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ABSTRACT 

In the safety critical systems such as industrial plants or 

aircraft, failure occurs inevitably during the operation, and it 

is important to prevent this while maintaining high 

availability. Therefore, a lot of efforts are being directed 

toward developing advanced prognostics algorithms and 

sensing techniques as an enabler for predictive maintenance. 

The key for reliable and accurate prediction not only relies 

on the prognostics algorithms but also based on the 

collection of sensor data. However, there is not much in-

dept studies toward evaluating the varying sensing 

techniques based on the prediction performance and 

inspection scheduling. It would be more reasonable for 

practitioner to select different cost of sensors based on the 

sensors’ contribution on reducing the cost on unnecessary 

inspection or measurement while maintaining its prognosis 

performance. Thus, the authors try to thoroughly evaluate 

the cost-effectiveness of the different sensor with respect to 

sensor resistance to noise. The simulation is conducted to 

analyze the prediction performance with varying 

measurement interval and different level of noise during 

degradation. Then real run-to-fail (RTF) dataset acquired 

from two different sensors are analyzed to design optimal 

measurement system for predictive maintenance. 

1. INTRODUCTION 

To prevent catastrophic event due to safety system failure, 

the Prognostics and Health Management (PHM) techniques 

have been thoroughly studied to monitor the system health 

status and enable preventive maintenance. One of the key  

 enablers for reliable health monitoring is capturing and 

storing different kinds of data from various sensors that 

contain health condition information of the monitored 

equipment (Lei et al., 2018). From the measured data, 

practitioner can determine the current health condition using 

signal processing techniques, feature engineering, machine 

learning methods, etc. to further predict its remaining useful 

life (RUL) until failure based on various prognostics 

algorithms. The recent developments in sensing technology 

have provided numerous types of sensors to measure 

parameters such as acceleration, temperature, acoustic 

signals and etc. (Kalsoom et al., 2020). Acquiring high-

quality information from various sensor types are more 

helpful for effective condition monitoring and prognostics. 

However, implementing great amount of  sensors used in 

health monitoring research is impractical as it require a large 

amount of data storage and sensor implementation costs 

(Cheng, Azarian and Pecht, 2010). Therefore, a robust 

evaluation and guideline of each sensor capacity for health 

monitoring and prognostics need to be established. 

The general method for sensor evaluation and selection is to 

select the degradation-relevant sensors which are adequate 

for prognostics. Liu et al (Liu et al., 2015) proposed 

entropy-based strategy to quantitatively select sensors that 

reflect the monotonic trend during degradation to perform 

engine health prognosis. Zhang et al (Zhang et al., 2020) 

and Coble et al (Coble and Hines, 2011) developed an 

additional selection metric  considering the trend 

consistency of sensor data among different systems and 

validated with engine simulation datasets. The existing 

literatures for sensor selections are mainly focused on 

evaluating the sensors data to the degradation trend using 

metrics of monotonicity, correlation and robustness (Li et 

al., 2015; Zhang, Zhang and Xu, 2016; Liu et al., 2017; She 

and Jia, 2021). However, there is lack of sensor evaluation 
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toward actual prognosis performance with the applicability 

of prognostics algorithm. Moreover, most of the above 

studies aim to optimize the sensor network in case where a 

large amount sensor are installed and reduce the number of 

sensors for cost-effective prognosis. In this paper, authors 

focus more on analyzing and comparing typical sensors 

having different signal quality (level of noise interference) 

on prognosis performance and relate sensor costs on the 

effect of reducing amount of data during degradation. 

Few studies have considered applicability of prognostics 

algorithms with the selection of different sensors. Camci et 

al (Camci et al., 2016) focused on developing guideline for 

practitioners on various types of sensors used to monitor the 

status of railway turnout system. The RUL performances of 

sensors have been evaluated and additional cost factors of 

sensors are considered to make an economic justification of 

the optimal sensor selection. Nevertheless, the metrics to 

evaluate prognosis performance is based on the true 

degradation information (Saxena et al., 2010; Yang et al., 

2016) such as true End of Life (EOL), true degradation 

curve, the availability of historical run-to-fail data, etc. 

However, in practice, the degradation trend and noise differ 

by each sensor, and it is challenging to assess true 

information.  

Motivated by the above issues, this paper evaluates the 

prognosis performance of sensors having different level of 

noise interference during degradation. In more detail, the 

most common and cost-effective contact type sensor, 

accelerometer (Lee et al., 2014) is considered as one. An 

acoustic non-contact sensor, microphone is considered as 

another since it is recently drawing attention as an 

alternative due to its advantage of low interference with 

external noises within the system (Park et al., 2021). For the 

performance evaluation, the authors utilize the metric that 

does not require true degradation information and validate 

its correlation with true information-based metric through 

numerical study. Finally, the prognosis performance under 

different amount of data (different data acquisition interval) 

during degradation is addressed to validate the cost of 

higher quality sensor. 

2. METHODOLOGY 

An overall framework of the study is described in Fig. 1. 

First, the design parameters related to sensor such as level of 

noise and data interval (data amount) are changed to 

generate various case of degradation datasets. Then, true 

information-based RUL performance and time window 

metric without true information are calculated from 

degradation datasets. Finally, correlation between two 

metrics are evaluated to validate the use of time window 

strategy and the capability to reduce data amount while 

maintaining prediction performance is verified. Finally, the 

time window metric is used in the bearing run-to-fail (RTF) 

datasets to evaluate the performance of two different quality 

sensors and cost-effectiveness of high-quality sensor is 

analyzed. 

2.1. Degradation simulation 

In the simulation, the degradation function is assumed to 

follow an exponential function since various components 

such as battery and bearing degradation are widely known to 

degrade exponentially (An, Choi and Kim, 2013a; Kim et 

al., 2020; Lim et al., 2020). Thus, using degradation 

function defined as Eq. (1), data until 100 cycles are 

generated by changing two design parameters. Four 

different level of noise is added to the degradation dataset 

by uniform distribution and four data interval is used to vary 

data amount during degradation which is summarized in 

table 1.  

 𝑦𝑗 = 𝑒(𝑏𝑡𝑗) + 𝜎, 𝑏 = 0.02 (1) 

 

Table  1. Sensor design parameters 

Lv. of noise 
𝜎~𝑈(−𝐿𝑣. 𝑛𝑜𝑖𝑠𝑒,  𝐿𝑣. 𝑛𝑜𝑖𝑠𝑒) 
𝐿𝑣. 𝑛𝑜𝑖𝑠𝑒 = [0.2,  0.3,  0.4,  0.5] 

Data interval 𝛥𝑡 = 𝑡𝑗 − 𝑡𝑗−1,   𝛥𝑡 = [1,  2,  4,  8] 

 

 

Figure 1. Overall framework of sensor evaluation 

 

  

(a) (b) 
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(c) (d) 
Figure 2. Degradation simulations 

 

Based on the design parameters, total 16 cases are 

considered. The Fig. 2 (a) shows an example of dataset with 

small level of noise(0.2) and large amount of data(𝛥𝑡 = 1). 

The black dots and dashed curved refer to measured data 

until 50 cycles and true degradation curve until end-of-life 

(EOL). A green line is the true threshold value at EOL 

which is used to calculate the predicted RUL. Fig. 2(b) is 

the case of small amount of data(𝛥𝑡 = 8) and Fig. 2(c) and 

(d) are case under large level of noise(0.5). To consider the 

randomness of noise, 50 datasets are randomly generated 

under same design parameter. 

2.2. Regularized Particle Filter (RPF) 

Particle filter (PF) algorithm, also known as the Sequential 

Monte Carlo method is widely used prognostics approach in 

many engineering problems such as Lithium-ion batteries, 

induction motor and PEM fuel cells. PF recursively 

estimates and updates the probability distribution function 

(pdf) of the unknown model parameters or states of interest 

based on the following Bayes’ theorem: 

 𝑝(θ|𝑧) ∝ 𝐿(𝑧|θ)𝑝(θ) (2) 

where 𝜃 is a vector of unknown parameters, 𝑧 is a vector of 

measurements, 𝐿(𝑧|𝜃)  is the likelihood, 𝑝(𝜃)  is the prior 

pdf of 𝜃 and 𝑝(𝜃|𝑧) is the posterior pdf of 𝜃 conditional on 

𝑧 . Standard PF consists of state transition function 𝑓  to 

predict the evolution of the state and measurement function 

ℎ as follows: 

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑏𝑘, 𝑣𝑘) = 𝑒𝑥𝑝(𝑏𝑘𝑑𝑡)𝑥𝑘−1 (3) 

𝑧𝑘 = ℎ(𝑥𝑘 , 𝑛𝑘)  (4) 

where 𝑘  is the time step index, 𝑥𝑘  is the state, 𝑏𝑘  is the 

vector of model parameter, 𝑧𝑘 is the measurement data, and 

𝑣𝑘  and 𝑛𝑘  are the process and measurement noises, 

respectively. 

In this study, the exponential function is used for transition 

function and process noise is ignored since it can be handled 

through the uncertainty in the model parameters. For 

measurement, it is assumed that 𝑧𝑘  is the same as 

degradation data including measurement noise having 

Gaussian noise, 𝑛𝑘~𝑁(0, σ𝑘) , where σ𝑘  is the unknown 

parameter estimated over time. Thus, the total unknown 

parameters to be estimated are θ = [𝑥, 𝑏, σ]𝑇. 

The process of the PF is composed of three steps at each 

iteration. First, in prediction step, propagates the previous 

time step particles through state function to form particles at 

the current time, which is the prior pdf 𝑝(𝜃) at the current 

time. Then in the updating step, the likelihood of 

measurement data 𝐿(𝑧|𝜃)  that represents each particle’s 

weight are calculated. As a new measurement is used, the 

weight of each particle is adjusted and assign a higher 

weight to the particles having a higher similarity with the 

measurement. Finally, in the resampling step, the particles 

are rearranged based on the obtained likelihood, which are 

duplicated or eliminated depending on the weight of the 

particles by using the inverse cumulative distribution 

function (CDF) method (Saha, Goebel and Christophersen, 

2009; Dong et al., 2014). The resampled particles, which are 

the posterior distribution at the current time are then used as 

the initial distribution for the next step prediction. More 

information about PF is referred to (An, Choi and Kim, 

2013b). 

However, due to resampling process, PF-based prognosis 

suffers the problem of particle impoverishment since the 

samples are drawn from a discrete distribution rather than a 

continuous one. Consequently, after several iterations, the 

particles with small weights are discarded and the particles 

with high weights are duplicated too often which gives a 

poor representation of the posterior density. To resolve this 

issue, this study used regularized Particle filter (RPF) which 

is a modified version of PF in the resampling step. The 

kernels are generated at each particle points and summed to 

generate the kernel density estimate in RPF to have the 

advantage of approximating the weighted particles in 

continuous distributions (Musso, Oudjane and Legland, 

2000). 

2.3. Prognosis Performance Metric 

After predicting the future degradation using the RPF 

algorithm, two different prognostic performance metrics are 

calculated: RUL performance metric and time window 

metric. To compare the performance of both metrics, two 

components are considered: the measure of the prediction 

accuracy and the measure of the uncertainty associated with 

the prediction. The schematic illustration of each metric 

calculation is addressed in Fig 3. 

The RUL performance metric is calculated based on the 

result shown in the left figure of Fig. 3. The black dots and 

black dashed line represent the measured data until current 

cycle ( 𝑀 = 50𝑐𝑦𝑐𝑙𝑒𝑠)  and true degradation curve 

respectively. Measurement data until 𝑀 cycles are used for 

estimating the distribution of model parameters. The red 

dashed line and light red colored space denote the predicted 

median and 90% confidence interval (C.I.) in the future. The 

green dotted line horizontally is the true threshold until 

failure which is the value corresponding to EOL (100 

cycles). Based on the threshold, we can obtain the 

distribution of cycles when the predicted state reaches the 
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threshold. Then the distribution of RUL can be obtained by 

subtracting this pdf from current cycle which is 50 cycles. 

From the predicted RUL distribution, the accuracy measure 

can be calculated by Eq (5) which is an absolute error 

between median value of predicted RUL and true RUL. 

Besides accurate prediction, the level of uncertainty 

associated with the prediction is also an important factor to 

assess the prognostics performance from a conservative 

decision-making point of view. Therefore, the level of 

uncertainty is considered as normalized C.I. width which is  

 

 

Figure 3. Illustration of two different prediction 

performance strategy 

 

defined as 𝑅𝑈𝐿𝐶𝐼  and calculated by Eq. (6). 

 

 𝑅𝑈𝐿𝑒𝑟𝑟𝑜𝑟 = |𝑅𝑈𝐿𝑝𝑟𝑒𝑑,𝑚𝑒𝑑𝑖𝑎𝑛 − 𝑅𝑈𝐿𝑡𝑟𝑢𝑒| (5) 

 𝑅𝑈𝐿𝐶𝐼 =
𝑅𝑈𝐿𝑒𝑠𝑡,5𝑡ℎ − 𝑅𝑈𝐿𝑒𝑠𝑡,95𝑡ℎ

𝑅𝑈𝐿𝑡𝑟𝑢𝑒

  (6) 

The time window metric is different from RUL metric as it 

directly uses the measurements in a certain time window 

without true information from degradation (Wang et al., 

2019). The strategy is shown in the right figure of Fig. 3 and 

the black dashed line is not a true degradation curve, but the 

measurement data. Since the true crack size is not available 

in practice, a straightforward way is to compare the 

predictions with data (Lei et al., 2018; Wang et al., 2019). 

Thus, the prediction accuracy and level of uncertainty are 

assessed over the time window which is the range between 

two vertical dashed line in the right figure. The length of 

time window (𝑁𝑡) is set based on how much early prediction 

is required for maintenance scheduling. In the simulation 

study, the length of window is set 50 cycles same as the true 

RUL. The normalized mean square discrepancy (NMSD) is 

calculated to assess the prediction accuracy using below 

equation: 

 𝑁𝑀𝑆𝐷 =
1

max(𝑦𝑀+1:𝑁𝑡)−m𝑖𝑛(𝑦𝑀+1:𝑁𝑡)
𝑀𝑆𝐷, 

(7) 

 𝑀𝑆𝐷 =
1

𝑁𝑡

∑ (𝑦𝑀+𝑖 − �̂�𝑚
𝑀+𝑖)2

𝑁𝑡

𝑖=1
 

where 𝑀 is the prediction start cycle, 𝑦 is the measured data 

in the time window and �̂�𝑚  is the predicted median of 

degradation state by the prognostic algorithm. 

For the uncertainty measure, two indexes are considered 

together. The first index 𝐸1 measures the relative width of 

the 90% C.I. with respect to the predicted median value for 

each cycle and averages over the time window, which is 

defined by Eq. (8). Thus, a smaller 𝐸1 indicates a narrower 

C.I. over prediction and lower prediction uncertainty.  

 

 
𝐸1 =

1

𝑁𝑡

∑
(�̂�𝑢

𝑀+𝑖 − �̂�𝑙
𝑀+𝑖)

�̂�𝑚
𝑀+𝑖

𝑁𝑡

𝑖=1
 

, �̂�𝑙  & �̂�𝑢 ∶ Lower & upper bound of 90% C. I .  

(8) 

 

The second index 𝐸2  measures whether the C.I. of 

prediction covers the true measurement and how wide the 

C.I. needs to be to cover the measurement at each prediction 

point. In detail, at each cycle in the time window, 𝑀 + 𝑖, 
𝑖 = 1,2, … , 𝑁𝑡 , the minimal α % C.I. that can cover the 

measure is calculated. The discrete values of α is increased 

from 90 to 99 with one increment and 𝐸2  is calculated as 

−0.01α +  1 . A smaller 𝛼  indicates a more reliable 

prediction, thus a larger value is assigned for 𝐸2 . If the 

highest 𝛼 = 99  cannot cover the measurement, 𝐸2  is 

defined zero. 

 

𝐸2 = {

1

𝑁𝑡

∑ −0.01𝛼𝑀+𝑖 + 1
𝑁𝑡

𝑖=1
, 𝛼 = 90, 91, . . . , 99

0, 𝑖𝑓 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝛼 𝑒𝑥𝑐𝑒𝑒𝑑𝑠 99

 (9) 

  

The above two indexes evaluate the prognostics uncertainty 

considering the C.I. of prediction. Based on each index 

characteristic, the smaller the 𝐸1  and higher the 𝐸2 

represents better prediction. Thus, nonlinear combination of 

𝐸1 and 𝐸2, 𝐸𝐼 = 𝐸2/𝐸1 is calculated as one index to assess 

uncertainty performance for time window metric. 

2.4. Numerical Case Study 

In this section, we attempt to evaluate the correlation 

between the RUL performance metric and the time window 

metric. Since the prediction performance of prognostic 

algorithm can differ by randomness of noise even under the 

same noise level, the correlation is analyzed using multiple 

randomly simulated datasets (50 datasets as mentioned 

before). If it has high correlation, the time window metric 

can be used to assess the true prediction performance using 

only measurement data. 

The correlation is calculated between each component in 

metrics, the accuracy measure and uncertainty measure. The 

scatter plot and correlation coefficient value between two 

metrics under different level of noise are shown in Fig. 4. 

The upper figures present the scatter plot between 𝑅𝑈𝐿𝑒𝑟𝑟𝑜𝑟  

and NMSD and the lower figures between 𝑅𝑈𝐿𝐶𝐼  and 𝐸𝐼.  
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Correlation between accuracy measures show very high 

correlation regardless of noise levels, smaller the RUL error, 

smaller the NMSD value. Though the uncertainty measure 

show less correlation than the accuracy measure, correlation  

coefficient value shows over 0.5 regardless of noise. Note 

that it has negative value since having higher EI value 

means more reliable prediction which corresponds to narrow 

RUL CI. 

We verified that the time window metric has high 

correlation with true RUL performance and can be used as 

prediction performance indicator when true information is  

 

Figure 4. Correlation between two different metrics under 

varying noise 

 

 

Figure 5. Prediction accuracy of dataset under varying level 

of noise with different data interval 

 

unavailable. Moreover, the authors analyzed the prediction 

accuracy of dataset under varying level of noise with 

different data interval until current 𝑀  cycles. Large data 

interval addresses small amount of data used for model 

parameter fitting. The overall result of 𝑅𝑈𝐿𝑒𝑟𝑟𝑜𝑟  and NMSD 

are presented in Fig. 5 showing that measurement with 

small level of noise can have higher prediction accuracy 

than the measurement with larger noise while reducing the 

data amount. For example, the NMSD value at Lv. 1 noise 

& data interval of 4 cycles is smaller than the value at Lv. 3 

noise & data interval of 1 cycle. Based on the verified 

hypothesis that metric without true information can assess 

the prediction performance and small level of noise data can 

maintain its performance higher than the high level of noise 

data, we evaluate the two different sensor data used on 

bearing health monitoring. 

3. BEARING CASE STUDY 

Bearing is one of the most critical components that leads to 

system failure and numerous researches have conducted to 

prevent its failure (Duong et al., 2018; Wang, 2018; Wu et 

al., 2019). Among the available sensors, the accelerometer 

has been the most common and cost-effective sensor for 

health monitoring. However, it has drawbacks of high 

interference with other signals due to its attachment within 

the system. Recently, acoustic non-contact sensor such as 

microphone are recently drawing attention as an alternative 

since it is less affected by the other signal interferences 

(Huang et al., 2019; Wang, Mao and Li, 2021). 

 

Figure 6. The bearing test rig: (a) Front view (b) Test 

bearing and sensors (c) Support bearings and couplings 

 

To thoroughly evaluate the prognostics performance of two 

different quality sensors, the authors conducted multiple 

run-to-fail (RTF) experiment using a testbed mounted with 

commonly used accelerometer and high-quality 

microphone. The sensor performance regarding prognostics 

is evaluated using the time window metric from the previous 

section. 

3.1. Experimental Setup 

The Fig. 6 shows the bearing test rig in which the RTF tests 

are performed. The test rig consists of sensors, test bearings, 

support bearings, motor and DAQ boards. The sensors used 

in this study are an accelerometer (KS77C.100 by MMF) 

and a microphone (PCB Piezotronics 378C01) and a 

thermocouple. The cost of microphone (1931$) is about 4 

times higher than the accelerometer (452$). The DAQ 

boards consist of NI Pxle-4464 and NI-9212, in which the 

former records acoustic and vibration signals at a sampling 

rate of 204.8 kHz and the latter records the temperature at a 

100 Hz sampling rate. The first 1 second of every 10 

seconds is stored as one cycle using LabVIEW software.  

The bearing is tested under the shaft rotation at 1700 rpm. 

Radial load generated by the mechanical fastening of bolts 

is applied to the test bearing located at the end of the shaft at 

75~80% of the dynamic load rating of 7950N to develop 

natural growing defects. After a number of trials to ensure 

the faults fully developed over cycles while maintaining 
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safety, the test is terminated when the acoustic pressure, 

acceleration and temperature exceed the thresholds of 9 

Pascal, 18 𝑚/𝑠2 and 80℃, simultaneously. In result, three 

RTF test datasets are acquired by two different sensor 

signals having different level of noise and pattern during 

degradation. 

3.2. Sensor Performance Analysis 

The general process of fault prognosis requires to extract a 

proper health indicator (HI) for the prognostics. In this 

study, a traditional time-based statistical feature, the root 

mean square (RMS) is calculated as HI since it is widely 

used for bearing degradation monitoring. Though, there are 

various  

 
Figure 7. RMS values of three RTF datasets 

 

studies that focused on developing robust HI for more 

accurate and earlier prediction, we use RMS since this 

article focuses more on evaluating the prognostics 

performance of different quality sensor data. The HIs for 

three different RTF datasets are presented in Fig. 7 where 

the blue and red dotted line is the HI from vibration signal 

and acoustic signal, respectively. It is noticeable that the 

vibration shows much fluctuation and noise interference 

compared to the acoustic signal. For the RTF #3, the HI 

from vibration shows not only large noise but also high 

fluctuation on the degradation trend itself.  

The prognosis performance for each sensor is conducted 

using the time window metric. The window size (𝑁𝑡 ) is 

fixed to 50 cycles in this study and prediction starting cycle 

(𝑀 ) is 50 cycles which is used for PF model parameter 

fitting. Then the performance components representing the 

accuracy (NMSD) and uncertainty (𝐸𝐼) are calculated for 

every sequential cycle until failure. For example, the left 

and middle figures of Fig. 8 show the prediction result of 

RTF #1 dataset at each 50 cycles and 95 cycles, where 

upper figure is vibration and lower figure is acoustic. The 

black and red dots denote the measurement until current 

cycles and future measurement data in the time window. 

The red dashed line and light red colored space are the 

predicted median and 90% confidence interval (C.I.) in the 

future. The NMSD and 𝐸𝐼  values over sequential cycle 

(from 50 cycles to 95 cycles) are shown at the right of Fig. 8 

and averaged to evaluate the overall prognosis performance 

on each sensor data.  

The prediction performance comparison of sensors for all 

RTF datasets are presented in Fig. 9. The upper histogram 

figures show the NMSD value, and the lower figures show 

the EI values related to uncertainty. The blue and red 

histogram are the prognosis metric results based on 

vibration and acoustic sensor, respectively. In addition, the 

results using data within interval of 4 cycles instead of 1 

cycle are also compared together to evaluate the prognosis 

performance of acoustic sensor using less data amount. In 

the aspect of prediction accuracy, NMSD value of acoustic  

 
Figure 8. Prediction trajectories for each sensor and 

prognosis performance over degradation 

 

 
Figure 9. Prognosis performance comparison of vibration, 

acoustic and acoustic signal with less data (data interval of 

4cycles) 

 

is consistently lower than the vibration even if it uses 1/4 

amount of data for model parameter fitting. The uncertainty 

measure 𝐸𝐼  shows that vibration sensor results lower 

reliability than the acoustic sensor over all RTF datasets. 

Though the acoustic 𝐸𝐼  values reduce when less data are 

used for the model parameter estimation, it is still similar or 

higher than the vibration. Thus, similar to the simulation 

study, the acoustic sensor, microphone having small level of 

noise during degradation perform much better prediction 

regardless of 1/4 times less data than the accelerometer. 

RTF #1

RTF #3

RTF #2

Acoustic (50cycle) Acoustic (95cycle)

Vibration (50cycle) Vibration (95cycle) NMSD

EI

RTF #1 RTF #2 RTF #3

RTF #1 RTF #2 RTF #3
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Based on the prognosis performance comparison of two 

different sensor data, the effectiveness of microphone on 

prognostics is validated. Though the cost of microphone is 

higher than the conventional accelerometer, the performance 

on prediction accuracy and variation shows that microphone 

can provide much robust prediction even reducing the data 

storage costs. Considering the cost occurrence due to false 

prediction and data storage for long-term monitoring, the 

microphone will be cost-effective than implementing 

accelerometer. 

4. CONCLUSION 

A robust sensor performance comparison is proposed based 

on prognosis metric based only on direct measurement and 

without true degradation information. The validation of its 

metric is performance by randomly generating 50 datasets 

under different level of noise and calculating its correlation 

with true RUL performance. Then, addressed the advantage 

of using high quality sensor with less noise inference during 

degradation. 

The bearing RTF experiments are conducted to demonstrate 

the two different quality sensors on prognosis performance. 

The non-contact sensor type, microphone showed superior 

performance on prognosis than the accelerometer due to the 

advantage of less interference to noise. Moreover, though 

the microphone costs much higher than the accelerometer, it 

is shown that it can reduce 4 times data amount than the 

accelerometer while maintaining its prognosis performance 

higher. This study is an initial step for setting a guideline for 

the practitioners when establishing the data acquisition 

system for PHM. The other factors such as calibration and 

regular maintenance of the instruments will be considered in 

the future work to evaluate sensor performance more 

robustly. 
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