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ABSTRACT 

Predictive Maintenance, a desirable maintenance strategy in 

industrial applications, relies on appropriate condition moni-

toring solutions to reduce costs and risks of the monitored 

technical systems. In general, model-based or data-driven 

methods to diagnose the current state or predict future states 

of monitored technical systems are utilized in these solutions. 

Since both methods have advantages and disadvantages, a 

combination of both methods can be used for appropriate un-

certainty management and improved accuracy. In this work, 

two hybrid approaches are developed. In the first approach, a 

data-driven diagnosis is used to validate a model-based prog-

nosis, while in the second approach, a data-driven prediction 

of new measurements is integrated into a model-based prog-

nosis method. In the developed hybrid approaches, a particle 

filtering method is combined with a machine learning 

method. To consider uncertainties within the system, a differ-

entiation is made between different system behaviors in the 

diverse phases of degradation. The developed methods are 

evaluated based on the use-case of rubber-metal-elements. 

These elements, which are used to isolate vibrations in sev-

eral systems, such as railways, trucks and wind turbines, 

show various uncertainties in their behavior. Moreover, an-

other difficulty is that little run-to-failure data of these ele-

ments is available. Finally, the performance of the developed 

hybrid approaches is compared with a model-based method 

for estimating the remaining useful lifetime of the same ele-

ments. 

1. INTRODUCTION 

Condition monitoring solutions provide the basis for condi-

tion-based or predictive maintenance, depending on the aim 

of the condition monitoring system (CMS): diagnosing the 

current state or predicting future states of the monitored sys-

tem. Thereby, condition monitoring enables a higher depend-

ability, a larger utilization of the monitored system and 

reduced costs. Motivated by these possible achievements, 

multiple condition monitoring solutions for different tech-

nical systems are developed, e.g. for bearings or micro grip-

per (Javed, Gouriveau, & Zerhouni, 2017), batteries (Laayouj 

& Jamouli, 2017) and wind turbines (Yucesan & Viana, 

2020). Furthermore, with the increase in digitalization, digital 

twins experience a growing attention. As digital twins are 

aimed to perform during various lifecycles of a product be-

ginning in the design phase, the combination with a CMS dur-

ing the application of the product is favorable (Kaul, Bender, 

& Sextro, 2019; Rosen, Wichert, Lo, & Bettenhausen, 2015). 

The advantages of a digital twin, e.g. acquire and save meas-

ured data, process and provide data and communicate with 

the corresponding entity, can be extended if the digital twin 

is combined with a condition monitoring solution. Moreover, 

more sustainable maintenance concepts are enabled based on 

simulations of product behavior considering product degra-

dation (Stark, Thoben, Gerhard, Hick, & Kirchner, 2020). 

However, one mayor challenge in condition monitoring tasks 

as well as in digital twin design is related to uncertainties 

(Goebel et al., 2017; Grieves & Vickers, 2017; Javed et al., 

2017; Schleich, Anwer, Mathieu, & Wartzack, 2017). 

Today monitored systems and the methods of a CMS are af-

fected by various uncertainties. To achieve an accurate CMS, 

these uncertainties have to be analyzed, evaluated and re-

duced if possible (Koenen, 2016). In literature, the different 

sources of uncertainty can be divided in aleatory and epis-

temic (Baraldi, Popescu, & Zio, 2012; Koenen, 2016). While 

aleatory sources are based on physical variability, epistemic 

sources are related to a lack of knowledge. There is no gen-

eral agreement, whether such a division is meaningful for 

prognostics tasks (Baraldi et al., 2012; Goebel et al., 2017). 

Therefore, in this paper different types of uncertainty are con-

sidered independent of a classification in aleatory and epis-

temic (Atamuradov, Medjaher, Dersin, Lamoureux, and Zer-

houni 2017; Baraldi, Mangili, and Zio 2013; Goebel et al. 

2012; Javed et al. 2017; Su, Wang, Pecht, Zhao, and Ye 2017; 

Valeti and Pakzad, 2018): 
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• Uncertainty of the current state, 

• Uncertainty of the future, 

• Modeling uncertainty and 

• Uncertainty of the prognosis method. 

The uncertainty of the current state can be caused by the ap-

plied sensors and the measurement technology, the choice of 

the sample rate, measurement noise or uncertainties of the 

monitored material. The uncertainty of the future considers 

the future operating and environmental conditions or their un-

certainty as well as the uncertainty of the degradation pro-

cess. Modeling uncertainty comprises the measurement 

model including its form and its parameters as well as the 

failure threshold. In the end, the uncertainty of the prognosis 

method considers sampling errors and model assumptions. 

To consider uncertainties, a suitable approach for condition 

monitoring has to be selected. In general, these approaches 

can be divided in model-based, data-driven and hybrid ap-

proaches (Atamuradov et al., 2017; Baraldi, Di Maio, & Zio, 

2014; Javed et al., 2017). Model-based approaches achieve a 

high accuracy depending on the suitability of the often-intui-

tive model. Different boundary conditions are easily imple-

mented. Nevertheless, creating such a model can be time con-

suming and complex depending on the system to be modeled 

and on the model’s type. Since physics-based as well as em-

pirical models can be implemented in model-based ap-

proaches (Goebel et al., 2012; Vachtsevanos, 2006). While 

data-driven methods are easy and fast to implement, they 

need a certain amount of significant data. Moreover, they of-

ten rely on black-box modeling and therefore they do not 

build understandable models (Kan, Tan, & Mathew, 2015; 

Vachtsevanos, 2006). That is a disadvantage of these meth-

ods because an engineer wants to know why to recommend 

which maintenance task. Available synergies can be used by 

a suitable combination of both approaches. Thereby, a hybrid 

approach can improve accuracy by reducing uncer-

tainty(Goebel et al., 2012; Javed et al., 2017; Kan et al., 

2015). Therefore, in this paper hybrid methods are focused. 

Hybrid methods for diagnosis and prognosis strive for a com-

bination of data-driven and model-based approaches in such 

a manner that their potentials are suitable used. In literature, 

different combinations are given. One general procedure that 

underlines the differences within the steps of the three types 

of approaches is shown in Figure 1. While the model-based 

approach relies on a physical or empirical model that is de-

veloped by humans, a data-driven approach learns the rela-

tionships between its in- and outputs. In this figure, one pos-

sible hybrid approach is given that combines the developed 

physical or empirical model with the learned model. In this 

case, a popular distinction between the two models is made. 

One approach models the dynamic behavior of the monitored 

system and the other approach models the degradation (Liao 

& Kottig, 2014; Medjaher & Zerhouni, 2013). Another pos-

sible hybrid method bases on single models for different sub- 

Figure 1. Types of prognosis approaches (Bender, 2021). 

systems of one system and their individual degradation 

(Yucesan & Viana, 2020). Moreover, a physical model is 

used to represent the general degradation of the system, while 

a data-based model enables an update of the current degrada-

tion level (Tang, Flynn, Brown, Valentin, & Zhao, 2019). To 

summarize, various possibilities to combine model-based and 

data-driven approaches can be realized for the purpose of di-

agnosis or prognosis. 

A categorization of four different approaches to combine 

data-driven and model-based approaches is given in Liao and 

Kottig (2014). As model-based methods rely on a state and 

measurement model, in the first approach, the measurement 

model is realized by a data-driven approach. In the second 

approach, the state model is learned by a data-driven ap-

proach. In the third approach the uncertainty of future meas-

urements is considered by estimating future measurements 

based on data-driven solutions. While these three approaches 

combine data-driven and model-based approaches in series, 

the forth approach is a parallel solution of a data-driven and 

a model-based diagnosis or prediction by an ensemble. The 

four named approaches are given in Table 1 for reasons of 

overview. 

To develop a suitable CMS for a particular application that is 

related to uncertainties a suitable hybrid method is needed. 

How to choose a suitable hybrid approach? If additionally, 

only few data are available, an accurate prediction by a hybrid 

approach is not easy to realize. One reason for that is given 

by the data-driven approach that depends on the quality and 

partly on the quantity of the data. 

Table 1. Combinations of data-driven and model-based ap-

proaches (Liao & Kottig, 2014) 

Hybrid approaches 

1) Data-driven measurement model within a model-based 

approach 

2) Data-driven state model within a model-based approach 

3) Estimated future measurements based on a data-driven 

model to reduce the uncertainty in the model-based ap-

proach 

4) Ensemble of a data-driven and a model-based approach 
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In this work, two hybrid approaches considering potential un-

certainties are developed and compared. Due to the boundary 

conditions related to the small amount of data, the fourth so-

lution of Liao and Kottig (2014) is not recommended as it 

bases on a separate data-driven prediction. The first approach 

on a data-driven measurement-model was evaluated in 

(Kulling & (Betreuerin) Bender, 2019) and does not improve 

the accuracy of the predicted remaining useful lifetime 

(RUL). While the second approach is related to the main part 

of the model-based prediction, the state model, the third ap-

proach aims to improve the prediction of the state model. Be-

cause a model-based prediction with a suitable state model is 

implemented in Bender (2021), in this paper the focus is on 

the third approach of Liao and Kottig (2014). The aim is de-

fined by improving the available prognosis method using the 

same state model. Therefore, a data-driven estimation of new 

measurements is integrated within the model-based method. 

To consider uncertainties within the system, a differentiation 

between different system behavior is realized throughout di-

verse phases of degradation. The other hybrid approach com-

bines a data-driven diagnosis and the named model-based 

prediction. Thereby, the model-based predictions should be 

validated by a particular classification. 

Both developed hybrid prognosis approaches base on a parti-

cle filtering method combined with a machine learning 

method, to estimate the RUL of technical systems. Particle 

filtering, a Monte Carlo simulation technique, is suitable to 

map and propagate uncertainties. Moreover, it is a state-of-

the-art model-based method for predicting RUL of technical 

systems (Jouin, Gouriveau, Hissel, Péra, & Zerhouni, 2016). 

To integrate uncertainties, a Multi-Model-Particle Filter de-

veloped in Bender (2021) is employed. 

The remaining paper is structured as follows. In section 2, 

methods to predict the RUL of systems related to uncertainty 

are developed. A model-based prediction based on a Multi-

Model-Particle Filter is introduced. Related to that approach 

two hybrid approaches are developed. The first one is based 

on a combination of a diagnosis and a prognosis, while the 

second approach is a hybrid prognosis. A discussion on the 

advantages and disadvantages follows. In section 3, the use-

case of rubber-metal-elements is introduced and the uncer-

tainties within the degradation phases are described. In sec-

tion 4 the evaluation of the methods based on the use-case is 

presented. In section 5 a conclusion highlights the main 

points of the developed hybrid prognosis method. 

2. DEVELOPING PREDICTION METHODS CONSIDERING UN-

CERTAINTIES 

The variation of methods to predict RUL is enormous. In this 

section, the focus is set on such methods that consider uncer-

tainties. At first, a Multi-Model-Particle Filter is presented 

that has been proven to consider different uncertainties 

(Bender, 2021). Based on this method hybrid approaches are 

developed with the aim to improve the accuracy of the named 

Multi-Model-Particle Filter. The first approach is built upon 

a diagnosis, while the second approach bases on the third cat-

egory of hybrid approaches of Liao and Kottig (2014). In the 

last part of this section, the approaches are compared theoret-

ically. 

2.1. Model-based Prediction of Remaining Useful Life-

time 

Model-based prognosis methods rely on developed models of 

the monitored systems. These models simulate the behavior 

or the degradation of the particular system. By building upon 

such a model, model-based approaches are capable of pre-

dicting the future degradation of the system or the RUL. The 

aim of such an approach is an accurate, comprehensive and 

relative cheap prediction in terms of time and costs. Typical 

approaches are the Kalman and the Particle Filter as well as 

further derivatives of both filters. Especially, Particle Filters 

are able to consider different kind of uncertainties as they 

base on Bayesian probabilities. Therefore, using Particle Fil-

ters for condition monitoring tasks is recommended by dif-

ferent authors (Javed et al. 2017; Sankararaman and Goebel, 

2015; Orchard, Kacprzynski, Goebel, Saha, and 

Vachtsevanos 2008). 

In Bender (2021) a Multi-Model-Particle Filter is developed 

that considers even more uncertainties than the general Parti-

cle Filter. By including different state models in parallel, it 

enables the estimated states to follow different degradation 

paths. Moreover, this Multi-Model-Particle Filter is able to 

react on different working or environmental conditions by the 

choice of predefined groups of state models. Therefore, the 

working conditions have to be known and the particular state 

models need to be developed prior to the prediction. Then the 

Particle Filter predicts the future states based on the corre-

sponding group of state models for the present conditions. 

Furthermore, the Multi-Model-Particle Filter is extended by 

an approach to estimate an adaptive failure threshold. 

Thereby, a further uncertainty is considered, the uncertainty 

of the failure threshold. For simplicity, in this paper only one 

working condition is considered and the thresholds are as-

sumed to be known. In further developments these extensions 

can be considered as well. 

2.2. Hybrid Approach Combining Diagnosis and Prog-

nosis 

The Multi-Model-Particle Filter is able to consider different 

uncertainties, but there is still potential for improvement. To 

improve the accuracy of the predictions, available uncertain-

ties should be considered to a higher level. 

To achieve this aim, different degradation phases have to be 

identified in the degradation of the particular system. A ma-

chine learning method is used to learn this classification prob-

lem based on labeled data. Based on such a classification the 

predictions of the Multi-Model-Particle Filter are validated in 

this hybrid approach. 
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Figure 2. Validation of model-based predictions by a data-

driven diagnosis in defined phases and the correlated thresh-

olds of these phases. 

 

A validation is realized as shown in Figure 2. The predicted 

RULs (pRUL), given by black dots, are compared to the ac-

tual RULs (aRUL), given by a black line, for predictions at 

different points in time. Furthermore, the standard deviation 

of the predicted RULs is given in grey to underline the scat-

tering in each prediction. By the error band α a first evalua-

tion of the predictions is possible. A further validation is 

given by the diagnosis. In Figure 2, it is assumed that for all 

prediction time points, the monitored system is diagnosed to 

be in degradation phase II. For this example, three phases of 

the system are identified. Based on the analyzed data of sim-

ilar systems it is known that systems in phase II have a mini-

mum RUL and a maximum RUL. Two thresholds, one for the 

minimum RUL and one for the maximum RUL, mark the area 

in which predicted RULs of phase II are likely. Furthermore, 

predictions in phase I are expected to be larger than the higher 

threshold, while predictions in phase III are expected to be 

smaller than the lower threshold. Therefore, all predicted 

RULs that are too large, as the first prediction in Figure 2, are 

probably in phase I. All predicted RULs that are smaller than 

the lower threshold are probably too small if the accuracy of 

the data-driven classification model is trustworthy. In this 

case, a further evaluation of the system may be recommended 

to decide when to maintain the system. 

This approach enables a data-driven validation of the model-

based predicted RULs. If the diagnosis suggests that the pre-

dictions are not compatible with the expected RUL area, the 

predictions have to be questioned and adapted, e.g. by expert 

knowledge. 

2.3. Hybrid Prognosis Approach 

The aim of the hybrid prognosis approach is improving the 

accuracy of the prediction by a data-driven classification and 

the approximation of new measurements depending on the 

classification. 

The used Particle Filter relies on the scheme of sampling-im-

portance-resampling (SIR). In general, resampling as a part 

of the particle filtering approach has the potential to lead to 

an accurate prediction as it prevents the degeneracy of parti-

cles (Arulampalam, Maskell, Gordon, & Clapp, 2002). 

Therefore, the predicted states described by particles are 

weighted based on their importance compared to a new meas-

urement. Based on these weights the particles are resampled. 

However, in the case where no future measurements are 

available, no new weights can be estimated. Thus, resampling 

may increase the uncertainty of the prediction. Therefore, no 

resampling is conducted if no future measurements are avail-

able. One possibility to reduce the degeneracy of the particles 

is seen in estimating new measurements and realizing SIR 

until the failure threshold is reached. In this approach, the un-

certainties are reduced within a data-driven approach that is 

connected to the developed Multi-Model-Particle Filter. 

Hence, both parts of the hybrid approach strive to account for 

and reduce uncertainties. The hybrid prognosis procedure is 

depicted in Figure 3. The acquired measurements are prepro-

cessed and suitable features are extracted and selected. How-

ever, even if the aim of the approach is a prediction, at first a 

diagnosis is realized. Thereby, the current degradation phase 

is estimated. Only for previously defined phases, a prediction 

is realized. In all other cases the degradation process has not 

yet started. Therefore, it is too early to predict an accurate 

RUL. If the diagnosed phase allows for a prediction, the next 

state is predicted by a model-based prognosis method. In this 

Figure 3. Procedure of the hybrid prognosis approach. 
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method the predicted state is corrected by a new measurement 

if available. If no new measurement is available, a 

coresponding approximation of a new measurement is 

conducted. Due to the amount of data, a statistical solution 

based on a functional relation is chosen. If the amount of data 

allows for a data-driven prediction, such a calculation can be 

integrated as well. Thereby, it is differentiated which degra-

dation phase is classified. For each phase an individual rela-

tion is stored in the hybrid approach. Subsequently, the next 

measurement is approximated. Thus, in every case the 

predicted state is corrected. Afterwards, it is examined 

whether the failure threshold is reached by the estimated and 

corrected state. If it is reached, the RUL is predicted. If the 

threshold is not yet reached, the next state is predicted. This 

slope runs iteratively until the threshold is reached. 

2.3.1. Comparison of the Approaches 

In this subsection, the three presented approaches are com-

pared. While the Multi-Model-Particle Filter is already ap-

proved, the two hybrid approaches have to be evaluated in the 

next section. 

The Multi-Model-Particle Filter enables condition monitor-

ing of technical systems related to a higher level of uncer-

tainty. The approach is more complex than a general Particle 

Filter, but is able to consider uncertainties to a larger extend. 

Even for few data that contains a high level of uncertainty, 

this approach is able to predict the RUL. This is shown in a 

CMS for rubber-metal-elements in Bender (2021). Compar-

ing a preventive and a predictive maintenance strategy for 

these elements, this CMS allows a larger utilization of the 

rubber-metal-elements when they are maintained predic-

tively based on the predicted RULs. Thus, this CMS is a base 

for a future predictive maintenance concept of rubber-metal-

elements. Nevertheless, the Multi-Model-Particle Filter still 

allows for a certain level of uncertainty. 

The two hybrid approaches try to improve this model-based 

approach by either diagnosis or approximation of new meas-

urements. 

The combined hybrid approach based on a diagnosis and a 

prognosis is faster to implement and extends the former ap-

proach. Thereby, it enables the opportunity to validate the 

predicted RULs of the Multi-Model-Particle Filter. The two 

methods do not interact. However, machine learning can be 

challenging if only few data are available. Therefore, a cer-

tain uncertainty is contained within the classification. All in 

all, the prediction cannot be improved by this approach, but 

he predictions are validated and the uncertainty of the predic-

tion may be reduced due to a second statement. 

The hybrid prognosis approach enables a data-driven possi-

bility to correct the predicted state of the Multi-Model-Parti-

cle Filter. Normally such a correction is not realized if no fu-

ture measurements are available. A combination of a diagno-

sis and a depending approximation of the next measurement 

seems to be suitable as features to represent the general deg-

radation often change with regard to different degradation 

phases (Kimotho, 2016). A suitable approximation of the 

next measurement has to be developed for the particular ap-

plication. If only few data are available, a functional relation 

is preferred. If sufficient data is available, a data-driven 

model can be trained to learn the relation. The uncertainty of 

this approach is assumed to be higher than the previous ap-

proach as the approach bases on a data-driven classification 

and an approximation of the next measurement. Neverthe-

less, if the uncertainty is reduced in these parts, the approach 

may be able to improve the predictions of the Multi-Model-

Particle Filter. 

3. USE-CASE: RUBBER-METAL-ELEMENTS 

Rubber-metal-elements are employed as a use-case to evalu-

ate the developed approaches. The characteristics of rubber-

metal-elements, which are used to isolate vibrations in vari-

ous systems, such as railways, trucks and wind turbines, are 

given by their viscoelasticity and their adaptability to differ-

ent application (Domininghaus, Elsner, Eyerer, & Hirth, 

2012). However, these advantages are coupled to various un-

certainties in their behavior and their degradation. Those un-

certainties are caused by diverse inner and outer factors, such 

as manufacturing influences and operating conditions 

(Johlitz, 2015; Molls, 2013). By expert knowledge the influ-

ences are described, analyzed and reduced if possible. Thus, 

the remaining uncertainties have to be considered within the 

hybrid prognosis method. 

In Figure 4 a focused rubber-metal-element is depicted. It is 

built up of three main parts: an outer steel tube, an inner steel 

tube and a rubber part that connects the two steel tubes. More-

over, the outer steel tube is slotted to allow for a longer life-

time. Therefore, the element is preloaded in the application 

by a hollow cylinder around the outer tube and a bolt through 

the inner tube. 

In lifetime tests, the element’s inner tube is fixed by the bolt 

that is connected to a heavy bracket. The test rig is shown in 

Figure 4. Structure of the rubber-metal-element (Bender, 

2019). 
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Figure 5. To see the structure of the test rig, the second block 

to fix the bolt is removed in this figure. The outer tube is stim-

ulated by a hydraulic cylinder in a force-controlled, sinusoi-

dal movement. Thereby, small movements are enabled by the 

rubber. The critical part of the rubber-metal-element, the part 

that will lead to system failure, is given by the softest com-

ponent, the rubber. It degrades under load over time. There-

fore, the rubber is monitored during the lifetime tests. 

Relative temperature is selected to monitor and describe the 

element’s degradation. In lifetime tests, it is measured as the 

difference between the element’s temperature and the ambi-

ent temperature. Thereby, one uncertainty of the future, the 

influence of the ambient temperature on the element’s tem-

perature is considered. These elements show three typical 

phases of degradation that are identified within the tempera-

ture measurements. In Figure 6 these three phases of 

degradation are marked in the curve of the focused measure-

ment quantity. In the beginning (blue, dashed line) the rela-

tive temperature increases degressively due to the settling 

process of the rubber. The main part (green, solid line) de-

scribes a phase of a nearly stable temperature. The low points 

of temperature are caused by pauses during the lifetime tests. 

Since these systems experience pauses during real applica-

tions as well, e.g. in railways, they are considered in these 

experiments. The final degradation state (red, dotted line) 

characterizes the degradation of the element and is a sign for 

the contemporary end of life. For the classification, the label-

ing of the three phases is based on rate of change of the rela-

tive temperature. 

However, due to material uncertainties and uncertainties of 

the environmental conditions these temperature curves show 

relevant deviations. For the focused five elements the mean 

standard deviation during the three phases of degradation is 

estimated based on the relative temperature: 

• Phase I: 0.8 °C 

• Phase II: 1.0 °C 

• Phase III: 1.2 °C 

Figure 5. Structure of lifetime test rig (Bender, 2021). 

 

Figure 6. Three phases of degradation of a rubber-metal-ele-

ment apparent in its relative temperature. 

 

Figure 7. Distribution of relative temperatures during phase 

III for all focused elements. 

 

Analyzing the whole data set, results in higher standard devi-

ations for the phases II and III: 

• Phase I: 1.2°C 

• Phase II: 1.9 °C 

• Phase III: 2.2 °C 

All distributions resemble normal distributions as Figure 7 

shows exemplary for degradations phase III of the whole data 

set. 

It is concluded that the uncertainty increases with the degra-

dation of the monitored system. Therefore, the particular 

phases are analyzed separately. 

4. EVALUATION OF THE APPROACHES BASED ON THE USE-

CASE OF RUBBER-METAL-ELEMENTS 

In this section, the in section 2 presented approaches are eval-

uated based on data of five rubber-metal-elements introduced 

in section 3. At first the ability of the combined hybrid ap-

proach to generate an added value to the predictions of the 

Multi-Model-Particle Filter is evaluated. Subsequently the 

hybrid prognosis approach that adds an approximation of new 

measurements to the same Particle Filter is evaluated based 

on the performance indices mean absolute percentage error 

(MAPE), rate of negative errors and prognostic horizon (PH). 
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4.1. Hybrid Approach Combining Diagnosis and Prog-

nosis 

Methodically a Random Forest is used to learn a classifica-

tion model for each of the five focused elements based on the 

data of the other elements. Twenty different statistical fea-

tures, such as root mean square, kurtosis and entropy of the 

relative and the ambient temperature are selected for this pur-

pose. The mean classification error over all is 7.9%. The pre-

dictions of the Multi-Model-Particle Filter developed in 

Bender (2021) are evaluated at defined points in time during 

the lifetime of the elements. To ensure a greater comparabil-

ity, for each element predictions are realized from 0.2 to 0.95 

of their normalized reached lifetimes in steps of 0.05. 

Exemplary, the curve of the relative temperature over the 

load cycles of element 8 is given in Figure 8. The black ver-

tical lines symbolize the ends of the particular phases I, II and 

III. The dashed green lines mark the time span, during which 

the classification and the predictions are realized. At all 

points in time between 0.2 and 0.95 of the end time (te) phase 

II is classified. The learned model misclassifies the last time 

points due to the uncertainty in the training data. Comparing 

Figure 6 and Figure 8, a few differences become apparent, 

e.g. the absolute relative temperatures or the different slopes 

in the particular phases. 

For all five elements the classification rate for these 16 time 

points is given in Table 2. Despite element 7, the classifica-

tion shows an accuracy of more than 75%. Element 7 has an 

exceptional temperature curve that differs more from the oth-

ers. The relative temperature decreases nearly continuously 

during phase II. Therefore, the classification of this element 

is error prone. Moreover, the mean accuracy and the mean 

precision per phase over the five elements is given in Table 

3. Due to the chosen prediction time points, no time points of 

phase I are evaluated. Again element 7 has an impact on both 

performance indices. 

Over all diagnoses, most often phase II is identified as ex-

pected because phase II is the longest phase of each lifetime 

test and the most of the learned points belong to that phase. 

However, especially early and late predictions during an ele- 

Figure 8. Relevant time points during an element's lifetime. 

 

ment’s lifetime are misclassified. While misclassified early 

predictions are not critical, as the RUL is long enough at this 

point in time, misclassified late predictions are critical for 

maintenance decisions. One reason might be the imbalanced 

training dataset. Due to the already small amount of training 

data, no data points of phase II were ignored. However, in the 

future the effects of a balanced dataset compared to the cho-

sen dataset should be investigated. Based on the analyzed 

data of all elements a threshold for the minimum RUL in 

phase II is set to 4 x 104 cycles. Additionally, an upper thresh-

old of phase II is set to 13 x 105 cycles. For element 8 the re-

sults of the model-based prediction and the diagnosed phases 

are visualized in Figure 9. The thresholds are included within 

the figure to mark the extreme RULs. Five predictions after 

0.65 reached lifetime are close to the lower threshold and the 

predicted RUL at 0.96 reached lifetime has crossed this 

threshold. Therefore, it is concluded that the last predicted 

RUL belongs to phase III and a maintenance action should be 

planned. Regarding the previous predicted RULs that are 

close to the threshold, it has to be evaluated by an expert 

whether the system is close to its end of life or whether the 

results are explained by the remaining uncertainty of the clas-

sification. 

Over all five elements in 5 out of 85 predictions the additional 

diagnosis results in a warning because the predicted RUL and  

Table 2. Classification results for the focused elements. 

Element 4 5 6 7 8 

Classification 

rate 

0.88 0.81 0.88 0 0.75 

Table 3. Mean accuracy and mean precision per phase 

Performance index Phase I Phase II Phase III 

Mean accuracy - 0.66 0.08 

Mean precision - 0.64 0.00 

 

 

Figure 9. Validation of model-based predictions by a data-

driven diagnosis in defined phases and the correlated thresh-

olds of these phases. 
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the classified phase are not adequate. In these cases, the 

threshold between phase II and III is reached and an expert 

has to decide whether an early maintenance action is recom-

mended. 

4.2. Hybrid Prognosis Approach 

In the hybrid prognosis approach, Random Forrest for the di-

agnosis part and the developed Multi-Model-Particle Filter 

developed in Bender (2021) are combined for the prediction 

task, see Figure 3. The classification error is similar to the 

previous approach, since the same models are used. However, 

predictions are performed only when the system is at least in 

phase II, because phase I is short and non-critical. 

Depending on the classified phase, two different approxima-

tions of the next measurement are implemented. For phase II, 

a cubic function is used to approximate the next measure-

ment. To identify suitable cubic functions, the curve fitting 

toolbox in MATLAB is used. A cubic function is defined for 

each relative temperature curve, starting at the beginning of 

phase II. Exemplary one measurement curve and its respec-

tive approximated function over the cycles of a tested element 

are shown in Figure 10. The cubic function (green, dotted 

line) is able to represent the main slope of the measurement 

curve (blue line). If the prediction starts in phase III, a linear 

approximation is implemented based on the mean gradient 

during this phase of the focused elements. 

In the hybrid prognosis method, cubic and linear functions 

are estimated and stored for all elements. During a prediction, 

all functions of the diagnosed phase except that one of the 

tested element are available. At each prediction step of the 

particle filter, one function is randomly selected to approxi-

mate the next measurement. 

An exemplary prediction is depicted in Figure 11. The last 

available measurement (end of black line) is classified to be-

long to phase II. By the stored cubic functions new measure-

ments are approximated and thereby influence the predictions 

(grey lines). Moreover, the predictions jump to a higher tem-

perature level at the beginning, which is more similar to the 

mean temperature in phase II.  

Figure 10. Approximation of next measurement during 

phase II. 

 

 

The estimated predictions are evaluated using three perfor-

mance indices: mean absolute percentage error (MAPE), rate 

of negative errors and prognostic horizon (PH). MAPE esti-

mates the absolute mean error between actual and predicted 

RULs across predictions of an element. The negative error 

counts undesired, too long predictions that would cause a 

breakdown of the system. Additionally, the prognostic hori-

zon analyzes the chronological order of the predictions. 

Thereby, it is checked from which point in time all predic-

tions are within a predefined error band α. (Goebel et al., 

2017; Hoenig, Hagmeyer, & Zeiler, 2019; Javed et al., 2017) 

Since only one point in time is visualized in Figure 11, an 

overview of all predicted RULs (pRULs, black dots) com-

pared to the actual RULs (aRULs, black line) for one element 

is shown in Figure 12. All but the first four predictions fall 

within the error band α (grey dashed line). Because these four 

predictions are the first ones, the prognostic horizon (PH) 

starts at 0.4 of the reached lifetime. Most of the predicted 

RULs are relatively close to the actual RULs, especially at 

the end of life. However, the final predictions are too large 

and result in four negative errors. Therefore, the rate of neg-

ative errors for this element is 0.25. The mean absolute per-

centage error is about 40%. 

 

Figure 12. Predictions for element 8, comparing the actual 

RUL (aRUL), the predicted RUL (pRUL), the standard 

deviation of the predictions σ and the error band α. 

 

Figure 11. Hybrid prediction. 
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Predictions are run for four elements. The respective perfor-

mance indices are presented in Table 4. No predictions are 

estimated for the fifth element, because element 7 is classi-

fied to be in phase I over all points in time. Thus, Figure 12 

shows the best result of the four elements. Moreover, the de-

picted predictions of element 8 are the only predictions that 

can be improved compared to the prediction of the Multi-

Model-Particle Filter. The Multi-Model-Particle Filters re-

sults in MAPEs from 24% up to 46%, while the hybrid ap-

proach partly results in MAPEs above 100%, see Table 4. 

However, the achieved prognostic horizons are comparable. 

The rate of negative errors is 51% for the Multi-Model-Parti-

cle Filter and 69% for the hybrid approach. Therefore, the 

hybrid approach results in a larger number of too long pre-

dicted RULs. 

All in all, the prediction of the next measurement does not 

add any value. Compared to the prediction of the model-

based approach in Bender (2021), the results of the hybrid 

prediction often show no improvement. Sometimes they yield 

better results and sometimes worse ones. The uncertainty 

seems to be influential. Thus, the more expensive develop-

ment of this hybrid approach is not justified. The uncertainty 

cannot be reduced in this way for this use-case. 

Table 4. Performance indices for hybrid prognosis 

Element 4 5 6 8 

MAPE 81.6 101.4 130.3 40.1 

Rate of negative errors 0.59 0.82 0.94 0.24 

Prognostic horizon 0.20 

– 

0.95 

0.30 -

0.95 

0.20 

-0.95 

0.40 – 

0.95 

5. CONCLUSION 

Condition monitoring of systems considering a high level of 

uncertainty is still a challenge. Since hybrid approaches are 

promising for these applications, in this paper two hybrid ap-

proaches for managing uncertainty are presented. In one ap-

proach, a data-driven classification is used to validate a 

model-based prediction of the RUL. The other approach in-

tegrates an approximation of new measurements into a 

model-based prognosis approach. The two hybrid approaches 

are evaluated for the use-case of rubber-metal-elements. 

These elements shown a high level of uncertainty, mainly due 

to influencing factors such as the production process. More-

over, the data set contains limited data, which is another chal-

lenge for the condition monitoring system, especially for the 

data-driven part. The evaluation of the developed methods 

based on the use-case underlines that additional classification 

is able to support an engineer by evaluating the predicted 

RULs. However, the uncertainties are still present as evi-

denced by the performance indices. To improve the classifi-

cation, the choice of a smaller but balanced training dataset 

will be investigated. The hybrid prognosis approaches are 

even more sensitive to the existing uncertainties. The aim of 

improving the model-based prediction could not be achieved. 

This shows how difficult it is to manage uncertainty, espe-

cially when there is little data. If data acquisition is too ex-

pensive, a possibility to improve the results is seen in artifi-

cial data. However, artificial data adds another uncertainty to 

the system. The developed hybrid methods should be evalu-

ated by another use-case that considers a high level of uncer-

tainty but provides a larger data set. 
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