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ABSTRACT

Helicopters are high-value mechanical assets which have gained
much attention from condition monitoring practitioners. Mod-
ern helicopter health management system leverages various
sensors to collect in-flight signals. In order to trigger an alarm
when an anomaly happens, signal processing methods are used
to construct health indicators that require expert knowledge.
On the other hand, classic features are always case-specific
and may fail to discriminate anomalies in practical applica-
tions. Support Vector Data Description (SVDD) is a machine
learning method used as a one-class classifier to serve anomaly
detection tasks. It utilizes healthy samples to construct a hyper-
sphere feature space as a detection threshold. In order to au-
tomate the anomaly detection pipeline, a deep SVDD model
is proposed in this paper. A Convolutional Neural Network
(CNN) is used as the feature extractor, which provides smart
features to an SVDD model. The SVDD model uses a soft-
boundary hyper-sphere for decision-making. The optimization
of the CNN and the SVDD is connected, which makes it an
end-to-end process. The methodology is applied, tested and
evaluated on a helicopter vibration dataset, which has been
provided by Airbus SAS in the frames of an AI Gym chal-
lenge. The experimental results reveal that the F1 score of the
proposed Deep SVDD can reach 94%, showing its compelling
efficacy for anomaly detection.

1. INTRODUCTION

Modern sensor technologies give access to ever-increasing
amounts of data captured from mechanical assets, enabling
the evolving of condition monitoring from after-the-fact main-
taining into real-time assessment. Since the time maintenance
engineers were able to digitally collect online measurements,
anomaly detection has become one of the main elements in ad-
vanced condition monitoring for early warning of machinery’s
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degradation. In the aviation industry, an accuracy-assured
anomaly detection system is of utmost importance for the
aircraft’s proactive maintaining operations.

Helicopters are high-value assets which have gained much
attention from condition monitoring practitioners (Samuel &
Pines, 2005). Vibration sensors have been widely integrated
into helicopters as the primary surveillance tool due to the
convenient acquisition and the contained abundant signature
information (Schmidt et al., 2020). Classic vibration-based
anomaly detection relies on hand-crafted health indicators,
also known as feature engineering. Signal processing ap-
proaches, such as spectrum analysis (Jin et al., 2016), time-
frequency analysis (Purushotham et al., 2005), cyclic spectral
analysis (Randall et al., 2001; Antoni, 2009; Mauricio et al.,
2020), and empirical mode decomposition (Dybała & Zimroz,
2014), have been vastly used for the feature engineering pro-
cess. These methods require expert knowledge to manually
construct features in order to reflect the health conditions. On
the other hand, classic features are always case-specific and
may fail to accurately discriminate the anomalies in practi-
cal applications, especially for incipient or compound defects
(Chen et al., 2019).

In the last years, Machine Learning (ML) is quickly sweeping
into every corner of both academia and industry, transforming
the condition monitoring community. Various ML models
have been developed and proved efficient to facilitate the
anomaly detection process. Combined with classic feature
engineering, ML can be used to dig the discriminative infor-
mation between normal and abnormal data. Yiakopoulos et
al. (2011) developed a K-means clustering method with time
and frequency domain features for unsupervised bearing fault
detection. Support Vector Machine (SVM) is a kernel-based
machine learning method that has been widely used. Gryllias
and Antoniadis (2012) applied an SVM trained by features
from simulation data on a real dataset to detect bearing defects.
Saari et al. (2019) utilized an SVM to detect windmill bearing
faults with frequency domain features as inputs.
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Support Vector Data Description (SVDD) is another kernel-
based machine learning method used as a one-class classifier
to serve anomaly detection tasks (Tax & Duin, 1999, 2004).
It utilizes healthy samples to construct a hyper-sphere feature
space as the detection threshold. SVDD method has delivered
some heuristic findings in condition monitoring research. Liu
and Gryllias (2020) constructed frequency domain features
using cyclic spectral analysis and used them within the SVDD
frame. This method has been proved robust against outliers
and can achieve a high detection rate for bearing anomaly
detection. However, the inherent limitation of SVDD is still
distinct in terms of application: hand-craft indicators are in-
evitable as intermediaries between the raw input signals and
the SVDD model.

With the development of artificial intelligence, ML is now up-
grading toward an end-to-end solution. Deep neural network,
or deep learning method, came into large-scale application in
2010 and now becomes a significant branch of ML. A deep
neural network consists of multiple hidden layers and is able
to decompose the inputs into intrinsic characteristics, therefore
can better perceive the hierarchical information (Goodfellow
et al., 2016). Deep learning method is able to extract smart
features from the raw inputs instead of feature engineering,
thus provides an extremely effective approach to process a
large amount of data.

Anomaly detection tasks have been extensively studied using
deep neural networks, and most of these methods are based on
input reconstruction. For instance, Zhang et al. (2019) trained
a Variational Autoencoder (VAE) with healthy bearing signals.
The VAE is expected to learn the pattern of healthy operating
conditions during reconstruction. Once a high residual be-
tween the measurement and the reconstruction is observed, it
is considered an anomaly. A similar reconstruction can also be
found using Long Short-Term Memory (LSTM) network (Mal-
hotra et al., 2016), Convolutional Autoencoder (CAE) (Garcia
et al., 2020) or Generative Adversarial Network (GAN) (Jiang
et al., 2019).

Combining neural networks with SVDD can exploit both the
smart features and the robust detector. Deep SVDD was pro-
posed by Ruff et al. (2018) as an automated anomaly detection
method that is able to conjunct any network with the SVDD
model. The synchronized optimization can make the smart
features compact around the center of the sphere, thus can
separate the anomaly data points.

In this paper, a Convolutional Neural Network (CNN)-based
deep SVDD model is proposed for helicopter anomaly detec-
tion. The raw vibration signals are sent to a deep CNN for
feature extraction. The smart features are then fed to an SVDD
model to construct the hyper-sphere for decision-making. The
optimization of the CNN and the SVDD is connected, which
makes it an end-to-end process. The methodology is applied,
tested and evaluated on a helicopter vibration dataset, which

has been provided by Airbus SAS in the frames of an AI Gym
challenge.

The rest of the paper is organized as follows: Section II intro-
duces the theoretical background of kernel-based SVDD and
deep SVDD. The proposed CNN-based deep SVDD architec-
ture is discussed in Section III. The experimental dataset, the
evaluation metrics, and comparative methods are presented in
Section IV. Section V discusses the experimental results. The
paper ends with some conclusions in the last section.

2. THEORY OF SUPPORT VECTOR DATA DESCRIPTION

2.1. Kernel-based SVDD classifier

Support Vector Data Description is a kernel-based classifica-
tion method and was initially proposed as an unsupervised
one-class classifier (Tax & Duin, 1999). Inspired by the classic
One-Class Support Vector Machine (OC-SVM), SVDD uses a
hyper-sphere instead of a hyper-plane to separate the normal
data from the anomalous. The sketch of SVDD characterized
by center a and radius R is shown in Figure 1.

Figure 1. The sketch of SVDD.

Consider X ⊆ R is the input data space and φk(xi) : X →
Hk is the mapping function with kernel k : X×X → [0,+∞).
Hk is the dot product space, which is also known as the feature
space. When an input dataset is given as D = {x1, · · · , xn}
with xi ∈ X , SVDD will try to find a hyper-sphere containing
the majority of the data objects in Hk with the minimum
volume. The primal problem of SVDD can be described as:

min R2 +
1

νn

n∑

i=1

ξi

s.t. ‖φk(xi)−a‖2 ≤ R2 + ξi ∀i, ξi ≥ 0

(1)

where R and a are the radius and the center of the sphere,
respectively. ξi is the slack variable which allows some of
the samples exist outside the sphere boundary. ν ∈ (0, 1] is
the penalty parameter controlling the trade-off between the
sphere volume and the number of rejected data samples, which
provides an efficient way to measure the fraction of training
data outliers.

It should be noticed that Eq. 1 cannot be solved for an un-
known R since it is a convex quadratic programming problem.
It needs to be transformed to the respective dual problem via
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Lagrange duality (Tax & Duin, 1999). Then the constraint con-
ditions can be integrated into Eq. 1, which can be described
with the dual form as follows:

L = max
n∑

i=1

αi(xi · xi)−
∑

i,j

αiαj(xi · xj) (2)

where (xj · xi) denotes the inner product and αi ∈ R are the
Lagrange multipliers. Eq. 2 can be solved when introducing a
kernel function inside, as illustrated by Tax and Duin (2004).

SVDD has been proved effective in many applications, but
there are still two drawbacks to the method. Firstly, it requires
explicit feature engineering as the prior step, and low-quality
features might jeopardize the classification task. Secondly, the
kernel matrix restricts its computational efficiency and needs
more memory to store the support vectors in practical usage
(Ruff et al., 2018).

2.2. Theory of Deep SVDD

Deep neural network provides a novel approach to get the dis-
criminative features from the raw data. The features extracted
from a deep neural network can be defined as φ(·;W) : X →
H with the network weightsW = {W1, · · · ,WL}, where Wl

represents the weight of hidden layer l. In order to learn the
network parameterW simultaneously minimizing the SVDD
hyper-sphere volume, the objective function of one-class deep
SVDD can be defined as (Ruff et al., 2018):

min
1

n

n∑

i=1

‖φ(xi;W)− a‖2 + λ

2

L∑

l=1

‖W l‖F
2

(3)

where a denotes the center of the sphere, and ‖ · ‖F is the
Frobenius norm. The first term of Eq. 3 simply computes the
quadratic loss based on the distances to the sphere center. The
second term represents a weight decay regularizer ofW with
λ > 0 introduced as a hyperparameter.

Eq. 3 indicates that the characterizing of the sphere in one-
class deep SVDD only needs the center a, while the con-
traction of the sphere is achieved by the mean value of the
distances from every feature to a. One-class deep SVDD
strictly encloses every sample from the training set into the
sphere, which does not have a tolerance to the outliers. A
more flexible form of deep SVDD with soft boundary is also
proposed as follows:

min R2 +
1

νn

n∑

i=1

max {0, ‖φ(xi;W)− a‖2 −R2}

+
λ

2

L∑

l=1

‖W l‖F
2

(4)

Comparing to the previous form, soft-boundary deep SVDD
characterize the sphere with both the center a and the radius

R. A penalty is introduced as the second term in Eq. 4, where
ν ∈ (0, 1] controls the trade-off with the same function as in
Eq. 1.

To achieve the optimization goal, the deep SVDD model must
extract the features from the data and map them as close as pos-
sible to the center. During the anomaly detection process, data
from the normal class will stay compact in the sphere, while
the anomalous data points will be mapped on the contrary, far
from the center.

3. PROPOSED METHOD

Based on the deep SVDD theory, a CNN-based SVDD model
is proposed in this paper. The 1D time sequence is used as
inputs of the model. The feature extractor consists of four
1D CNN modules with ReLU activations and Batch Normal-
ization (BN) layers. The last CNN module contains a 1D
Adaptive Maxpooling (AdpMP1d) layer in order to reduce the
dimension of the features space. After the flatten layer, the
features are sent through two Fully Connected (FC) layers and
then mapped to the Hilbert space with the SVDD. Detailed
hyper-parameters of these layers can be found in Figure 2.

The training algorithm of the proposed method is described in
Algorithm 1. The soft-boundary deep SVDD is connected to
the network outputs in the proposed architecture with center
a and radius R. The initialization of a and R follows the
work of Ruff et al. (2018) where a is the mean value from an
initial forward pass of the training samples, andR is initialized
from 0. The hyper-parameter ν is set to 0.1, which provides a
flexible boundary to reduce the influence from outliers.

Algorithm 1: CNN-based Deep SVDD for unsupervised
anomaly detection
Input: Training dataset Dtrain = {x1, · · · , xn}

1 Initialize the weights of CNN and a and R of the SVDD;
2 for each training iteration step do
3 Sample minibatch from the training data Dtrain;
4 Forward propagation through the CNN and the SVDD;
5 Calculate the loss based on Eq. (4) ;
6 Backpropagate of the gradient using the Adam optimizer for

the features φ(xi;W) downsteam the network;
7 Update the network weightsW and radius R based on

mini-batch distances;

8 end
9 Evaluate the model with testing data Dtest

During the model training process, some other hyper-parameters
are set as follows: the learning rate is set to 10−4; the training
epochs are set to 50; a weight decay with 10−6 is set for the
deep SVDD objective.
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Figure 2. The architecture of CNN-based deep SVDD for anomaly detection.

The entire pipeline of implementing the proposed method can
be found in Figure 3. Signals from the healthy operating con-
dition, which usually exist at the beginning of the experiment,
are used to train the deep SVDD model. Then the incoming
signals are tested by the model for anomaly detection.

Figure 3. Time domain features of the training dataset.

4. EXPERIMENTS

4.1. Experimental dataset

Airbus SAS released an experimental dataset during an AI
Gym anomaly detection challenge, which contains vibration
signals measured from accelerometers mounted on different
positions and axes on Airbus helicopters (Garcia et al., 2020).
The sampling frequency of the signals is 1024 Hz. The dataset
consists of a training set with 1677 sequences collected from
normal flights and a validation set with 594 sequences from
normal and abnormal flights. Each sequence represents a
continuous time series of 60s with a length of 61440 points.

The primary task of the challenge was to train a detector with
only healthy data in the training set and test the detection per-
formance with a validation set without prior knowledge about
the anomalies. This fits well with the practical anomaly de-
tection scenarios where the maintenance engineer is capturing
most of the time healthy data.

4.2. Evaluation metrics

The confusion matrix of a binary classifier can be found in
Figure 4. Based on the estimated label and the corresponding
true label, the classification results could fall into four areas,
i.e., True Negative (TN), False Negative (FN), False Positive
(FP), and True Positive (TP).

Figure 4. Calculation of the evaluation metrics.

Three evaluation metrics can be calculated based on the con-
fusion matrix, including the True Positive Rate (TPR), the
False Positive Rate (FPR), and the F1 score, as illustrated
below:

TPR =
TP

FN + TP
(5)

FPR =
FP

TN + FP
(6)

F1 =
2 · TP

2 · TP + FP + FN
(7)

TPR represents the proportion of true positive predictions,
which is also called Recall. FPR computes the false positive
predictions over all the ground truth negatives. F1 is the
harmonic average of Recall and Precision, which is the positive
prediction value.

Besides the three metrics derived from the confusion matrix,
the Receiving Operator Curve (ROC) and the Area Under
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Curve (AUC) are also used to measure the detection efficacy.
Besides, the model training time is also recorded for the deep
learning models to compare the computational efficiency.

4.3. Comparative methods

4.3.1. Baseline SVDD model with engineered features

The classic one-class SVDD model with engineered features
is adopted as the baseline model. As listed in Table 1, nine
time-domain health indicators are computed for each sample,
forming an input matrix with shape (61440, 9). The hyper-
parameter ν of the SVDD is set to 0.1.

4.3.2. Deep SVDD with different feature extractors

The comparative analysis is carried among different input
types. Instead of using the raw time sequence, the FFT spec-
trum with size (30700,1) is used as the 1D inputs for the
proposed CNN-based SVDD model. Further, a Bi-directional
Long Short-Term Memory (Bi-LSTM) network is also used
as the feature extractor combining the SVDD model with both
the time series and the FFT spectrum as inputs. The architec-
ture and the hyper-parameters setting of the Bi-LSTM follow
the work of Zhou et al. (2016).

2D inputs are also examined in the deep SVDD frame. The
time series is transformed into 2D representations with three
methods:

• 2D Slices: The raw time sequence is reshaped into a 2D
matrix with a size (60, 1024) along the second dimension.
Therefore, each row represents a slice of the time signal
of 1 second.

• 2D STFT spectrogram: Short Time Fourier Transform
(STFT) is adopted on the raw signal. A Hann window
is used with a size of 256 points and an overlap of 128
points. The input shape is (128, 481).

• 2D WPD spectrogram: Wavelet Packet Decomposition
(WPD) is applied in the level of 8. The input shape of the
2D WPD spectrogram is (256, 61440).

Consequently, two classic 2D deep models are adopted to fit
these inputs, including a LeNet 2D model and a ResNet 2D
model. The hyper-parameters settings of LeNet follows the
work of LeCun et al. (1998), and the ResNet follows the work
of He et al. (2016)

4.3.3. Reconstruction-based deep models

Reconstruction-based methods are considered as strong com-
petitors since they have been proved efficient in different
anomaly detection cases. The candidates are selected, includ-
ing an LSTM model, a VAE model and a GAN model. The
LSTM model utilizes the architecture proposed by Malhotra
et al. (2016). The VAE and the GAN model follows the pa-
rameter settings in the paper by Zhang et al. (2019) and Jiang

et al. (2019), respectively. Garcia et al. (2020) applied CAE
on this dataset; therefore, the results from the CAE model
with spectrogram inputs will be introduced for comparison.
Besides the model architecture and hyper-parameters, one of
the critical issues for these methods is the decision-making
process dealing with the reconstruction error. For simplicity,
a statistic-based thresholding process used by Garcia et al.
(2020) is also applied.

5. RESULTS

The proposed model is achieved with Python 3.6 and PyTorch
1.1.0. The computational experiments are conducted on an
Intel Xeon Gold 6140 (2.3 GHz) with NVIDIA Tesla P100
GPU acceleration.

5.1. Complexity analysis of the proposed model

The computational time complexity of the proposed CNN-
based deep SVDD model is analyzed based on the time cost
of the convolutional layers described as follows (He & Sun,
2015):

O(

d∑

l=1

nl−1 · s2l · nl ·m2
l ) (8)

where l represents the convolutional layer index. For the l-th
convolutional layer, nl−1 is the number of the input channels.
sl is the length of the filter and ml is the size of the feature
map. In the proposed CNN-based deep SVDD model, the
depth of the convolutional layer d=4, therefore the theoretical
time complexity of the CNN part can be calculated following
Eq. 8. It should be noticed that the complexity value is
different from actual model training time depending on the
computational resource. Besides the convolutional layer, the
pooling layer and the fully connected layer take 5-10% of
the computational time. For comparative analysis of different
CNN structures within the proposed method, the complexity
values are discussed in Section 5.3.

5.2. Comparative analysis against the baseline model

As discussed in the previous section, the baseline SVDD model
requires time domain features to construct the input data space.
The features of the training samples are plotted in the water-
fall as shown in Figure 5. It can be seen that, although all
the samples come from the normal condition, some of these
features fluctuate in a wide range, such as STD, CF, IF, and
CLF, indicating these features are not robust enough to reflect
the health conditions of the helicopter.

The anomaly detection results are shown in Table 2, where the
proposed method outperforms the baseline model in all the
metrics. For the critical F1 score, deep SVDD yields a 0.14
boost.

On the one hand, the results indicate that the selected time-
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Table 1. Features from the time domain.

RMS RMS =

√
1
n

∑n
i=1 x

2
i

n
Variance V R =

∑n
i=1(xi−m)2

(n−1)σ2
Shape Factor SF =

√
1
n

∑n
i=1 xi

2

1
n

∑n
i=1 |xi|

Kurtosis KU =
∑n

i=1(xi−m)4

(n−1)σ4
Mean m =

∑n
i=1 xi
n

Impulse Factor IF = max |xi|
1
n

∑n
i=1 |xi|

Skewness SK =
∑n

i=1(xi−m)3

(n−1)σ3
Crest Factor CF = max |xi|√

1
n

∑n
i=1 xi

2 Clearance Factor CLF = max |xi|
( 1
n

∑n
i=1

√
|xi|)2

Figure 5. Time domain features of the training dataset.

Table 2. Anomaly detection results of the baseline and the
proposed models.

TPR FPR F1 AUC

Baseline model 0.86 0.29 0.80 0.76
Proposed model 0.91 0.02 0.94 0.94

domain features fail to capture the health-related information
from the raw vibration signals. On the other hand, the CNN
layers of the deep SVDD can extract discriminative represen-
tations from the time series while building a robust SVDD
boundary to isolate the anomalous samples. The ROC curve
and the corresponding AUC value of the two models can be
found in Figure 6a.

5.3. Comparative analysis of the feature extractors

Experimental results of the 1D input deep SVDD models are
shown in Table 3. For the two input types, the 1D time series
outperforms the 1D FFT spectrum in both models except the
training time due to the FFT spectrum is half the length of
the raw time sequence. The complexity values of CNN-based
feature extractors are calculated relative to the 1D time series
input. The results of the CNN-based model show significant
leads in almost all the metrics. Compared to the 1D-LSTM
network, the F1 score of 1D-CNN with time series yields a

significant 0.32 boost, and the lead extends to 0.38 for 1D FFT
spectrum inputs.

It is noticeable that the lowest FPR=0 is observed in 1D-LSTM
with FFT. This indicates that the model does not mislabel
normal samples as abnormal. Considering the low TPR of this
model, there is a strong possibility that the SVDD has a high
boundary with a high acceptance rate for normal samples. The
ROC curve of the 1D-CNN and 1D-LSTM SVDD models can
be found in Figure 6b and 6c, respectively.

The results of the 2D input models are presented in Table 4.
Generally, the 2D-LeNet with the STFT spectrogram outper-
forms the others. In the 2D-LeNet model, both the F1 scores
and the AUC of the STFT and WPD are very close. However,
the model complexity value and the training time of WPD is
over three times the STFT due to the large matrix size. The
detection performance of the 2D-LeNet and 2D-ResNet mod-
els are similar for STFT and WPD inputs, but the performance
of ResNet decreased over 0.2 when using 2D slices input. The
ROC curves of the 2D models are presented in Figure 6b and
6c.

In general, the 1D-CNN model with the time series as inputs
reach the top performance but are sensitive to the feature
extractor. The changing of the network influences more its
detection performance. On the other hand, the STFT and WPD
inputs are more robust to different networks. It is possible that
more discriminate features are exposed after the STFT and the
WPD process, which makes them robust to different network
architectures.

5.4. Results from reconstruction-based models

Table 5 shows the detection results of the reconstruction-based
deep models. The ROC curves of LSTM, VAE and GAN
are shown in Figure 6f. In general, the reconstruction-based
methods show relatively high detection accuracy preliminary
due to the strong feature extraction ability of the deep networks.
2D-CAE gives the best results among the four methods with
slightly higherF1 and AUC value. The most distinct advantage
of CAE is its low computation cost, which needs less than half
of the others’ model training time.

The proposed method outperforms the reconstruction-based
models, which yields an improvement of 0.02 comparing to
the best of these three methods, but takes relatively longer
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Table 3. Results of the deep SVDD models with 1D feature extractors.

Input type 1D-CNN 1D-LSTM
TPR FPR F1 AUC Comp. Time (s) TPR FPR F1 AUC Comp. Time (s)

1D Time series 0.91 0.02 0.94 0.94 1.00 184 0.49 0.09 0.62 0.70 1.21 203
1D FFT spectrum 0.89 0.19 0.86 0.85 0.54 96 0.31 0.00 0.48 0.66 0.59 104

Table 4. Results of the deep SVDD models with 2D feature extractors.

Input type LeNet 2D ResNet 2D
TPR FPR F1 AUC Comp. Time (s) TPR FPR F1 AUC Comp. Time (s)

2D Slices 0.82 0.20 0.81 0.81 2.40 424 0.35 0.00 0.52 0.59 2.38 416
2D STFT spectrogram 0.90 0.04 0.92 0.93 2.10 360 0.85 0.09 0.87 0.89 1.82 325
2D WPD spectrogram 0.91 0.08 0.91 0.91 6.65 1223 0.89 0.08 0.90 0.90 5.80 1054

model training time. Reducing the hyper-parameter number
meanwhile keeping the high performance for Deep SVDD
could be the direction for the following research work.

6. CONCLUSION

A CNN-based deep SVDD model is proposed for helicopter
anomaly detection in this paper. The proposed method uses
raw vibration signals as inputs, which are further sent to a deep
CNN for feature extraction. The smart features are mapped
to an SVDD model in order to construct a hyper-sphere fea-

(a) (b) (c)

(d) (e) (f)

Figure 6. ROC curves from different anomaly detection models. (a) Baseline and the proposed model. (b) 1D-CNN-based
deep SVDD. (c) 1D-LSTM-based deep SVDD. (d) 2D-LeNet-based deep SVDD. (e) 2D-ResNet-based deep SVDD. (f)
Reconstruction-based deep models.

7

Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN – 978-1-936263-34-9

Page 240



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

Table 5. Anomaly detection results of reconstruction-based
deep models.

TPR FPR F1 AUC Time (s)

1D-LSTM 0.82 0.12 0.87 0.88 162
1D-VAE 0.88 0.08 0.90 0.90 135
1D-GAN 0.84 0.09 0.86 0.89 326
2D-CAE 0.85 0.01 0.91 0.92 62

Garcia et al. (2020)

ture space. The optimization of the CNN and the SVDD is
connected which makes it an end-to-end model. Experiments
are carried based on a helicopter vibration dataset provided by
Airbus SAS, and the method is proved efficient to deal with
the anomaly detection task. Comparative analysis shows that
the proposed method with 1D time series input obtains better
performance than the 1D FFT spectrum, 2D time series slices,
2D STFT spectrogram and 2D WT spectrogram inputs. Mean-
while, the CNN-based deep SVDD model achieves higher
detection accuracy than state-of-the-art reconstruction-based
deep learning detection models.
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