window lengths are set
initially in an empirical manner and the optimized by using a
validation set.

Of course, the closer the input data is to the end of life, the
lower the length to be predicted and therefore the more accu-
rate the deduced RUL. This results in a higher variability in
the early predictions (temporally distant from the EOL) than
in the latter.

Input: VHI window of length T denoted as X , EOL
pattern denoted as Z.

Output: RUL value (scalar).
i = 0;
Y ← VHI predicted window of length P from X;
while DTW (Y,Z) > threshold do

i← i+ 1;
X ← X[S :] + Y [0 : S] ; /* stride S */
Y ← new VHI predicted window from new input X;

end
RUL← S × i+ P ;

Figure 3: RUL prediction process for one input VHI win-
dow

4. EXPERIMENTAL RESULTS

4.1. C-MAPSS dataset

The C-MAPSS dataset is used as experimental data to test
the proposed method. This dataset is composed of turbofan
engines degradation trajectories which are obtained from a
simulator developed by NASA (Saxena, Goebel, Simon, &
Eklund, 2008). C-MAPSS dataset is divided into four differ-
ent subsets (named FD001 to FD004), each made of a training
set containing several complete degradation data (i.e. multi-
variate data collected from sensors) and a test set contain-
ing truncated degradation data (from the same distribution as
training set), the objective being to predict the RUL based
on this incomplete test data. Depending on the subset of C-
MAPSS, fault modes can vary from one in FD001 and FD002
to two in FD003 and FD004. Similarly, the data is obtained
from simulations carried out under a variable number of op-
erating conditions. These conditions are based on different
combinations of altitude (0 to 42000 feet), throttle resolver
angle (20 to 100) and Mach (0 to 0.84). More details about
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Figure 2. Proposed deep CNN autoencoder structure for VHI extraction.

Table 1. Features of the C-MAPSS dataset.

C-MAPSS subsets
FD001 FD002 FD003 FD004

Engine for training 100 260 100 249
Engine for testing 100 259 100 248
Operating conditions 1 6 1 6
Fault modes 1 1 2 2

the different subsets are given in Table 1.

4.2. Data preparation

21 different sensor variables are available in the C-MAPSS
dataset. To reduce the computational burden, only the seven
most indicative sensors are kept, based on the observation of
the input time series (Wang, Yu, Siegel, & Lee, 2008). There-
fore, the input set is composed of sensors number 2, 3, 4, 7,
11, 12, 15. The detailed list of sensors, along with the units
and description, is available in Appendix A. All sensor time
series are normalized following a standard scaling defined as:

Norm(xs) =
xs − µs

σs
(6)

where s is the selected sensor, µs and σs are the mean and the
standard deviation.

Before providing this data to the CNN autoencoder, a zero
pre-padding operation is applied, in order to force all time se-
ries to have the same length (Dwarampudi & Reddy, 2019).
Once the VHI has been obtained, the univariate VHI is un-
padded to go back to its original length. Figure 4 gives an
example of padded and normalized multi-variate sensor time
series given as input to the CNN autoencoder.

4.3. Performance indicator of the RUL prediction

The evaluation of the performance of the RUL prediction made
by the proposed method is handled using a Root Mean Square
Error (RMSE). Indeed, it is the most used performance indi-
cator in RUL prediction literature, especially on C-MAPSS.
In the future, it may be considered to complete this metric
with other indicators such as the score function (Saxena et

al., 2008) or the Mean Absolute Percentage Error (Malhotra
et al., 2016). RMSE is computed as:

RMSE =

√√√√ 1

n

n∑

i=1

d2i , (7)

for n predictions, where di is the difference between the pre-
dicted and the actual RUL:

di = ˆRULi −RULi. (8)

4.4. Results

4.4.1. Step 1 - VHI extraction using CNN autoencoder

At the end of the training phase, an EOL pattern is recognised
by the deep CNN autoencoder. It is a local minimum whose
shape and position are always identical for all the turbines of
the training set. Let us keep in mind that, as mentioned in
Section 1, VHI does not have any physical interpretation. It
should be considered as an indication of the EOL (based on
the location of the pattern), not as a physical measure of the
equipment SOH. Therefore, the fact that the VHI increases
at the end of life does not indicate an improvement in SOH.
Such an EOL pattern can be seen in Figure 4 and in Figure 5.
On the latter, the true RUL has also been plotted in order to
show that the pattern is effectively corresponding to the EOL.
Therefore, this pattern will serve as template to be detected
on the test data. Note that after having obtained the VHI,
the zero-pre-padding is removed to keep the original length.
As explained in section 4.1, the test set is composed of time
series which are not reaching the end of life. Thus, this test
data does not yet reveal the pattern.

4.4.2. Step 2 - VHI long-range prediction and RUL infer-
ence

Therefore, from the unfinished test VHI, future predictions
are obtained by the LSTM encoder-decoder. As described in
Section 3, future VHI values are predicted in a rolling win-
dow process, re-using the previous predictions as new inputs
for the next ones. Figure 6 shows the result of such a predic-
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Figure 4. Top: an example multi-variate input data for one
turbine from the training set. Bottom: the corresponding VHI
extracted by the CNN autoencoder.

Figure 5. An example of extracted VHI (dotted line) along
with RUL labels of one turbine from the training set.

tion process for one turbine, from time step t = 45. Here,
the whole process of prediction only relies on the 50 values
preceding the time step t = 45. The rest of the prediction pro-
cess is self-feeding, by reusing past predictions. On the same
figure is displayed the reference pattern, at the instant where
it has been recognized with a satisfying DTW distance score
value, using the sliding DTW algorithm introduced in Section
2.4. This value is set empirically, in a hyperparameter opti-
mization loop conducted on a validation set. The VHI predic-
tion process is applied for each turbine available, at each time
step, thus resulting for each turbine in a sequence of RUL
values. Such a trajectory is shown in Figure 7, for the same
turbine as in Figure 6. The RMSE of the RUL trajectory is
calculated for each turbine of the test set, leading to an aver-
age RMSE of 40.1 and a standard deviation of 21.7.

5. CONCLUSION

An unsupervised RUL prediction method has been proposed
in this paper that avoids the dependence on RUL-labeled data,
therefore offering great interest for real-world applications. A
VHI has been extracted from sensor data in an unsupervised
manner, using a deep CNN autoencoder, highlighting a clear
end-of-life pattern. Then, using an LSTM encoder decoder,
future values of unseen VHI have been predicted, until the
EOL pattern is recognized using a DTW distance measure.
This pattern detection algorithm allows to deduce precisely
the RUL value from the VHI without needing the RUL labels.
The proposed method has been tested with success on the C-
MAPSS dataset.

Figure 6. Overview of the set of predicted sliding windows
from time step t = 45, until the reference pattern (in red) is
recognized with a high enough DTW measure of similarity.

Figure 7. Complete RUL trajectory for all the time steps for
one turbine.

As a perspective, this unsupervised RUL prediction problem
will be comprehensively extended to handle various condi-
tions and/or various fault modes. In particular, the other datasets
included in C-MAPSS will be used, as they offer up to 6 dif-
ferent operating conditions based on 3 variable settings mixed
randomly during each flight and up to 2 fault modes.
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APPENDIX

A. SUMMARY OF THE SELECTED SENSORS OF FD001
DATASET

Sensor ID Description Unit
s2 Total temperature at LPC outlet °R
s3 Total temperature at HPC outlet °R
s4 Total temperature at LPT outlet °R
s7 Total pressure at HPC outlet psia

s11 Static pressure at HPC outlet psia
s12 Ratio of fuel flow to Ps30 -
s15 Bypass Ratio -
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