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ABSTRACT

Nuclear plant operators are required to understand the uncer-
tainties associated with the deployment of prognostics tools
in order to justify their inclusion in operational decision -
making processes and satisfy regulatory requirements. Op-
erational uncertainty can cause underlying prognostics mod-
els to underperform on assets that are subject to evolving im-
pacts of age, manufacturing tolerances, operating conditions,
and operating environment effects, of which may be captured
through a condition monitoring (CM) system that itself may
be degraded. Sources of uncertainty in the data acquisition
pipeline can impact the health of CM data used to estimate
the remaining useful life (RUL) of assets. These uncertain-
ties can disguise or misrepresent developing faults, where (for
example) the fault identification is not achieved until it has
progressed to an unmanageable state. This leaves little flexi-
bility for the operator’s maintenance decisions and generally
undermines model confidence.

One method to quantify and account for operational uncer-
tainty is calibrated hybrid models, employing physics, knowl-
edge or data driven methods to improve model accuracy and
robustness. Hybrid models allow known physical relations to
offset full reliance on potentially untrustworthy data, whilst
reducing the need for an abundance of representative histor-
ical data to reliably identify the monitored asset’s underly-
ing behavioural trends. Calibration of the model then ensures
the model is updated and representative of the real monitored
asset by accounting for differences between the physics or
knowledge model and CM data.

Jennifer Blair et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

In this paper, an open-source bearing knowledge informed
machine learning (ML) model and CM datasets are utilized
in an illustrative bearing prognostic application. The uncer-
tainty incurred by the decisions made at key stages in the
development of the model’s data acquisition and processing
pipeline are assessed and demonstrated by the resultant im-
pact on RUL prediction performance. It was shown that de-
sign decisions could result in multiple valid pipeline designs
which generated different predicted RUL trajectories, increas-
ing the uncertainty in the model output.

Index Terms— bearing prognostics, condition monitoring, hy-
brid systems, model calibration, uncertainty capture.

1. INTRODUCTION

Most often, asset maintenance is conducted reactively, where-
by corrective maintenance is conducted once a failure has oc-
curred (Canada Nuclear Safety Commission, 2012). In a nu-
clear power plant (NPP), an unexpected outage of an asset
can be expensive due to lost revenue from interrupted gen-
eration with downtimes being potentially lengthened by the
requirement to: retrospectively identify the root of the fault,
source required components and perform the maintenance ac-
tion. With many NPP’s coming to the end of their designed
lifetime, many operators are utilising CM and condition based
maintenance (CBM) techniques to justify and manage NPP
lifetime extensions and to avoid unplanned outages (Coble,
Ramuhalli, Bond, Hines, & Upadhyaya, 2015). This requires
aging assets to be closely monitored to estimate asset health
and ensure extension plans are affordable.

A common asset in NPP’s are rotating plant (e.g. motors,
turbines, centrifugal pumps, fans), which are prone to bear-
ing failure (Yung & Bonnett, 2004). These could be tur-
bine or motor driven pumps which form part of a larger gen-
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eration or cooling system. Despite being relatively simple
components, bearings are largely responsible for the reliable
operation of rotating plant by supporting huge loads to re-
duce friction on downstream components (Jammu & Kankar,
2011). As such, if bearing faults are left untreated, damage
could propagate through the drivetrain and create wider sys-
tem complications in more expensive components, such as the
gear box (Rexnord Industries, LLC, Gear Group, n.d.). Cas-
cading failures would lead to expensive and lengthy main-
tenance intervention which would cause disruption to plant
generation and incur additional regulatory reporting overhead.

CBM and data based analytics can be used to estimate the
RUL of rotating plant bearings which, if effective, can pro-
vide sufficient warning of an impending failure and an in-
dication of the type of failure developing. An operator can
incorporate this into their resource scheduling and budget-
ing actions to ensure the asset is taken offline and serviced
while minimising disruption to NPP operation. However, de-
veloping and applying this approach requires access to data,
and with specific regards to NPP’s, these systems were de-
signed before modern digital sensing and monitoring tech-
niques were available for the hostile environments where they
operate, which is an additional consideration that can impact
upon the associated data acquisition components. This can
result in operators making decisions on unhealthy data col-
lected from NPP’s which are not ideally designed for mod-
ern sensing systems, adding additional uncertainty to mainte-
nance plans.

Sources of uncertainty can impact the data acquisition pipeline
at every stage, including: the choice of sensor type and place-
ment; the chosen sampling rate; data pre-processing steps to
present the data in a specific format; and, the metric(s) used
by the analytics to convey information to an operator. Design
choices at each of these stages offer a trade off, which will in-
cur uncertainty in the output of the pipeline at each stage and
can be compounded by the interaction between upstream and
downstream pipeline stages. In addition to this, data based
analytics generally do not attribute a measure of confidence
in their output, making it difficult to determine if the ana-
lytics are performing poorly in a sub-optimal pipeline. This
makes ML outputs difficult to trust for inclusion in risk and
cost assessments. Also they do not provide the operator with
relevant information that could allow future improvements to
the pipeline to be made.

2. CONTRIBUTION

The contribution of this work is not the creation of a novel
RUL technique, but to demonstrate and quantify the confi-
dence associated with the application of existing hybrid RUL
approaches with the associated data acquisition pipeline deci-
sions. Confidence can be undermined by these choices, which
impact the performance of the underpinning model and can

reduce the operators trust in the whole decision support sys-
tem. Without sufficient trust, especially in the heavily regu-
lated nuclear engineering environment, decision support tools
will not be utilised to support maintenance scheduling activi-
ties. As such, the methodology presented in this paper is con-
cerned with investigating the uncertainty in analytic design
and deployment by capturing the sources of uncertainty and
demonstrating how these impact on an uncertainty budget for
the whole data to decision pipeline rather than just the output
of the ML model. In this work, the uncertainty in the model
performance due to the whole pipeline deisgn is captured by
analysing the quantiles of the model outputs under different
data acquisition pipeline designs. Evidence is presented in
the form of case-studies using open-source, curated test rig
data to reduce the impact of excessive operational noise, that
were performed to evaluated data pipeline uncertainty.

3. LITERATURE

The literature review covers research trends in bearing prog-
nostics applications, with a focus on data-based methods as
these require access to healthy CM data. This is supported by
a section on hybrid modelling where knowledge- and data-
based methods are combined, and how diverse approaches
may be combined for prognostic applications. Finally, un-
certainty capture methods with particular focus on computer
modelling prognostic methods is presented.

3.1. Data-Based Bearing Prognostics

Bearings are subject to high stress operating conditions which
makes failures common. These can manifest due to overload-
ing or imbalanced loading, lubrication issues due to insuffi-
cient lubrication, contamination or sealing failures. Bearings
are mechanical faults and mechanical failures are most com-
monly monitored via vibration monitoring, although have been
approached using temperature, oil analysis and accoustic emis-
sion approaches (Kumar et al., 2019). Vibration monitoring,
while subjected to the robustness and cost of the sensor sys-
tem, allows changes in bearing health to be observed imme-
diately and has been proven as a reliable method for bearing
fault prognosis. Temperature based schemes are most useful
for end of life where the fault has progressed significantly,
oil analysis methods require the bearings to have a dedicated
supply system and acoustic emission requires access to high
quality measurements (Jammu & Kankar, 2011).

A survey of 274 prognostic approaches by (Lei et al., 2018)
separated works into statistical-, AI-, physics- and hybrid-
based approaches, with 56% contribution from statistical based
methods, and 26% from AI based approaches which both rely
heavily on available CM data. ML or Deep Learning (DL) ap-
proaches are gaining increasing popularity as they can handle
complex prognosis problems which may be traditionally dif-
ficult to create reliable physics or statistical models for, how-
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ever due to their black-box nature it is difficult to justify their
usage in safety critical applications. The approaches which
gained the most attention for machine prognosis in (Lei et
al., 2018) review were Artificial Neural Networks, Neuro-
Fuzzy systems (both DL methods), Support Vector Machines
(SVM), K-nearest neighbour (kNN) and Gaussian Process
Regression. DL approaches require access to large quantities
of high quality, representative data which can be unobtainable
in some industrial settings, however can produce excellent
RUL predictions in return. ML models such as the SVM and
kNN methods can provide better performance in cases with
limited access to representative data, however are subject to
appropriate kernel and parameter selection (Nisbet, Elder, &
Miner, 2009). Gaussian Process Regression are computation-
ally expensive when utilising large number of samples due to
a required matrix inversion, but is a flexible method that can
be updated with new data, adapt to limited data and incorpo-
rate uncertainties (Hart, 2018).

3.2. Hybrid Models

A single knowledge-, physics- or data- based approach is un-
likely to provide effective system coverage for multiple fail-
ure modes and fault types. Utilising a combination of ap-
proaches aims to leverage the relative advantages of each in-
dividual method while limiting the impact of their respec-
tive weaknesses (Baur, Albertelli, & Monno, 2020). (Goebel,
Eklund, & Bonanni, 2006) found that combining a bearing
physics of failure model with an empirical method based on
measured data (Dempster-Shafer Regression) produced more
accurate RUL prediction results than either method indepen-
dently.

The method of combining two or more of these methods in
a hybrid approach varies and tends to be application spe-
cific due to the relatively early development stage of the re-
search field as shown by the small (8 %) contribution to the
canvassed literature in (Lei et al., 2018). As such, many
methods of creating hybrid models are being explored, such
as utilising one model to estimate the asset health state and
another for RUL estimation; combining the RUL estimates
from multiple methods; or utilising one method for short-
term forecasting and another method for long-term forecast-
ing (Ramuhalli, Walker, Agarwal, & Lybeck, 2020). Of par-
ticular interest in this work is the combination of knowledge-
and data-based approaches. Incorporating domain knowledge
into data-driven approaches allows known trends and rules
that govern the degradation patterns to be encoded to support
the prognostic tool in identifying and predicting the failure
dynamics of well understood failure modes. The data-driven
component can provide the needed flexibility to apply and
extrapolate these rules into an RUL estimate tailored to the
monitored asset, while providing capability to identify new
failure modes not included in the encoded expert knowledge
(Liao & Köttig, 2014).

3.3. Uncertainty Capture in computer models

ML models tend to produce point estimates which does not
provide information about the likely distribution of poten-
tial predictions. Attributing confidence intervals to output
predictions (typically corresponding to a confidence level of
95 % (JCGM Working Group 1, 2008)) provides more ap-
propriate information about the anticipated range of outputs
and expected value of the prediction, allowing operators more
agency to utilise the results. Bayesian methods are usually in-
corporated into prognostic approaches to handle uncertainty
capture and propagation, such as in Bayesian Networks, Baye-
sian Neural Networks and Kalman/particle filtering algorithms.
Non-Bayesian methods that have been used include Monte
Carlo based, bootstrapping or closed-form mathematical so-
lutions. A major drawback of these approaches are the lengthy
and difficult process of collecting and formalising prior knowl-
edge and assumptions which may be impractical for some
complex system applications (Zhao et al., 2021).

Additionally, computer models themselves introduce sources
of uncertainty. This was demonstrated by (Kennedy & O’Hagan,
2001) who utilised a Bayesian approach to computer model
calibration that incorporated all forms of uncertainty previ-
ously discussed in the research space. These included: pa-
rameter uncertainty, where the value of context specific fea-
tures are unknown but assumed; random effects, where the
real process may experience random fluctuations given the
same experienced conditions; model inaccuracy, where the
complexity of the model is unable to truly reflect the real pro-
cess; data collection errors, where there are sources of un-
certainty in the CM data; and uncertainty of the unseen code
output, where there exists unprocessed and potentially more
optimal configurations of the model.

4. UNCERTAINTY IN HYBRID MODEL DATA PIPELINES

The proposed methodology to assess the uncertainty is pre-
sented in the form of a case study that investigates the im-
pact of decisions made in the data acquisition and processing
pipeline through the resulting uncertainty in the RUL predic-
tion for motor bearing prognostics.

4.1. Condition Monitoring Datasets

Two open source bearing prognostics datasets are used in this
work: NASA IMS (Lee, J. , Qiu, H. , Lin, J. and Rexnord
Technical Services, 2007) and NASA FEMTO (NASA Ames
Prognostics Data Repository, 2012). Both datasets observe
run to failure experiments for bearings with no initial defects.
Each data set has visibility of the bearings failures by ver-
tically and horizontally mounted accelerometers (termed ’x-
axis’ and ’y-axis’ respectively), with limited access to the ver-
tical data for the IMS dataset. Four distinct bearing failures
are observed in the IMS dataset, with two occurring concur-
rently, while the FEMTO dataset contains 17 run to failure
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examples. The IMS failures were accelerated due to inten-
sive, but in specification, bearing loading conditions, while
the FEMTO dataset was created using the PRONOSTIA test
rig which artificially overloaded the bearings to further accel-
erate wear.

4.2. Existing Hybrid Model

4.2.1. Combining Knowledge- and Data-driven Compo-
nents

An open source hybrid RUL model consisting of a novel Wei-
bull-based loss function for Neural Networks (NN) by (Hahn
& Mechefske, 2022) was chosen as the basis for this study.
Utilising a Weibull distribution to capture domain knowledge
from the field of reliability engineering, the authors create 9
NN loss functions to evaluate the success of their knowledge
informed ML model for bearing prognosis on the IMS and
FEMTO datasets. The knowledge component of the hybrid
model is captured by using the data to calibrate the Weibayes
equation (Abernethy, 2004) shown in equation 1. The one
parameter Weibayes has been shown to produce accurate re-
sults for a small number of failures (<20) where the estimated
value of shape parameter, β, is representative of the true sys-
tem behaviour (Abernethy, 2004). The value of β was fixed
at a value of 2 in (Hahn & Mechefske, 2022) due to model
stability concerns, and this value being deemed a reasonable
shape estimate for ball bearing failures (Abernethy, 2004).
The values of η and β are used to calculate the Weibull cu-
mulative distribution function (CDF) in equation 2. The 9
loss functions are shown in figure 1 and are incorporated into
the model as the loss function to be minimised by the NN in
the back-propagation step.

η =

[
N∑

i=1

tβi
r

] 1
β

(1)

F (t) = 1− e−( t
η )β (2)

Where

• t = time or cycles,
• r = number of failed units,
• N = total number of failures plus currently running units

(incomplete failures)
• η = maximum likelihood estimate of the unit character-

istic life (63.2 distribution percentile)
• β = Weibull shape parameter, and
• F(t) is the Weibull CDF

4.2.2. RUL Estimation Procedure

(Hahn & Mechefske, 2022) conducted the following process
to generate RUL estimates for both the IMS and FEMTO

Figure 1. Loss functions from (Hahn & Mechefske, 2022)

Dataset Train. Val. Test.

IMS Run 2 (B 1) Run 1 (B 3) Run 1 (B 4)
Run 3 (B 3)

FEMTO
Bearing1 1 Bearing1 2 Bearing1 3
Bearing2 1 Bearing2 2 Bearing2 3
Bearing3 1 Bearing3 2 Bearing3 3

Table 1. Data split between training, validation and testing

datasets. First, the input data from the horizontal sensors was
processed into spectrograms to obtain the frequency represen-
tation of the vibration data. The number of input features was
reduced by ’binning’ the spectrogram into 20 bins, where the
maximum value of the frequency bands included in each bin
is taken as the value for that bin, repeated for each timestep.
The response variable was the lifetime percentile status of the
bearing, with 0 % being healthy bearing at the start of the ex-
periment, to 100 % signifying the failure of the bearing at the
end of the experiment. The training, validation and testing
split of the datasets are shown in table 1.

The Weibayes equation was calibrated with the training data
to be incorporated into the loss functions. To initialise and op-
timise the NN architecture, a random search was conducted
to select from the hyper parameters shown in table 2 for each
of the loss functions, which the authors set to 1000 in their
study. The coefficient of determination (R2) and Root Mean
Squared Error (RMSE) were used to discard models that per-
formed poorly, with models with a R2 > 0.2 and RMSE <
0.35 progressed to the testing stage. After testing, the models
were filtered again by the R2 and RMSE bounds before se-
lecting a subset of the top performing models based on theR2

metric. The authors found that the top performing loss func-
tion for the IMS dataset was the Weibull-RMSLE combined,
and the Weibull-MSE combined for the FEMTO dataset, both
containing the knowledge informed loss function.
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Parameter Selection Choice
Batch size 32, 64, 128, 256, 512
Learning rate 0.1, 0.01, 0.001, 0.0001
Lambda Floating point number 0-3
Number of layers Integer between 2 and 7
Number of units per layer 16, 32, 64, 128, 256
Probability of dropout 0.1, 0.2, 0.25, 0.4, 0.5, 0.6

Table 2. NN Architecture Hyperparameter Options Table
from (Hahn & Mechefske, 2022)

4.3. Pipeline Design Uncertainty

For this sensitivity study, the data acquisition pipeline design
was varied, considering the following stages and settings, also
summarised in table 3.

4.3.1. Dataset

The FEMTO and IMS datasets were chosen due to initial
bearing states with no faults; their curated, open source na-
ture; but also their differences in aging methods, timescales
and number of recorded failures. In the IMS dataset, the bear-
ings are operated under their maximum specified operating
condition limits and failed after their design lifetime (in num-
ber of revolutions). This represents scenarios where the bear-
ings are operated in an unhealthy but within technical speci-
fication manner. However, as it took weeks to months to ob-
serve these failures, only 4 failures over 3 runs were observed,
severely limiting the analytic’s scope to learn from a diverse
sample of run-to-failure trajectories. This issue is reversed for
the FEMTO dataset, where 17 distinct failures were observed
due to the run-to-failure process taking several hours. How-
ever, the conditions the bearings were operated in would not
be practical in an industrial setting. Data pipeline choices at
this stage investigate the impact on the analytics RUL perfor-
mance due to the amount and nature of the failures observed,
and how the analytics perform on the different methods of
accelerated lifetime testing.

4.3.2. Sensor Channel

Both datasets have access to vertically and horizontally alig-
ned vibration sensors (noting limited availability for the IMS
dataset). Depending on the nature of the fault, ML mod-
els may be more successful in identifying failure signatures
in one axis over another, leading to more reliable RUL es-
timates if measurement data is available for this orientation.
However, it is not always feasible or maintainable to retrofit
assets with extensive sensor coverage, meaning the develop-
ing failure may not be measured from the most suitable angle.
With no prior knowledge of the bearing failure, data pipeline
choices at this stage investigate the consequences on the RUL
estimate of having limited, and potentially inadequate, sensor
coverage of an impending failure.

4.3.3. Data Sampling

In an ideal scenario, condition monitoring would consist of
high resolution, continuous measurement to ensure that as
much data is available to the prognostic algorithms as pos-
sible. In practice, this would generate enormous volumes of
data that would be impractical to transmit, process and store,
while potentially providing diminishing returns on the useful
information contained in the data streams. Communications
and storage infrastructure is limited in an industrial setting
where fleets of assets are expected to be monitored simulta-
neously. At this stage of data pipeline uncertainty assessment,
comparisons are made for RUL estimates where 1/8, 1/4, 1/2
and no data is lost due to these constraints.

4.3.4. Spectrogram Bin Count

The spectrogram binning process from (Hahn & Mechefske,
2022) allows the frequency domain information from the full
spectrogram to be used while condensing this information
into a more manageable number of input features to the ML
stage. This forms a trade off between the amount of informa-
tion lost in the binning process, and the dimensionality. The
spectrogram bin count is chosen to be 10, 20 (as original au-
thor) and 40, to compare how the RUL is impacted by this
trade off.

4.3.5. Hyperparameter Optimisation

NNs are computationally expensive to train, and it may be in-
feasible to evaluate a large selection of models in order to op-
timise the selected hyperparamters. Selecting a sub-optimal
model will impact the quality of the RUL estimate. The orig-
inal author runs a parameter search by selecting n combina-
tions of model hyperparameters (table 2), then filtering out
models with unsatisfactory performance. Computational lim-
itations may make training many models to allow the most
optimal hyperparameters to be chosen an unfeasible action to
take. This stage of the pipeline design process investigates the
impact on the RUL estimate when the best 10 models are se-
lected from a random search of 10 (90 unique models based
on 10 random hyperparameter initialisations for each of the
original authors 9 loss functions) and a random search of 100
(900 unique models),

4.3.6. Model Choice

The original author utilises NNs in their study which are black
box and computationally expensive. This can undermine the
operators trust in the chosen analytic as outputs can not be
explained by the model, increasing the risk associated with
incorporating model suggestions into decision making pro-
cesses. Linear Regression (LR) models reside at the other
end of the model spectrum as they are cheap to train and
simple to understand. However, NNs are able to tackle com-
plex data problems with complicated underlying relationships
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Pipeline Stage Parameter Settings
Dataset IMS or FEMTO dataset
Sensor channel Horizontal or Vertical aligned
Subsampling Lose 1/8, 1/4, 1/2 or no data
Spectrogram Bins 10, 20 or 40 bins
Hyperparam. Opt. Random search of 10, or 100
Model Choice NNs or Linear Regression (LR)

Table 3. Summary of pipeline stages and parameters

which cannot be captured by the LR model. In this stage of
the pipeline design process, the chosen models are NNs and
LR models to compare the RUL prediction between compu-
tationally expensive, sophisticated models and interpretable,
low computation models.

4.3.7. Evaluating Uncertainty

The original data for each dataset was processed to remove
every 8th, 4th or 2nd data point for every datafile in the dataset
and resaved; and this process was repeated for each sensor
channel. This ensured all combinations of dataset, data sam-
pling and sensor channel were available to train the models.
Each model type was trained on all combinations of dataset,
data sampling and sensor channel, with the data preprocessed
for each selected bin count. For each of these combinations,
the NN model hyperparameters were chosen with a random
search of 10 or 100, with the model and metrics saved for later
processing. The metrics chosen to validate the models were
R2, mean squared error (MSE), RMSE, mean squared log er-
ror (MSLE), root mean squared log error (RMSLE), in line
with those chosen by (Hahn & Mechefske, 2022). The con-
ditions for successful models to be progressed to the testing
stage were a training (and for NN models, validation) perfor-
mance of R2 > 0.2 and RMSE < 0.35, which was applied
again after the testing stage to shortlist the top models. To ob-
tain the quantiles, the testing data was run through each of the
top models to obtain their RUL predictions, where the 5 %,
25 %, mean, 75 % and 95 % percentiles were calculated for
each timestep. The choice of testing data was Run 1, Bearing
4 for IMS and Bearing 1 3 for FEMTO, as the original au-
thors method performed well on these and was decided to be
a good point of comparison. This process generated results
for all combinations of the 2 datasets, 2 sensor channels, 4
data sampling regimes, 3 spectrogram bin counts, 2 hyperpa-
rameter optimisation searches and 2 model choices, resulting
in 192 distinct pipeline designs. For each pipeline, the maxi-
mum number of models to analyse is the top 10 NNs and a LR
model, however not all combinations produced this amount of
models that successfully passed the metric bounding criteria.

5. RESULTS

As mentioned in section 4.3.7, the case for comparison be-
tween (Hahn & Mechefske, 2022) and this work was Run 1,
Bearing 4 testing data from IMS and Bearing 1 3 testing data

for FEMTO.

5.1. IMS Results

The RUL prediction shown in figure 2 shows (Hahn & Mechefske,
2022) results for their best performing model on the IMS
dataset. This NN model has a Weibull-RMSE Combined loss
function, 4 layers with 32 units per layer, 0 % dropout proba-
bility, lambda of 0.53, Weibull shape parameter (β) of 2 and
characteristic lifetime (η) of 63.9 days. In figure 2, the bear-
ing lifetime extends from 0 % to 100 %, where the jumps are
due to the gaps in data collection from the original IMS ex-
periment. The NN predictions are smoothed using a 2 hour
rolling average to more clearly demonstrate the trends in the
prediction. As shown, the model fits this data well, with a low
RMSE score of 0.146, and a high R2 score of 0.735.

Figure 3 shows the quantiles and mean RUL estimate from the
top NN models across all IMS pipelines which met the train-
ing and validation metric bounding criteria. The quantiles are
calculated on the models performance on Run 1 Bearing 4
testing data from the IMS dataset and the mean of these pre-
dictions result in aR2 of 0.355 and RMSE of 0.228. From ap-
proximately 50 % bearing lifetime the quantiles bound the ac-
tual lifetime percentage until failure, with the mean fitting the
true lifetime percentage well from 60 % lifetime onwards. As
shown, the models do not predict early-mid life with any suc-
cess, which may mislead an operator incorporating the model
into a maintenance decision as the model cannot distinguish
between any states < 50% lifetime. Some of this deviation
may be explained by the large jumps in lifetime % within
the first 10 days of the experiment, compared to the much
smoother data collection from day 15 to failure, regardless,
this still undermines confidence in the predictions.

The results for the IMS LR models are shown in figure 4.
While the quantiles bound the true lifetime from experiment
start to end, the lack of incorporated knowledge allows the
models to expand to many multiples of bearing lifetime and
into negative values. This results in a mean R2 score of -
0.223 and RMSE of 0.314, despite all of the models suc-
cessfully meeting the R2 and RMSE bounds in the training
stage. Additionally, the RMSE for the testing results is still
within (Hahn & Mechefske, 2022) 0.35 boundary while pro-
ducing unreliable predictions, suggesting other forms of vali-
dation are required in tandem to discount unsuitable models.
This demonstrates that applying regression models that min-
imise computational cost or maximise interpretability can-
not always perform the required task, and further demon-
strates the need for hybrid modelling approaches to incorpo-
rate known behaviour.

The pipeline design parameter summary is shown in table
4 which shows the breakdown of pipeline stage parameter
counts in the final model selection. The maximum number
of models is the top 10 NNs from the 46 IMS NN pipelines,
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Figure 2. IMS Run 1, Bearing 4 Test Results ((Hahn &
Mechefske, 2022)). R2 = 0.735, RMSE = 0.146

and single LR model for each of the 46 IMS LR pipelines
if all of these models trained successfully. This results in an
acceptance rate of 79.8 % for the NNs (367 out of potential
460 models were successful) and only 39.1 % for the LR (18
out of potential 46 models were successful), demonstrating
that the NN is more likely to be successful at this prognos-
tic task. For the 18 successful LR models, the sensor align-
ment choices are split evenly, implying the sensor orientation
neither hindered nor helped the models performance, while
the NNs tended to favour the horizontal channel as chosen
by (Hahn & Mechefske, 2022). Interestingly, for the sam-
pling regime the LR models favoured learning from the least
data and fared equally amongst the other options. The NNs
were also fairly evenly spread amongst the sampling options,
favouring the maximum amount of data. The LR models se-
lected the most condense spectrogram the least, implying the
higher dimensional representations provided more useful de-
grees of freedom to the model. Conversely, the NNs were
more evenly spread across the bin options, suggesting all op-
tions provided the NNs with enough information. To sum-
marise, it appears that on the IMS dataset, the most influential
design parameter was the dimensionality of the input data for
the LR models as shown by the aversion to the 10 bin spectro-
gram, and the time available to optimise the hyperparameters
for the NN as this displayed the largest diversion by model
contribution in favour of larger number of searches.

5.2. FEMTO Results

The RUL prediction shown in figure 5 shows (Hahn & Mechefske,
2022) results for their best performing model on the FEMTO
dataset, with a Weibull only RMSLE loss function, 2 layers
with 32 units per layer, 0.25 % dropout probability, lambda
of 2.28, Weibull shape parameter (β) of 2 and characteris-
tic lifetime (η) of 4.8 hours. The trend of the predictions is
shown by a 2-minute rolling average with straight line from 0

Figure 3. IMS Run 1, Bearing 4 Test Result Uncertainty (NN
Model). R2 = 0.355, RMSE = 0.228

Pipeline Stage Value NN LR
Max
Models

NN - 460 367 -
LR - 46 - 18

Sensor Horizontal 214 9
Vertical 153 9

Sampling
Normal 101 4
- 1/8 95 4
- 1/4 86 4
- 1/2 85 6

Spec.Bins
10 126 2
20 127 8
40 114 8

HyperParam
Search

10 137 -
100 230 -

Table 4. Summary of IMS pipeline settings for LR and NN
models (by successful model counts)

- 100 % demonstrating the bearing lifetime. This NN fits the
data well as shown by the low RMSE of 0.133 and high R2

of 0.788.

The NN FEMTO uncertainty plot is shown in figure 6, which
shows the quantiles bounding the whole bearing lifetime, but
does not narrow as much as the IMS results at end of life. This
larger spread in predictions demonstrates the volatility of the
NN predictions on this dataset, as depending on the model,
the prediction could be anywhere between 0 and 60 % at start
of life and 50-100 % at end of life. The mean prediction has
R2 of 0.729 and RMSE of 0.15 which suggest the mean has
a decent fit, however, it can be seen that the models tend to
overestimate degradation early-mid life and underestimates
mid-end life. If used to inform maintenance schedules, the
start of life predictions could result in actions being taken too
early where still usable components are prematurely replaced.
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Figure 4. IMS Run 1, Bearing 4 Test Result Uncertainty (LR
Model). R2 = -0.223, RMSE = 0.314

Actions taken based upon the end of life predictions could be
left too late, putting operators at risk of unplanned outages.

The fit of the LR models in figure 7 shows consistent estima-
tions early-mid life, then a huge divergence of multiple life-
times in positive and negative direction is observed in the final
stages of the bearing life. This may be due to the rapid decay
of the bearings, as the spectrograms show a rapid increase in
vibration for some of the training data in the later stages of
the experiment. As the end of life prediction is arguably the
most crucial aspect of prognostics, these LR models could be
considered a risk for any operator to employ in maintenance
activities.

In the pipeline design summary in table 5, both the NN and
LR models have relatively even contributions to the 198 suc-
cessful NN models and 24 LR models from all settings for
the sampling and spectrogram bin options, suggesting these
do not have a great influence on the model performance. This
is also true for the sensor alignment for the LR models, while
for the NN models there is almost entirely self selected hor-
izontal channel, as in (Hahn & Mechefske, 2022). This sug-
gests that the horizontal sensor provides the most useful in-
formation for the NN model. Additionally, the NN has strong
contribution from the larger hyperparameter search with a
majority of models being chosen by the random search of
100. Finally the NN models have an acceptance rate of 43.0
% while the LR models have an acceptance rate of 52.2 %. In-
terestingly, while the mean NN performance produces better
results for R2 and RMSE, the LR models are more consis-
tently performing above the set metric boundaries and being
accepted into the testing stage. Despite their unsuitable de-
sign, the choice of metrics and bounds used to assess these

Figure 5. FEMTO Bearing 1 3 Test Results ((Hahn &
Mechefske, 2022)). R2 = 0.788, RMSE = 0.133

Pipeline Stage Value NN LR
Max
Models

NN - 460 198 -
LR - 46 - 24

Sensor Horizontal 197 12
Vertical 1 12

Sampling
Normal 45 6
- 1/8 43 6
- 1/4 55 6
- 1/2 55 6

Spec.Bins
10 69 8
20 63 8
40 66 8

HyperParam
Search

10 77 -
100 121 -

Table 5. Summary of FEMTO pipeline settings for LR and
NN models (by successful model counts)

models suggest they should be accepted, again suggesting
that models require more diverse validation to determine their
general suitability, or what situations they may be best suited
for. This may also require an appreciation of the similarity
of the training and testing data, as models that succeed at the
training stage should be trusted to succeed in the testing or
online monitoring stage.

This sensitivity analysis has demonstrated that the approach
taken to data pipeline definition can have a significant impact
on the accuracy of prognostic algorithms, with evidence for
a specific bearing vibration case-study provided. This case-
study suggests that when developing a data pipeline for this
purpose valid models can be selected from a variety of plau-
sible data pipeline configurations while resulting in a diverse
range of learned RUL trajectories.
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Figure 6. FEMTO Bearing 1 3 Test Result Uncertainty (NN
Models). R2 = 0.729, RMSE = 0.150

6. CONCLUSION AND FUTURE WORK

Civil nuclear is a safety critical industry which cannot read-
ily deploy data-driven analytics in decision-making processes
without quantification of the uncertainties involved. Conse-
quently, in this work an analysis of the impact of data ac-
quisition pipeline design decisions on the performance of an
existing hybrid RUL model for bearing prognostics was con-
ducted. It was shown that the design decisions made at key
stages of the data acquisition pipeline can create a large vari-
ance of potential RUL trajectories for both NN and LR mod-
els on both of the bearing run-to-failure datasets utilised in
the study. The models were more sensitive to some design
decisions than others, such as the available number of hy-
perparameter optimisation searches for the NN or the dimen-
sionality of the input features for the LR model (on the IMS
dataset). The presence of incompatible design decisions was
not suggested by the results as many stages produced an equal
number of successful models across the different design op-
tions. This suggests that valid models could be generated
from completely different pipeline designs, which result in
an entirely different learned RUL trajectory. Understanding
how the data acquisition pipeline can impact on hybrid prog-
nostic tools can allow nuclear plant operators to justify utilis-
ing resources towards reducing high uncertainty areas in the
pipeline design to provide more confidence in applying these
tools to support maintenance processes. This is of particular
concern in the nuclear industry as ML algorithms applied to
rotating plant deployed in nuclear engineering environments
experience unique operating conditions, such as legacy data
acquisition systems that have been upgraded over time with-
out emphasis on the data that will be used for ML purposes.

Figure 7. FEMTO Bearing 1 3 Test Result Uncertainty (LR
Models). R2 = 0.383, RMSE = 0.227

The models were filtered by a requirement of R2 > 0.2 and
RMSE < 0.35 to remove unsuitable models before pro-
gressing to the testing stage, as in (Hahn & Mechefske, 2022).
The results showed that the chosen metrics are not sufficient
to definitively identify unsuitable models and are not descrip-
tive enough to show the operator where model application
should and should not be trusted. Additionally, the chosen
training and testing data may not have been sufficiently com-
parable for LR type models, as shown by models that had
been deemed acceptable in the training stage performing poorly
on IMS testing data in figure 4.

To further develop this work, more analysis would be con-
ducted on the impact of metric bias in the model selection
process. Models were selected and ranked based on their
R2 and RMSE scores, but a different selection of shortlisted
models may have been generated if different metrics had been
used or prioritised. Additionally, if it was discovered that
some models were more accurate for end of life predictions
while other models are more suited for early-mid life, this
may not be captured by summary statistics used to qualify
the overall model usefulness. Additional methods to describe
where the model is successful is needed to further justify
the models use for specific prognostic stages, which could
be aided by the application of explainability tools. Finally,
for a more robust comparison, knowledge would be incorpo-
rated into different model types. This would provide more
hybrid combinations to compare against, while investigating
how model bias impacts the RUL prediction.
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