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ABSTRACT

Partial Discharges are short breakdowns inside electrical
equipment. As they indicate weaknesses of the insulation
strength, they are seen as important precursors to a failure
of the system. Therefore measurement and analysis of the
patterns of instances in time and strength of the discharge are
an important tool to analyze the insulation status of electric
equipment, that has been addressed already using different
methods in the past. In this work we explore how a physics-
based stochastic process can be combined with Approximate
Bayesian Computation (ABC) as a new way to analyze them.
ABC is a method to infer probability distributions of model
parameters in cases, where the likelihood is not tractable,
but simulations can be done easily. As such it is of interest
for complex phenomena or measurement systems, as often
found in prognostics applications. Especially the ABC-SMC
method was found to be useful here. Real Partial Discharge
measurement data was used not only for parameter estima-
tion, but also to do model comparison in order to compare
different physical models proposed in the literature.

NOMENCLATURE

c(t) discharge rate above the inception voltage
c0 constant discharge initialization rate
c1 time dependent discharge initialization rate
f line frequency
Mi,j i, jth moment of the

PRPD pattern rate distribution
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mits unrestricted use, distribution, and reproduction in any medium, provided
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Qk strength, apparent charge of the
discharge event k (pC)

Q(θ, θ′) kernel function in the ABC-SMC algorithm
tk time of the discharge event k
Uext(t) line voltage
Uinc inception voltage of the discharge
Uint(t) voltage corresponding to the

internal field within the discharge
Ures residual voltage of the discharge
x measurement data consisting of

xk k = 1, . . .K
xk individual discharge consisting of

charge Qk and phase φk
γ proportionality factor between voltage drop

and discharge strength
ε accuracy value for the ABC algorithm
φk phase of the line voltage at the

discharge event k
ν rate for the reduction of the internal voltage
θ summary of all discharge model parameters
τ decay time of the discharge rate

1. INTRODUCTION TO SIMULATION BASED INFER-
ENCE AND APPROXIMATE BAYESIAN COMPUTATION

“Approximate Bayesian Computation” (ABC) is the most
common method used in the field of “likelihood-free” or “si-
mulation-based” inference. These methods are used, if the
statistical model under investigation is easy to simulate from,
but the likelihood function, which is at the core of Bayesian
or frequentist maximum-likelihood based inference, is not
tractable. This means, that it is either not easily accessible
to formulate or its numerical evaluation is computationally
too demanding.
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ABC has gained popularity starting from its inception in the
1990s (Tavaré, Balding, Griffiths, & Donnelly, 1997) in a
number of fields ranging from genetics, neural sciences, cos-
mology and particle physics (Cranmer, Brehmer, & Louppe,
2020). Whereas the underlying principle of ABC stays al-
ways the same, a large number of variations of algorithms
have been developed in order to address different difficulties
or to improve the numerical efficiency (Beaumont, 2019; Sis-
son, Fan, & Beaumont, 2019). Readily available software
packages exist (Csilléry, François, & Blum, 2012; Dutta et
al., 2021), simplifying the application, but given the rather
easy implementation of Monte Carlo methods in general, a
dedicated code was developed in this work.

The main aim of simulation-based or likelihood-free meth-
ods is to make use of the possibility to sample a large num-
ber of outcomes from the model in order to construct an ap-
proximate likelihood or posterior distribution. In the case
of ABC one samples both the parameters θ and the mea-
surements x according to the combined probability distribu-
tion (xn, θn) ∼ p(x, θ). This combined distribution is given
by p(x|θ)p(θ), where p(θ) is the prior, capturing the know-
ledge about the parameters and p(x|θ) the intractable like-
lihood function underlying the process generating the mea-
sured data. By conditioning the samples (xn, θn) on those
measurement values xn that are close to the observed value
x, one is able to get samples θn from the posterior ∼ p(θ|x).
These samples are the basis for further steps in the analysis.

2. ADVANTAGE OF THE USE OF LIKELIHOOD-FREE
INFERENCE FOR DIAGNOSTICS AND PROGNOSTICS
APPLICATIONS

In most applications of prognostics and health management
one investigates the possibility to assess the status of techni-
cal equipment. In this cases one has the advantage of a good
understanding of its functional principle. This is the case, be-
cause they are man-made devices, built in order to fulfill a
certain function. They are therefore often accompanied by a
deep physical or technical understanding. Simulation models
are created in many cases as part of the development process,
or to analyze the underlying working principle. Such models
— including the change of model parameters introducing or
leading to faults — are of a high value for good diagnostics or
prognostics approaches. Incorporating simulations as part of
the algorithms is therefore a good way to capture this know-
ledge.

In the case of a deterministic simulation model and assuming
error-free measurements, the determination of model param-
eters from the observations or measurements is an inversion
problem. In general, this inversion will be ill-posed, meaning
that it is numerically unstable to do so. In addition, mea-
surements are in general noisy and even small errors in the
measurements can lead to very different and even wrong pa-

rameter estimations.

If one is not only interested in a diagnostics, but also a prog-
nostics approach, then for the calculation of the probability
of failure (PoF(t)), the determination of the uncertainty of
the state of the system, as well as those parameters defining
the future dynamics, are required. The Bayesian inference,
which is underlying the ABC approach, allows to do so in a
consistent way.

The situation becomes even more complex, if the model is of
a stochastic nature. Reasons for this, apart from the measure-
ment errors, are often the presence of unknown values or the
randomness inherent in some process.

The intractability of the likelihood is in general due to the
existence of a large number of hidden, that is unobserved or
unknown, parameters, states or values. Within the Bayesian
approach one needs to marginalize over them, that is inte-
grate over all possible values, which is numerically impos-
sible in practice. These hidden variables can have different
origins: Technical models contain a large number of param-
eters, which are varying from device to device, but are often
not relevant for the degradation state of the system. They will
nevertheless influence the way the device is operating and the
values of measurements.

Other hidden variables are unmeasured external influences.
These can be environmental or operational factors. As before
their value will in general not be important for the state of
degradation, but they are influencing the measured quantities.

Finally the measurement principle can have unobserved inter-
nal states. An example could be their dependency on earlier
measurements, or a probabilistic element in the underlying
process. Partial Discharge analysis can be seen as a problem
of this type.

All these facts make simulation-based inference methods of
interest for diagnostics or prognostics approaches. This is
not restricted to the ABC method, discussed here. Methods
combining simulations with elements of machine learning are
gaining popularity in other fields and are of potential interest
in this area as well. This can be interesting, if e.g. only a
single remaining useful life (RUL) value should be predicted
instead of a full distribution or the simulations need to be ac-
celerated with the help of a surrogate model.

3. PARTIAL DISCHARGE MEASUREMENT TO ASSESS
THE ELECTRIC INSULATION STATUS

Electrical equipment — especially in the high voltage area
above few kV — is subject to strong electric fields, that are
applied over a long time. Insulation material is known to be
able to withstand these fields only up to a certain level and
changes of material properties with time can lead to a reduc-
tion of this critical field strength. Typical examples are mate-
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rial aging, changes due to exposure to water, corrosive gases,
dust built-up, crack formation or forming of other defects due
to mechanical or thermal stress.

The loss of the electrical insulation capability will ultimately
lead to a complete failure of the equipment. This can, in con-
nection with the appearance of electrical arcs, lead to fire or
explosions and therefore to the complete destruction of it, re-
sulting also in potential hazards to people. It is therefore of
interest to be able to detect the reduction of the insulation
strength of a system under voltage and its potential evolution
with time.

“Partial Discharge” (PD) describes the phenomena, where the
insulation strength is insufficient in only a localized region.
The corresponding electrical breakdown will therefore be lo-
cal only, not bridging the full distance from high voltage to
ground. This “partial” electric breakdown is in general extin-
guished after a short time as the charges flowing during the
discharge are reducing the local electrical field to a value be-
low the critical one. The effect of this local field reduction
will become weaker with time and due to the change of the
externally generated electric field in AC applications, a new
discharge will occur after some time.

PD is a rather generic term, which is given to any local
electric breakdown. But these are often occurring in differ-
ent parts of the insulation system, as well as due to differ-
ent origins: At sharp metallic edges the local field enhance-
ment leads to “corona” discharges; at surfaces the buildup
of dust and humidity forms a conductive layer and leads to
“surface discharges”; defects inside insulators, often intro-
duced during production, will in general have a lower insula-
tion strength and lead to the formation of “void discharges”.
Starting from these initial defects, they will further erode the
material leading to “treeing” or “tracking” inside or on the
surface of the material, which develops and makes the defect
worse over time.

According to statistical data, up to 85% of all severe failures
of high-voltage equipment can be linked to the presence of
partial discharges in those systems. They are one of the main
precursors or indicators of the upcoming failure of the elec-
trical insulation capability of a high-voltage system. Using
monitoring systems to detect them is one of the most often
used methods in high-voltage systems. Both dedicated test-
ing and measurement systems manufacturer, as well as, pro-
ducers of high-voltage equipment provide a variety of labora-
tory, off-line and online solutions.

PD measurements are done to assess the quality of individual
parts or full system during their production and also as part
of the acceptance testing, with limits of the allowed PD acti-
vity defined. Whereas this allows to capture defects, that are
already present during production or installation, the degra-
dation of the electrical insulation can only be tracked with an

online monitoring system.

An assessment of the insulation status is often done using ex-
ternal equipment and at fixed time intervals. Such measure-
ments have the advantage of allowing for expensive, but very
accurate equipment to be used, as well as providing some de-
tailed diagnostics results, e.g. by changing the test voltage
applied. On the other hand they require an expensive shut-
down of the installation and only give a snapshot of the sta-
tus at that specific time. Online monitoring systems on the
other hand provide a continuous measurement, allowing for
an early detection, but can also study the evolution with time.
But they also need to be rather inexpensive in order to be de-
ployed widely.

The evolution of the partial discharge with time is often sum-
marized by a few key parameters, e.g. a strength and a dis-
charge rate. But an estimate of the time until failure of the
electrical insulation cannot be done easily from this. The type
of discharge plays a rather important role: whereas a corona
discharge can be present in a system for a longer time before
a fault occurs, a treeing or surface discharge will often evolve
to a full breakdown very fast.

The character of defects and with this the appearance of the
discharge will change over time. This has been investigated
as a way to infer the remaining lifetime until breakdown for
specific defect types in a number of publications, see for
example (Montanari, 1995; Wang, Cavallini, Montanari, &
Testa, 2010; Lv, Rowland, Chen, Zheng, & Iddrissu, 2017).

In practical applications PD measurement will be disturbed
by a number of external phenomena, which need to be distin-
guished from real PD events. Whereas this can be done in a
lab setup with the help of shielding measures, this is not pos-
sible in online applications. A major goal of any online PD
analysis is therefore to detect them, separate them from other
disturbances, but also to classify them according to their ori-
gin, the type of discharge or defect, to get further information
regarding their severity. Given their importance to avoid se-
vere failures of those expensive systems, a number of detailed
analysis approaches have been explored.

4. BASIC PRINCIPLE OF PARTIAL DISCHARGE MEA-
SUREMENT AND ANALYSIS

The local discharge is in general characterized by the time
tk of occurrence and its strength, which is in general mea-
sured as “apparent charge”Qt (International Electrotechnical
Commission (IEC), 2000). Due to the stochastic nature of
the discharge, the individual events (tk, Qk) don’t happen at
deterministic times or repeat in a systematic way, see Fig. 1.

A full measurement therefore consists of a number of such
discharge events k = 1, . . . N , that are either recorded con-
tinuously or sometimes with gaps within them.

3

Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN – 978-1-936263-36-3

Page 184



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

Figure 1. Partial Discharges occur stochastically at times tk
and with varying strengths Qk. A typical sequence is shown
schematically in this plot. A PD measurement consists of
capturing a full sequence of such individual discharge events.

Figure 2. A typical PRPD pattern of a void discharge. The
points are individual discharge events (φk, Qk) of the phase
and discharge strength.

As the AC voltage Uext(t) plays a dominant role in reaching
the critical electric field level of the defect, its value at the
moment of the discharge Uk = Uext(tk) or alternatively the
phase φk = φ(tk) are recorded as well. A number of meth-
ods have been proposed to analyze this sequence of individual
PD events. The most commonly used one is the “Phase Re-
solved Partial Discharge” (PRPD) analysis. In this, one plots
the points (φk, Qk) in a two-dimensional scatter plot, or con-
verting them into a density plot. As the partial discharge is
driven by the applied AC line voltage, one expects that the
pattern formed in these graphs reflects the nature of the dis-
charge. In addition, depending on the measurement approach
used, one is not able to measure the polarity of the discharge
Qk. Therefore we will in the following assume that only the
absolute value of the discharge is available as Qk. A typical
PRPD plot is shown in Figure 2 of a void, and in Figure 3 of
a corona discharge.

Different PD types, but also different external disturbances,

Figure 3. A typical PRPD pattern of a corona discharge.
Compared to the void discharge, at lower voltage levels the
corona discharges occur only during the second half of the
cycle, in this case for negative voltages.

lead to different patterns in the PRPD diagram, which are
used as the basis for further classification of the defect. The
patterns are converted into features, summarizing the pattern
itself. A common approach is to bin the data in the phase
direction and use the distribution of the number of points,
the average, as well as, the maximal discharge strength as
features, which are further characterized by typical statisti-
cal measures like the skewness and kurtosis (Krivda, 1995b,
1995a). Other approaches interpret the density as an image
and make use of methods from image classification.

Partial Discharge Classification has been investigated using
almost all approaches developed in machine learning in the
past; reviews are given, e.g. in (Danikas, Gao, & Aro,
2003; Sahoo, Salama, & Bartnikas, 2005; Ma, Chan, Saha, &
Ekanayake, 2013; Raymond, Illias, Bakar, & Mokhlis, 2015;
Barrios, Buldain, Comech, Gilbert, & Orue, 2019; Lu, Chai,
Sahoo, & Phung, 2020).

Due to the complex nature of the underlying stochastic pro-
cess, as well as the large variety of defects and therefore
potential patterns, most analysis or classification approaches
tend to use data-driven algorithms, based on collecting data
from a large number of different discharges either in the lab
or in the field and training the algorithm with them.

On the other hand, models to describe partial discharges from
a microscopic or physical approach have been explored in
the literature as well, see e.g. (Niemeyer, 1995; Cavallini &
Montanari, 2006; Callender, Golosnoy, Rapisarda, & Lewin,
2018; Callender & Lewin, 2020).

In many cases the motivation was to develop a deeper un-
derstanding of the processes at work. But there were also
attempts to use them as a basis for more model-based PD ana-
lysis approaches (Heitz, 1999; Altenburger, Heitz, & Timmer,
2002; Cavallini & Montanari, 2006; Patsch & Berton, 2002).
In this work we are picking up this way of PD analysis and
combining it with modern statistical inference methods.
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5. PHYSICS-BASED PARTIAL DISCHARGE MODELING

A simple model to describe the creation of partial discharges
is given in this section, following in major parts the one pro-
posed in (Heitz, 1999). This model requires only a rather
small set of parameters, which helps with the inference.

In order to reduce the complexity of the approach, we restrict
ourselves to a symmetric description, that is, the processes
during the positive and negative voltage half-cycles are as-
sumed to be described by the same set of parameters. This
leads to a symmetric PRPD pattern, which is not in agreement
with many measurements. A more general model allows them
to be different for the two half-cycles, doubling their number,
but this is needed in order to describe (strongly) asymmetric
patterns. As we are mostly exploring the applicability of the
ABC approach here, the restriction to symmetric ones seems
to be justified.

The discharge within any defect will depend on the local elec-
tric field strength. As this field is not directly accessible to us,
but can be assumed to be proportional to some related voltage
across them, the model converts all electric fields into corres-
ponding voltages. For example, the field inside the defect
generated by the applied external line voltage is proportional
to Uext(t) = U0 cos(2πft). It is convenient to normalize all
voltages in the system to be proportional to the amplitude of
this line voltage, setting U0 = 1, that is

Uext(t) = cos(2πft). (1)

A discharge occurs due to the electrical field exceeding a crit-
ical level, corresponding to an “inception voltage” Uinc. But
the discharge will not occur instantaneously when the total
voltage reaches this level; only with a certain probability per
time unit, that is a rate c(t). This rate is assumed to origi-
nate from two different sources, related to the availability of
“seed electrons” assumed to trigger the start of the discharge:
A constant source of seed electrons, giving a constant rate c0
and a time dependent one, with seed electrons being produced
during the last discharge, but recombining and therefore dis-
appearing with time. The rate connected to these is given as
c1 exp(−t/τ). The total rate is therefore

c(t) = Θ(Utot(t)− Uinc) (c0 + c1 exp(−t/τ)) (2)

with the Heaviside or indicator function Θ being one if Utot

is larger than Uinc and zero otherwise.

The corresponding total voltage inside the defect is given by
the external one Uext together with the one produced by the
charges created by the individual discharges Uint(t), that is

Utot(t) = Uext(t) + Uint(t). (3)

Similarly to the reduction of seed electrons, it is assumed, that
if no discharge happens, the internal charges and therefore

Figure 4. The evolution of the external (Uext(t)), total (Utot),
and internal (Uint) voltage is shown during one cycle. If the
total electric field exceeds the inception voltage Uinc a dis-
charge can occur with some rate c(t). Such a discharge re-
duces the voltage to the residual one (Ures). Without a dis-
charge the internal voltage is reduced in time.

Uint(t) will be reduced with time, described by a decay rate
ν, that is

dUint(t)

dt
= −νUint(t) (4)

If, on the other hand, a discharge is initiated, charges are flow-
ing and reduce the electrical field and therefore the correspon-
ding voltage Utot. The discharge happens during a short time,
until the total electric field, that is the corresponding voltage,
reaches the “residual voltage” Ures, where it is extinguished

U+
tot(t) = Uext(t) + U+

int(t) = Ures. (5)

Here U+ denotes the value immediate after the discharge.
The total strength of the discharge is assumed to be propor-
tional to the change in voltage

∆U = U−tot(t)− U+
tot(t) = U−int(t)− U+

int(t) (6)

where U− denotes the value immediately before the dis-
charge. The measured discharge strength is given by

Q = γ∆U (7)

where the proportionality factor γ is a property of the defect
and geometry.

The typical change ofUtot andUint with time and the relation
with the occurrence of a discharge is shown in Fig. 4.

This description is sufficient to create a simulation code for
the generation of discharge event sequences (Qk, tk) by fol-
lowing the evolution of the different voltages over time and
selecting whether a discharge happens based on the value of
c(t). The likelihood function on the other hand is more diffi-
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cult to derive, especially for more complex models.

The model has overall seven parameters that need to be de-
termined θ = (Uinc, Ures, c0, c1, τ, ν, γ). Despite its rather
simple form, the model is able to create quite a number of
different PRPD patterns, therefore it can be seen as a model
to cover different types of PD defects. The main reason for
the variability of patterns is the fact, that there are three time
scales in the model: one is related to the AC voltage, corres-
ponding e.g. to 50Hz, one to the reduction of c(t), given by τ ,
and finally one to the change of Uint(t), given by ν. Depend-
ing on their respective values or relative sizes the sequence
of discharge can vary, e.g. leading to cases with many dis-
charges happening during a half-cycle to some, where a long
time between consecutive discharges is present.

6. BASIC PRINCIPLE OF ABC

The basic principle of ABC can be described in a rather
simple way: One assumes to have a prior distribution p(θ)
with the capability to generate easily samples from it. Us-
ing these model parameters θn, it is again assumed that one
can generate measurement samples xn, even though p(x|θ) is
in general not available. The combination (xn, θn) are sam-
ples generated from the combined probability density func-
tion p(x, θ).

If one selects from these pairs only those n with xn = x,
that is which agree with the observed value x, it is easy to
see that the corresponding θn are distributed according to the
posterior distribution p(θ|x). In practice such an algorithm is
not usable, especially when the measurements x is continuous
or high-dimensional, as the agreement xn = x is hardly ever
fulfilled.

Instead one introduces a distance measure between two mea-
surements x and x′: ρ(x, x′) and the requirement of x = x′

is relaxed to
ρ(x, x′) ≤ ε (8)

with ε chosen sufficiently small. As the agreement between
x and x′ is no longer exact, the posterior distribution will be
approximate as well.

In many cases the construction of the distance ρ is done with
the help of some summary statistics t(x) and the distance is
then defined with respect to them, giving

ρ(x, x′) = ρ(t(x), t(x′)) ≤ ε. (9)

This leads to the simplest approach, the “ABC rejection algo-
rithm”, as given in Algorithm 1.

The value of ε can often be chosen by running the algorithm
with a decreasing series of values until the approximate pos-
terior distribution does not change significantly.

The disadvantage of this algorithm is, that it requires a large

for n = 1, . . . , N do
do

Sample θ∗ ∼ p(θ)
Sample x∗ ∼ p(x|θ∗))
Calculate D = ρ(x, x∗)

while D > ε;
θn = θ∗

end
Algorithm 1: The ABC rejection algorithm.

number of runs to find a good value of ε. In addition, the sam-
pling of θn is done with respect to the prior distribution only.
This leads to an overall rather inefficient approach. There-
fore more refined algorithm, based e.g. on MCMC and SMC
have been proposed in the literature (Sisson et al., 2019). In
this work we have used the ABC-SMC approach as described
in (Toni, Welch, Strelkowa, Ipsen, & Stumpf, 2009). This al-
gorithm uses a decreasing sequence of εt, either predefined or
dynamically adjusted at each step t = 1, . . . T . Details of the
algorithm are given in Algorithm 2.

Sample θ0n ∼ p(θ), n = 1, . . . , N
Initialize w0

n = 1/N , n = 1, . . . , N
for t = 1, . . . , T do

for n = 1, . . . , N do
do

Sample θ∗ from θt−1 using a multinomial
distribution with weights wt−1

Perturb θ∗ to a new θ∗∗ ∼ Q(θ, θ∗)
Sample x∗ from p(x|θ∗∗)
Calculate D = ρ(x, x∗)

while D > εt;
θtn = θ∗∗

end
Calculate new weights wt using

wt
n =

p(θtn)
∑N

n′=1 w
t−1
n′ Q(θtn|θt−1n′ )

and normalize them
end

Algorithm 2: The ABC-SMC algorithm.

In the initial step a starting population of θn from the prior
distribution is chosen and some equal initial weights are ini-
tialized. In each subsequent step a value from the current
population of parameters is chosen according to its corres-
ponding weight and perturbed using some kernel function
Q(θ, θ′). A value of x is simulated and the new value of θ
is kept, if the acceptance criterion ρ(x, x′) ≤ εt is fulfilled.
This process is repeated until N new values of parameters
θn are obtained. The weights are adjusted to account for the
prior distribution and the probability of parameters to be cho-
sen based on the former weights and the kernel function. The
value of εt is reduced and the process repeats.

The main advantage of this approach is that “good” values θn
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are kept and that an automatic reduction of the εt is done. Re-
finements with respect to choosing this sequence in an adap-
tive way and also in order to adjust the kernel with time to
improve its width have been proposed in the literature and
were implemented and tested as well. Other improvements
are possible by keeping only the best results out of a much
larger population of parameter values in each step.

Overall these improvement were found to reduce the compu-
tational effort and avoid a degeneration of the samples, that is
often seen in SMC algorithm (Doucet, De Freitas, Gordo, &
James, 2001).

7. APPLICATION OF ABC TO PARTIAL DISCHARGE
DATA

In order to apply the ABC algorithm to identify the parame-
ters θ = (Uinc, Ures, c0, c1, τ, ν, γ) of the underlying partial
discharge model, some additional steps are needed. The ba-
sic ABC algorithm requires a measure of the closeness of two
discharge patterns x and x′, where each

x = {(tk, Qk)}k=1,...K (10)

consists of a sequence of K PD discharge events. Depending
on how the measurement is performed, the number of events
can be different between x and x′, e.g. if measurements are
done during a pre-specified length of time T , or alternatively
can be the same, if a fixed number of events is calculated, but
this means that the total measurement time T is not the same
between them. The total rate of dischargesK/T gives impor-
tant information about the PD type or the parameters of the
model. In most practical application of PRPD analysis this is
however ignored, and the discharge probability distribution is
analyzed instead.

A number of distance measures ρ(x, x′) can be chosen in or-
der to compare the two-dimensional point clouds. If one nor-
malizes the PRPD patterns to correspond to a probability den-
sity, as commonly done, statistical distances can be used, but
they are not suitable for a comparison of the rate densities.
Measures could also be based on the features extracted from
the PRPD plot, as described in Sec. 4. These have the same
disadvantages of being insensitive to the total rate, unless this
rate is added to the list of features and also not being com-
parable in their values. They can also not be extended in a
systematic way in most cases.

In this work an approach based on moments of the two-di-
mensional distribution is used. They are defined both in the
phase and discharge-strength direction. As the phase is cir-
cular, an expansion in terms of a trigonometric series is done,
whereas in the discharge direction, for which we assume that
only the absolute value of the discharge strength is measured,
power moments are used. The most basic definition of the

moments is

Mi,j =
1

T

∑

k

(Qk)
i
[cos, sin] (jφk) (11)

but for computational efficiency other definitions, e.g normal-
izing the power series, or using powers of the base trigono-
metric function instead of the normal Fourier series have been
used as well for comparison. Overall no major differences
were found with respect to the posterior distribution calcu-
lated. Moments up to i, j = 5 were used to reduce the com-
putational effort.

The distance measure used is a weighted Euclidean norm

ρ(M,M ′) =

√∑

i,j

wi,j

(
Mi,j −M ′i,j

)2
. (12)

A convenient choice of the weights wi,j was used by boot-
strap resampling the measured events and using the (inverse
of the) estimated variance of each moment for it. In this way
the natural variation of each moment is used and the norm
definition is independent of the simulated results.

For the application of ABC to the model uniform priors were
chosen for Uinc and Ures, as these values are required to be
positive and are bounded, as too large values make it impos-
sible to have PD events. For all other parameters, which are
required to be positive, suitable gamma priors were chosen.

8. RESULTS

The method was applied to both simulated (synthetic) and
real data. For simplicity only symmetric PRPD patterns were
studied here; the extension to asymmetric ones could be ad-
dressed in the same way, but given the fact that the number of
parameters almost doubles, this was not done. As a real ex-
ample, data from a surface discharge measurement was used
and was symmetrized before its use.

To confirm in a first step that the approach is suitable in prin-
ciple and is able to reconstruct the parameters used in the gen-
eration of the data, it was applied to synthetic data, generated
by the same PD model as used for the analysis. Results of
the PRPD pattern for the initial and the final parameters are
shown in Fig. 5. The visual convergence of the PRPD patterns
is clearly visible. A comparison of the estimated parameters
being close to the one used for the simulation is shown in
Fig. 6 for one parameter as example. The parameter γ be-
comes more narrow as the SMC algorithm proceeds.

In the next step, the algorithm was applied to real data. The
comparison of the PRPD data was found to be less convincing
than in the synthetic case. A more thorough look showed,
that there were some difficulties in describing the sharp drop
of PD events at the lower end of the pattern.

A deeper investigation revealed that the experimental data
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Figure 5. Convergence of the PRPD pattern to the syn-
thetic one during the progression of the ABC-SMC algorithm.
Shown are the patterns due to the mean value of the parame-
ter.

Figure 6. Convergence of the parameter γ to the one used in
the generation of the data during the progression of the ABC-
SMC algorithm.

had a cutoff introduced, that was not coming from the dis-
charges per se, but from the measurement system, in order to
suppress noise. As this threshold is not related to any phys-
ical property of the discharge, the PD model will in general
not obey it.

The introduction of this threshold on the other hand can be
very easily done into the simulation, that is, discharge events
are generated and those with a strength below the threshold
are removed before the moments are calculated. This shows
the very flexible nature of any simulation-based inference, as
such measurements effects can be considered in an easy way.
It was found, that the ABC algorithm improves the agree-
ment with the measurement in the PRPD plot, if the value is
assumed to be known.

We further tested, whether the approach is able to cope with
data, where an unknown threshold level exists. This may oc-
cur when some automatic pre-processing unit will introduce
it without further knowledge of its value. The threshold is
introduced as an additional parameter in the model and deter-
mined in the same way as the other ones. The ABC algorithm
was found to be able to correctly estimate the threshold level.
A comparison of the PRPD patterns finally found is shown in

Figure 7. A comparison of a real surface discharge pattern
with a cut-off and the result of the ABC algorithm. The
threshold was not fixed to the known value in this case, but
was determined by the ABC algorithm as well.

Fig. 7. The good agreement at the lower cutoff shows that the
introduction of any measurement effects is important to get a
good result.

ABC allows even to do further statistical analysis. In
Bayesian analysis model comparison can be done in a nat-
ural way, using e.g. Bayes factors, or determining the poste-
rior probabilities of e.g. two different models. This can also
be implemented in ABC, as described e.g. in (Toni, 2011).
This model comparison can be applied to do classification by
selecting e.g. priors for the parameters, that are compatible
with only a specific type of discharge. Alternatively, it was
used here in order to compare different PD models. There
have been discussions about the details of the mechanism
to generate a specific feature of void discharges, called the
“rabbit-ear”, in the literature (Cavallini & Montanari, 2006;
Niemeyer, 1995). ABC can be used to compare the two mo-
dels and decide, which one is more likely to explain the data,
even though they have different parameters, as well as even
different numbers of them.

The convergence of the probability of each model given the
measurement is shown in Fig. 8, whereas a comparison of the
predicted PRPD for each model is shown in Fig. 9. Whereas
the results are too early to draw already strong conclusions,
this shows the potential of ABC even beyond the parameter
estimation capabilities.

9. CONCLUSION

This work has shown, that partial discharge analysis can be
done with the help of a physical model of the discharge com-
bined with the use of ABC as a simulation-based inference
method. A simple physical model was presented and the
summary statistics and distance measure needed to define the
closeness of the simulated pattern with the measured one was
discussed. Starting from the simplest ABC algorithm the use
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Figure 8. Posterior model probability of two simulations
model explaining the origin of the “rabbit ear” phenomena
in void discharges. It can be seen that after a number of itera-
tions “model 0” is more likely than “model 1” to explain the
PRPD pattern.

of more efficient ones, based on SMC and sequences of accu-
racy measures is discussed.

An interesting feature of simulation based inference is the
possibility to incorporate quite easily phenomena, which are
difficult to define in a probabilistic framework. As an ex-
ample the measurement threshold, which is often applied in
practice to reduce the amount of noise, was incorporated eas-
ily and it was shown that inferring not only the PD model
parameters, but also the threshold itself was possible. Finally
the use of ABC for model comparison was shown, which has
a direct link to PD classification. Alternatively, it can be used
as a method to distinguish between different PD models dis-
cussed in the literature.

Simulation based inference of partial discharge can be seen as
a follow-up of research activities done in the 90s, in contrast
to data-driven methods explored more recently. One limita-
tion at that time was clearly the available computing power,
which required quite specialized techniques. With the in-
crease of computing power, but also the development of mod-
ern inference techniques this approach to PD analysis seems
to be within reach today.

Simulation-based inference should be seen as an interesting
approach to diagnostics and prognostics beyond the applica-
tion to PD analysis. The detailed knowledge of the technical
devices monitored are an import input, that should be taken
into account. In addition, the uncertainty quantification of
the parameters extracted, but also the large number of “hid-
den variables” that are not relevant for the degradation of the
system, can both be dealt with. Therefore the application of
this method to other systems is clearly of interest, and should
be explored in the future.

Figure 9. A comparison of the PRPD pattern as generated by
the two models in the final iteration and compared to the real
data. The upper plots shows the result for model0, the lower
one for model 1.
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