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ABSTRACT

Determining mean-time-between-failure (MTBF) estimation
for in-service assets is an essential process. Statistical distri-
butions of end-of-life values are used to assess asset reliability
performance and the effectiveness of maintenance strategy.
However, identifying the end-of-life event for each instance
of functional failure is an arduous, manual process dependent
on structured and unstructured fields in the maintenance man-
agement system and rules used by individual reliability engi-
neers. We emulate the process of end-of-life event detection
using a natural language processing pipeline followed by sta-
tistical parameter estimation to produce MTBF values for in-
service assets from maintenance work order data. Using this
pipeline we test how alternate mappings of words in unstruc-
tured text and the use, or not, of structured data can impact
the identification of end-of-life events. We demonstrate the
pipeline on data sets from two industrial users with 14,508
and 89,259 maintenance work orders, respectively. We find
that resulting MTBF estimates can vary from, for example,
97 to 226 days for a single asset depending on the mappings
and rules used. The main contributions of this paper are a)
a demonstration of the impact of undocumented decisions
made by reliability engineers in identifying end-of-life events
on MTBF estimates, and b) an end to end pipeline for MTBF
estimation from raw maintenance work order texts. In addi-
tion we provide open-source code1 for the pipeline that can
be used by asset owning organisations to semi-automate the
MTBF estimation process in a manner that is fast and scal-
able, and ensures the rules used for end of life determination
are documented and hence the process is transparent and re-
peatable.

Tyler Bikaun et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.
1https://code-ittc.csiro.au/tyler.bikaun/mtbf from mwo

1. INTRODUCTION

“You can’t manage what you can’t measure” is often attributed
to W. Edwards Deming and as a concept underpins organiza-
tional performance management systems. For asset intensive
organisations, a common measure for monitoring the perfor-
mance of a physical asset or asset class is reliability. Re-
liability is usually expressed as the probability that an as-
set or component will perform its intended function for a
specified time period under specified conditions (Department
of Defence, 1981). Two common metrics for reliability are
mean time to failure (MTTF) and mean time between failure
(MTBF), for non-repairable and repairable assets respectively
(Meeker & Escobar, 2014). There are a number of methods
for determining MTTF and MTBF. A simple method for es-
timating mean life is using a point estimate calculated by di-
viding the operating time to failure by the number of assets
run to failure (SMRP, 2017). Matters get more complicated
when equipment is repairable, data is truncated, and there are
suspensions as well as failures in the data. However even
the point estimate method can be challenging to calculate on
in-service assets given how asset data are recorded particu-
larly how an end-of-life event is identified. Determining the
time from start-of to end-of-life for each instance of func-
tional failure is an arduous, manual process dependent on
structured and unstructured data fields and the expertise of
the reliability engineer(s). A consequence of this situation is
that many asset intensive organisations do not have trusted,
regularly updated values for the MTTF/MTBF of their assets
(Hodkiewicz & Ho, 2016; Lukens, Naik, Saetia, & Hu, 2019).
This is metaphorical equivalent of flying blind for reliability
managers.

This paper is organised as follows. Section 2 presents a re-
view of relevant literature. Section 3 describes details of two
real-world industrial data sets. Section 4 presents the pro-
posed pipeline and implementation details. Section 5 de-
tails experiments performed. Section 6 presents results of
the pipeline. Section 7 discusses and evaluates the pipeline.
Lastly, conclusions are presented in Section 8.
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2. LITERATURE REVIEW

To overcome the challenges faced by subject matter experts
when determining MTTF/MTBF estimates for in-service as-
sets, semi- and fully-automatic pipelines built using natural
language processing (NLP) have been proposed (Lukens et
al., 2019). These pipelines typically employ rule-based ex-
pert systems or data-driven annotation methods to structure
information contained within the unstructured fields of main-
tenance records to enable reasoning over maintenance activ-
ities and observations, as well as supporting event type char-
acterisation (Hodkiewicz & Ho, 2016; Sexton, Hodkiewicz,
Brundage, & Smoker, 2018).

Rule-based expert systems consist of sets of hand-crafted rules
developed by subject matter experts to elicit knowledge from
maintenance records. These systems have proven to be ef-
fective for structuring maintenance records to support relia-
bility parameter estimation (Hodkiewicz & Ho, 2016) as well
as identifying high-level ideological concepts in unstructured
free-text fields (Gao, Woods, Liu, French, & Hodkiewicz,
2020). However, the construct of these systems is resource
intensive and rigid making it challenging to adapt across do-
mains such as between organisations and industries, render-
ing them ill-suited as a general class of techniques.

Instead of relying on rigid rule-sets to structure unstructured
fields for down-stream tasks, statistical and machine learning
(ML) based approaches have been used. As a result, rules
are learnt explicitly, as features, from data directly (Sexton
et al., 2018). However, a caveat of data-driven approaches is
their dependency on large amounts of high-quality annotated
data that is scarce in industrial maintenance settings. Regard-
less, ML approaches have been used similarly to rule-based
systems with varying levels of success to support extraction
of concepts for root cause analysis (Navinchandran, Sharp,
Brundage, & Sexton, 2019), event classification (Arif-Uz-
Zaman, Cholette, Li, Ma, & Karim, 2016; Arif-Uz-Zaman,
Cholette, Ma, & Karim, 2017), and reliability parameter esti-
mation (Sexton et al., 2018). The success of these techniques
has largely depended on the availability of data and the rep-
resentation method used in the ML algorithms i.e. how un-
structured texts are represented numerically. Moreover, due
to the unavailability of annotated data that is representative
of industrial maintenance as a whole, similar to rule-based
systems, ML approaches are yet to be proven as a domain-
adaptable technique in industrial maintenance due to their in-
ability to widely generalise.

To learn effectively, the manner that data is represented for
ML algorithms is vital. Historically, representation of un-
structured fields in maintenance records have largely been
count or co-occurrence based such as bag-of-words (Arif-Uz-
Zaman et al., 2016, 2017) or numerical features derived from
latent semantic analysis (Sharp, Sexton, & Brundage, 2016).
More recently, embedding and language models have been

adopted to transfer learn representations learnt from com-
mon English domains to domain-specific applications such
as event type classification (Khabiri, Gifford, Vinzamuri, Pa-
tel, & Mazzoleni, 2019; Cadavid, Grabot, Lamouri, Pellerin,
& Fortin, 2020) and degradation modelling (Yang, Baraldi,
& Zio, 2020) in industrial settings. Although, the use of
such techniques remains inconclusive as to whether the rep-
resentations used non-industrial settings are widely effective
in domain-specific tasks due to the unavailability of large an-
notated data sets.

In this work, we propose a pipeline using the well established
word embedding technique word2vec (Mikolov, Sutskever,
Chen, Corrado, & Dean, 2013) coupled with flexible domain-
specific rules to emulate the process a typical reliability en-
gineer would perform when estimating MTTF/MTBF. Our
pipeline is easily domain-adaptable and requires very little
computational and subject matter expert resources. Using
this pipeline, we are able to investigate the impact of deci-
sions made when processing maintenance records on result-
ing MTTF/MTBF estimates, and is the first study of this kind
to our knowledge.

3. DATA SETS DESCRIPTION

There are a number of time-stamped sources for asset life in-
formation, for example, the computerised maintenance man-
agement system (CMMS), downtime accounting system (DAS)
(also called a process historian), fleet management system
(FMS), maintenance logs and warranty records, as well as ad
hoc tables stored in databases and spreadsheets by engineers
and maintainers recording events on particular equipment of
interest. These database systems record events, usually un-
wanted events, either directly in the case of DAS, FMS and
warranty reports or in the case of CMMS the record is a noti-
fication of the need for work in response to an event or asset
condition. CMMS data is usually entered and managed by
maintenance personnel, DAS and FMS by operating person-
nel, and warranty records by dealers.

Our focus in this study is on leveraging data captured in the
CMMS system for MTTF/MTBF estimation as this is the
data source commonly used by reliability engineers respon-
sible for assets in process plants such as found in the chem-
ical and mining industries, power and water treatment plants
(Hodkiewicz & Ho, 2016; Lukens, Naik, Hu, Doan, & Abado,
2017). CMMS data is time stamped and describes transac-
tional events such as actual and desired work activities, parts
orders, payments, resourcing, and costs.

Historical MWO data for pump assets were acquired from
CMMS of two large mining and mineral processing plants
operating in Western Australia2. The data sets consist of
14,508 and 89,259 work orders for plants A and B, respec-
tively, with each consisting of both structured and unstruc-
2These plants will be referred to as A and B throughout.
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tured data fields that are extracted to support statistical life
data analysis. An overview of each data set is provided in
Table 1.

To conserve lexical diversity, only light pre-processing is per-
formed on the unstructured data such as removing casing and
non-alphanumerical characters (except special characters - and
/). Special characters are kept as they are heavily used in both
data sets to represent compound words and abbreviations. For
example, de-contactor, v-belt, a/c (air conditioner), and s/w
(south west). Tokenization of each document is performed by
splitting on white space. For structured data such as resource
and time estimates, only date-time objects are normalised.

Table 1. Overview of historical MWO datasets.

Plant Asset Type MWOs Mean Tokens
A Pump 14,508 5.5
B Pump 89,259 8.0

3.1. Structured data fields

Structured fields are typically auto-generated by CMMS sys-
tems based on predefined or calculated values. Fields pertain-
ing to i) work order classification (e.g. preventative, break-
down, corrective), ii) event dates (e.g. basic actual start date
of maintenance activity), iii) asset identification and descrip-
tion, iv) actual craft hours, and v) actual total cost, are ex-
tracted to support contextual filtering of work orders using
domain logic.

3.2. Unstructured data fields

The unstructured descriptive short text field used by mainte-
nance personnel to capture in-field observations provides a
rich body of contextual information about maintenance activ-
ities performed on in-service assets (Gao et al., 2020; Brundage,
Sexton, Hodkiewicz, Dima, & Lukens, 2020). A unique prop-
erty of these texts is their ability to be structured with natu-
ral language processing such that verbs and adjectives corre-
sponding to end-of-life events in MWOs can be identified and
used as evidence for statistical life data analysis.

4. PIPELINE

The proposed pipeline uses NLP and domain logic to emulate
the typical workflow of a reliability engineer when determin-
ing MTBF estimates3. The use of NLP and domain logic pro-
vides a consistent and standardised foundation to program-
matically perform sensitivity analysis to gain insight into de-
cisions that affect MTBF estimations.

Our model consists of two stages, firstly an unsupervised em-
bedding model is trained on MWOs to learn domain-specific
word associations that are used to construct an entity dictio-

3We focus on MTBF as the assets under study are repairable, however the
pipeline is applicable for non-repairable assets.

nary (gazetteer) that maps EOL terms to words in the unstruc-
tured field of MWOs. Using the domain-specific gazetteer
in conjunction with domain logic, eligible MWOs are clas-
sified as either failures or suspensions to support reliability
parameter estimation using 2-parameter Weibull analysis. An
overview of the model is shown in Figure 1.

Figure 1. Overview of proposed pipeline (RTF refers to
return-to-function, and F/S refers to failure or suspension).

Table 2. Examples of gazetteer developed in stage 1 of the
pipeline.

Term Action
replcmt replace

u/s replace
snaped replace

change out replace
not pumping replace

repair repair
remount repair

4.1. Stage One: Gazetteer Construction using Word Em-
bedding

A gazetteer is a classical technique in the field of informa-
tion extraction that acts as a conceptual dictionary that maps
words to concepts or entities. This technique has shown to

3
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Table 3. Worked example of filtering and classification steps using a cost threshold of $2,000 (TAC refers to total actual cost).

Description Order Type TAC ($) RTF EOL Materialised F/S
$ B11 1A2B Mech Seal leaking steam on pu Corrective 20,359 Reactive True True Failure
C8 Piping design for Sulphur flow meters Corrective 8,300 Reactive False True -
3M Mech Lube Pump 1A2B Preventative 310 Proactive False False -
C9 JDI 1A2B not pumping Corrective 1,339 Reactive True False -
B11 1A2B Sulphur leaking from seal Breakdown 30,832 Reactive True True Failure
B11 Replace 1A2B Sulphur pump MJ Corrective 36,237 Reactive True True Failure
B12 1A2B Vibration Check / Housekeeping Corrective 39,809 Reactive False True -
B12 1A2B Pump not performing Corrective 27,545 Reactive True True Failure
$ C9 Replace pump 1A2B Breakdown 12,466 Reactive True True Failure

be effective in identifying concepts in unstructured mainte-
nance records such as item, activity, and state (Gao et al.,
2020), however the construction was resource intensive due
to the need for large rule-sets that can be challenging to up-
date when concepts shift. In this work, gazetteer construction
using word embeddings is performed in two steps.

Firstly, a word2vec (Mikolov et al., 2013) word embedding
model is trained using self-supervision on all available un-
structured MWO text. This allows word associations to be
learnt under the distribution hypothesis i.e. “you shall know
a word by the company that it keeps” (Harris, 1954). Learnt
word associations allow words that frequently co-occur to be
numerically close to one another. Consider the following
three work orders: b11 a2b1 - repair pump, b11 repl pump
repr leaks 1a22b, and b16 a2b-21b replace pump, if given
enough similar examples, a word embedding model would
deduce that the words replace, repl, and repair are very sim-
ilar as they all frequently co-occur with pump. If trained
on an entire history of MWOs, an embedding model would
learn these associations between all unique words, including
those with lexical variations such as incorrect spelling and ab-
breviations. Word embedding has become a popular way of
numerically representing texts in industrial settings (Khabiri
et al., 2019; Cadavid et al., 2020; Yang et al., 2020), how-
ever to our knowledge they have not been used as a domain-
adaptable way of constructing gazetteers in this setting. We
favour word2vec due to its representative power, computa-
tional efficiency and ability to capture lexical variations and
abbreviations that may be troublesome for techniques that
have fixed vocabularies (Khabiri et al., 2019).

Secondly, term expansion is performed using the pre-trained
embedding model to populate the gazetteer that is used to
map EOL terms to words in unstructured MWO text. The
construction process starts with a single EOL seed term such
as replace and recursively finds similar words using the em-
bedding model that are validated and added to the gazetteer
by a domain-expert through the use of a command-line in-
terface, that continues until the terms are exhausted. For
example, the term expansion process starting with replace
could take the form of: replace → {u/s, rpl, ...}, u/s4 →
4u/s refers to unserviceable

{u/s, rpl, failed, leaking, ...}, and so forth. In addition to
this, pertinent n-gram EOL terms are identified by the domain-
expert from a list of high-frequency collocations derived from
the set of unstructured texts. Collocations are sets of words
that frequently co-occur, for example, not and pumping in
not pumping, and not and performing in not performing. This
process aims to emulate the terms that a reliability engineer
would use to contextually filter work order descriptions in
spreadsheet software. Examples of terms captured by this
process are exhibited within Table 2.

4.2. Stage Two: Statistical Life Data Analysis

With domain-specific EOL terms identified, evidence for sta-
tistical life data analysis are captured by emulating the pro-
cess of a typical reliability engineer. This process consists of
4 filtering and classification steps, each aiming to ask a ques-
tion about the work order:

1. Does the unstructured field indicate an EOL event? →
use gazetteer of domain-specific EOL terms to determine
if verbs or adjectives constitute a replace or repair event.

2. Is it likely to have materialised to an EOL event, and is it
associated to the functional or physical component? →
filter on minimum total actual cost or total actual craft
time.

3. Is the work proactive or reactive? → classify return-to-
function (RTF) based on structured work order classifi-
cation field.

4. Is it a failure or suspension event? → classify as failure
(if EOL event and corrective), suspension (if EOL event
and proactive), or other (if neither).

To illustrate this process, we provide a worked example in
Table 3 showing the result of the steps applied to 9 real work
orders. After identification of suitable evidence, and verifica-
tion that the i.i.d assumption holds, parameter estimation us-
ing 2-parameter Weibull analysis including censoring is per-
formed and MTBF estimations are obtained.

5. EXPERIMENTS

Experiments are performed on the data sets specified in Table
1 which consist of pump assets used in the mining and miner-
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als industry. For each experiment we filter MWOs with actual
total cost and/or actual total craft time as $2,000 and 8 hours,
respectively. We treat cost preferentially as it is more indica-
tive of material change whereas hours are not, for example, an
inspection in some instances could take much longer than a
replacement activity, whereas it’s unlikely an inspection will
cost more than a replacement event when duration is similar.
For plant A, both structured fields were available so cost is
used, whereas for plant B only time information was avail-
able. Furthermore, the minimum threshold of failure and/or
suspension events required for an individual asset is set at five
5. In the code accompanying this work, all of these parame-
ters can be modified and are use case specific.

Additionally, to gain insight into the impact of decisions made
by reliability engineers when determining MTBF estimates,
we experiment with three different, albeit extreme, scenarios
that are defined as:

• S1: gazetteer with only replace term,

• S2: expanded EOL gazetteer, and

• S3: expanded EOL gazetteer and structured data fields.

Each scenario is performed on the three most populous asset
types within each data set (Table 4).

Table 4. Exemplar assets used in sensitivity analysis.

Plant A Plant B
A1 - Centrifugal pump B1 - Warman 8/6 FAH
A2 - Piston pump B2 - Worthington 10LR15A
A3 - Peristaltic pump B3 - Warman 10/6 FM

6. RESULTS

6.1. Pipeline performance

The pipeline was applied to both industrial data sets having
14,508 and 89,259 work orders, respectively. This resulted in
MTBF estimates for 93 and 669 pumps as shown in Table 5
from a set of 903 and 3079 pumps. Construction and valida-
tion of the gazetteer using word embeddings and collocations
took less than 10 minutes for both data sets, and the pipeline
was able to process MWOs for each plant in 22 and 91 sec-
onds, respectively. This compares to manual processing by a
reliability engineer that would take weeks for this number of
pumps.

6.2. Variation in MTBF estimates

The results of the three experiments, which mimic differ-
ent decisions made by a reliability engineer when processing
MWO data, are shown in Table 6. It is clear that decisions
made in the processing of MWOs for statistical life analysis
can result in substantial variations to MTBF estimations. This
5This corresponds to the lower limit specified by Natrella et al. (2010) for
there to be statistical significance.

Table 5. Overall results of the pipeline applied to each data
set.

Plant A Plant B
Assets 903 3079

Samples 3112 35170
Failures 1874 6746

Suspensions 14 2850
Eligible Assets6 93 669
Compute Time 22s 91s

is seen in data set A where MTBF vary from 97 to 226 days
for a single asset depending on whether the engineer selected
pipeline S1, S2 or S3. The impact is less marked on data set
B as the rules used in the B1 and B2 process resulted in data
sets with only suspensions and no failures. This is a reflec-
tion of the use of fixed interval replacement strategy used at
the site of the B pump set.

Table 6. Impact of decisions made on MTBF estimates for
exemplar pump assets (T, F and S refer to total, failure, and
suspension, respectively).

Plant Scenario Asset MWOs MTBF (days)
S1 A1 58T/15F/0S 184.8
S2 A1 58T/29F/0S 97.1
S3 A1 20T/9F/0S 226.2
S1 A2 90T/17F/0S 181.9
S2 A2 90T/30T/0S 101.9
S3 A2 40T/14F/0S 209.9
S1 A3 31T/11F/0S 244.3
S2 A3 31T/15F/0S 191.7

A

S3 A3 10T/7F/0S 408.5
S1 B1 134T/0F/23S -
S2 B1 134T/0F/23S -
S3 B1 115T/9F/16S 185.6
S1 B2 - -
S2 B2 10T/7F/0S 318.8
S3 B2 15T/6F/2S 334.1
S1 B3 - -
S2 B3 137T/1F/16S -

B

S3 B3 114T/5F/11S 301.4

6.3. Examination of identified EOL events

Table 7 provides a list of all the work orders identified by the
three experiments for a centrifugal sulphur pump (A1). The
results considered the most closely aligned to the processing
of an experienced reliability engineer are shown in the right
hand column and are the outputs of pipeline S3.

There are 13 MWOs in this S3 column. On review by experts
most of these are plausibly related to a functional failure of
the pump with the exception of two MWOs for delete replace
motor/gearbox on 1a2b and b16 repl motor switchgear g/box
1a-2b. In addition to these two MWO’s that were incorrectly
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Figure 2. Simplified P&ID of A1 that highlights the boundary between physical and functional systems (G - gearbox, M -
electric motor, SB - switch board).

Table 7. Work orders classified as failures for A1 under each scenario (coloured entries indicate those that do not exist in S3).

S1 (replace only) S2 (term expansion) S3 (term expansion and structured fields)
b11 replace 1a2b sulphur pump mj b11 replace 1a2b sulphur pump mj b11 replace 1a2b sulphur pump mj
c9 1a2b replace worn/ corroded bolts 1a-2b is not pumping 1a-2b is not pumping
jds event replace spring on pump 1a2b not pumping 1a2b not pumping
c8 1a2b replace drain valve lc-0123 delete replace motor/gearbox on 1a2b delete replace motor/gearbox on 1a2b
b12 replace bypass spring 1a2b b11 1a2b mech seal leaking steam on pu b11 1a2b mech seal leaking steam on pu
b12 replace bypass spring 1a2b b11 1a-2b not pumping v/well b11 1a-2b not pumping v/well
fabricate spool to replace nrv at h2s b11 1a2b sulphur leaking from seal b11 1a2b sulphur leaking from seal
b12 ab-0010 and ab-0020 replace valve b11 steam leaks 1a-2b b11 steam leaks 1a-2b
c9 replace pump 1a2b b12 1a-2b pump not pumping b12 1a-2b pump not pumping
replace pump 1a2b b16 repl motor switchgear g/box 1a-2b b16 repl motor switchgear g/box 1a-2b
discharge pressure guage replace c9 replace pump 1a2b c9 replace pump 1a2b
cub prjcts vsd replacement tie ins pump is not pumping pump is not pumping
delete replace pump 1a2b replace pump 1a2b replace pump 1a2b
remove replace flanges c9 jds 1a2b not pumping
delete replace motor/gearbox on 1a2b c9 1a2b replace worn/ corroded bolts

jds event replace spring on pump
c8 1a2b replace drain valve ab-0120
b12 replace bypass spring 1a2b
b16 split suction line flanges 1a/1b
b12 replace bypass spring 1a2b
fabricate spool to replace nrv at h2s
1a2b not pumping
b12 ab-0010 and ab-0020 replace valve
b11 investigate not pumping issues 1a2b
ab-0120 holed steam jacketed line/valve
discharge pressure guage replace
cub prjcts vsd replacement tie ins
delete replace pump 1a2b
remove replace flanges

assigned as EOL events, we also examined all the outputs
of the S3 pipeline for A1 to check if there were failures or
suspensions that might have been missed. These are shown in
Table 8, one can see that they are largely related to operational
events and we know from the rules used in the S3 pipeline that
none cost more than $2,000 or 8 hours and so feel comfortable
that they were excluded from the analysis. Should a reliability
engineer feel that these represented genuine EOL events then
it is possible to change the rules used in the pipeline to ensure
they are included.

There are only 4 MWOs in common between S1 and S3, and
11 in S1 that do not occur in S3. These 11 entries are in
S1 column are not valid EOL events for the pump. They re-
late to ancillary components associated with the pump that
are functional, but do not contribute to life of the primary as-
set. These MWO’s are identified by the S1 pipeline because
the MWO contains the word replace and the use of a func-
tional location code to capture all work associated with the
functional system. This notion of function versus physical
system is illustrated in Figure 2. It shows that all components
listed are considered part of A1. Our interest here is in only

6
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MWO’s associated with the reliability of the pump such as
EOL events associated with the impeller, casing, coupling,
mechanical seal, bearings and motor. We want to exclude
MWOs associated with the switchgear, pressure gauge, drain
valve and bypass system.

The S2 pipeline expands the terms related to EOL events in
that we see an expansion of work orders (15 to 29) due to
the breadth of terms that can be mapped to MWOs. Newly
acquired terms capture more phenomenological concepts as
well as lexical variants, for example leaking, repl, and holed.
Examples include holed steam jacketed line/valve and h16
split suction line flanges 1a/1b. In the latter the term split
has been interpreted by the computer as an adjective instead
of a verb.

However because no rules are used, the resulting S2 list con-
tains many items that are not considered EOL events as they
are not associated with minimum cost and/or time hurdles to
count as significant events. Examples include the MWO c9
jds 1a2b not pumping that while almost identical to one con-
sidered eligible 1a-2b is not pumping cost only $1,340 that
is below the rule used of $2,000. Upon further inspection,
the cost associated with this MWO only consisted of labour,
not materials. This indicates the MWO may have data qual-
ity issues or the issue was resolved without material change.
In contrast, the eligible MWO has a cost of $12,517 of that
$10,704 is for materials and $1,813 for labour.

6.4. Pipeline evaluation

To better understand how the pipeline discriminates between
eligible and non-eligible MWOs, we randomly sampled his-
torical MWOs from 20 assets in each data set for evaluation
after running them through the S3 pipeline. Subject matter
experts then assessed each MWO to determine if they de-
scribed an eligible failure or suspension and how it corre-
sponded to the classification provided by the pipeline. The
resulting F1 scores7 for data set A and B were 79.3% and
54.3%, respectively. We use F1 score as our evaluation met-
ric as the number of samples in each data set are unbalanced,
for data sets A and B, the distribution of eligible and non-
eligible MWOs are 70% / 30% and 36% / 64%, respectively.

Table 8. Description of work orders not classified as either
failure or suspension for A1 in S3.

Description
b12 1a2b vibration check / housekeeping
b11 1a2b pump output restricted
c8 piping design for sulphur flow meters
b16 sce rotable spare rv assy 1a2b
b12 1a2b poor performace
b12 1a2b pump not performing
b11 1a2b pump trips on high amps

7F1 is the harmonic mean of precision and recall e.g. F1 = 2× P ×R

P +R

Compared to similar classification tasks performed on main-
tenance records (Sharp et al., 2016; Cadavid et al., 2020),
our semi-automated pipeline performed better than expected.
Although, the evaluation identified two shortcomings of the
pipeline that can be attributed to a) an inability to strongly dif-
ferentiate between functional and physical components, and
b) a reliance on structured cost information. These short-
comings are particularly marked for data set B due to the
unavailability of cost information, instead craft hours were
used to reason over MWOs, resulting in impinged efficacy
of the pipeline. This result is due to craft hours not being
as strong an indicator as cost for identifying manifestations
of EOL events. For example, consider the record b21 1a2b
pump not performing, if this was accompanied with either 8
craft hours or an actual total cost of $25,000, the craft hours
would not be strongly indicative of an EOL event as they
could be attributed to various activities such as a change out
or an inspection. On the contrary, the total actual cost would
be more strongly indicative of material change of the pump
that gives confidence that an EOL event has occurred.

7. DISCUSSION

Decisions made when processing MWOs for statistical life
analysis can have considerable impact on the resulting MTBF
estimates for pumps in our industry supplied data sets, as
demonstrated in Table 6. The absence of a clearly defined
ground truth for determining an EOL event from these MWO
records is a key contributor to this situation. In practice, to
assess an EOL event, reliability engineers needs to communi-
cate with the maintainer(s) working on the pumps to ascertain
the extent of the damage and details of work done to restore
the function. This may be possible in small facilities with a
limited number of assets but is not possible in the facilities
that contributed data for this study with 903 and 3070 pumps
as well as other equipment. The only information available
to the reliability engineer are these MWO records, possibly
delay accounting records, external repair shop records and, in
the case of serious consequent events, a root cause analysis.
However, bringing all of these data sets together is a time-
consuming manual process and so the normal state of affairs
is to look at the MWO records as we have shown.

We show the MTBF estimates resulting from different pro-
cessing pipelines to identify EOL events. Pipeline S1 uses
simple keywords such as replace, S2 uses a gazetteer popu-
lated through contextual term expansion, and S3 uses a gazetteer
and structured fields. There is a 233% variation between the
MTBF values resulting from S2 and S3 for pump A1, with
S2 suggesting an MTBF of 97 days and S3 of 226 days. This
demonstrates how sensitive estimations are in the presence, or
not, of structured fields. There are also significant differences
the use of simple terms as in the S1 pipeline producing an
MTBF estimate of 244 days for pump A3 compared to the S3
methods resulting in an estimate of 408 days. In practice, the
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implications of actioning MTBF values that are either over, or
under, estimated will be detrimental to the effectiveness of a
site’s maintenance strategy. For example, over-estimation of
MTBF estimates can result in unexpected downtime as pre-
ventative maintenance schedules will be less frequent and un-
wanted corrective events may occur resulting in a drain of
people and resources from scheduled work. On the contrary,
if MTBF estimates are too low, then maintenance budgets
may become over capitalised, due to an increased need for
maintainers and parts to perform unnecessary work.

There has been much push back in the maintenance commu-
nity against using data stored in CMMS for reliability esti-
mates due to perceptions of poor quality (Hodkiewicz & Ho,
2016). Our work shows that data necessary to identify poten-
tial EOL events can be identified using the unstructured text.
However, for the potential EOL event to be confirmed addi-
tional fortuitous data must be available. Specifically we have
relied on cost as being informative of whether the work done
was significant or not. When the data is fit for purpose (data
set A), our pipeline exhibits acceptable performance (79.3%
F1). We suggest this is close to that of a reliability engineer.
However, to the best of our knowledge, human-level perfor-
mance for eliciting evidence from MWOs for MTBF estima-
tion remains unstudied and unknown. For plant B the cost
data was unavailable resulting in the total craft time being
used to qualify identified EOL events. However, it proved un-
able to reasonably discriminate between functional and phys-
ical components in unstructured texts. The impact of this is
shown by the 25% difference in F1 score between both data
sets.

One advantage of our pipeline is that it does not rely on de-
tailed annotation of unstructured fields in MWO like super-
vised concept extraction methods (Sharp et al., 2016; Brundage,
Morris, Sexton, Moccozet, & Hoffman, 2018; Sexton et al.,
2018), or on subject matter experts for cluster alignment such
as in unsupervised clustering (Salo, McMillan, & Connor,
2019), it easily scales to large amounts of MWOs whilst re-
quiring minor computational and subject matter expert re-
sources. This is highlighted by the end-to-end execution time
of our pipeline (pre-processing, term expansion and parame-
ter estimation) only requiring 6 and 10 minutes for data set
A and B, respectively. The end-to-end application speed of
our pipeline shows a marked difference compared to afore-
mentioned methods, as both require substantial resource re-
quirements for eliciting annotations or correcting predictions.
Moreover, as the gazetteer used in our pipeline is constructed
from scratch using an embedding model trained directly from
domain-specific MWOs, our pipeline is easily domain adapt-
able across organisations, industries, and CMMS systems.
However, our pipeline does not constitute a general model for
these settings, it solely provides a convenient and resource ef-
ficient means of application between different settings that in
contrast to other methods still poses a challenge.

Lastly, we release the code for our pipeline to the commu-
nity with the aim of it being added to practitioners metaphori-
cal toolbox and to push the community towards open-source,
reproducible research. Our code is written in Python using
open-source packages, with verification of our statistical life
data analysis process including censoring events through bench
marking against popular commercially available reliability soft-
ware. The code is also configurable to different CMMS sys-
tems and business constraints through a common configura-
tion file.

8. CONCLUSION

In this paper, we demonstrate the sensitivity of MTTF/MTBF
estimates to decisions made by reliability engineers when pro-
cessing pump data held in maintenance management systems.
We use NLP and domain-specific rules to emulate these de-
cisions and note that these decisions are often undocumented
and hidden to potential users of the resulting reliability met-
rics. Our work suggests there should be greater transparency
and consistency in how reliability estimates are determined
in individual organisations otherwise large variations in esti-
mations can be produced. We release the code accompanying
this work to support reliability engineers with a fast, scalable,
transparent and configurable means of obtaining MTTF/MTBF
estimations from fields commonly found in maintenance work
order data. Future work will focus on expanding the applica-
bility of this model to more asset types as well as removing
the subject matter expert from the gazetteer construction pro-
cess entirely.
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