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ABSTRACT

Implementing machine learning and deep learning algorithms
for wind turbine (WT) fault detection (FD) based on 10-minute
SCADA data has become a relevant opportunity to reduce the
operation and maintenance costs of wind farms. The devel-
opment of practically implementable algorithms requires ad-
dressing the issue of their scalabililty to large wind farms.
Two of the main challenges here are reducing the training
times and enabling training with scarce or limited data. Both
of these challenges can be addressed with the help of trans-
fer learning (TL) methods, in which a base model is trained
on a source WT and the learned knowledge is transferred to
a target WT. In this paper we suggest three TL frameworks
designed to transfer a semi-supervised FD task between tur-
bines. As a base model we use a Convolutional Neural Net-
work (CNN) which has been proven to perform well on the
single turbine FD task. We test the three TL frameworks for
transfer between WTs from the same farm and from different
farms. We conclude that for the purpose of scaling up train-
ing for large farms, a simple TL based on linear regression
transformation of the target predictions is an attractive high
performance solution. For the challenging task of cross-farm
TL based on scarce target data we show that a TL framework
using combined linear regression and error-correction CNN
outperforms the other methods. We demonstrate a scheme
that enables the evaluation of different TL frameworks for
FD without the need for labeled faults.

1. INTRODUCTION

Early fault detection (FD) in wind turbines (WT) is a first
step towards implementing predictive maintenance for opera-
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tional farms. In recent years there is an increasing recognition
of the importance of FD methods based exclusively on 10-
minute Supervisory Control and Data Acquisition (SCADA)
data which is stored conventionally for all wind farms (Tautz-
Weinert & Watson, 2016). Models based on this low resolu-
tion operational data are forced to rely on information from
healthy functioning WTs only, rather than on labeled histori-
cal faults. The reason is that such faults are rare and each one
of them is unique in character. The hope of deploying reliable
classification methods for FD based on 10-minute SCADA
data is therefore unrealistic. On the other hand various nor-
mal state methods have been developed and demonstrated the
ability to detect faults by training the models using healthy
data and detecting deviations from normality in the test data
(referred to as ”semi-supervised” models).

FD in multivariate time series data based on semi-supervised
normal state modeling can be achieved using various machine
learning (ML) techniques. Common approaches are based on
clustering (Lapira et al., 2012), dimension reduction (Michau
& Fink, 2021), reconstruction (Jiang et al., 2017) and regres-
sion (Zaher et al., 2009; Schlechtingen & Santos, 2014). The
latter used various approaches for WT FD, including neu-
ral network models based on measured variables from the
SCADA system. While many of these have been proven ef-
fective for the anomaly detection tasks, regression methods
have a clear advantage when it comes to the possibility to lo-
calize the origin of the fault within the machine; whenever a
large prediction error (PE) is detected in a certain regression
target, it is assumed that this variable is related to the fault
root-cause. This identification is not as straightforward and
can be rather complex using other FD approaches.

In a previous paper (Ulmer, Jarlskog, Pizza, Manninen, &
Goren Huber, 2020) we showed the advantages in training a
Convolutional Neural Network (CNN) for regression-based
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FD using WT SCADA data. The enhanced accuracy and
robustness of this model was demonstrated. Moreover, we
showed that this model can be easily extended into a multi-
output version that allows simultaneous FD on multiple tur-
bine components with the same accuracy and training time as
the single output CNN. With this method, the common mod-
eling approach of developing a separate model for each mon-
itored turbine variable (Schlechtingen & Santos, 2014) can
be spared and the number of trained models can be cut down
considerably.

Training CNNs for FD requires enough representative data
from healthy time periods and can get computationally expen-
sive when scaled up to large commercial wind farms (WFs).
Moreover, for new installations or replaced components his-
torical data is often missing such that training a high perfor-
mance CNN can be challenging. Similarly to other applica-
tions, within the field of Prognostics and Health Management
(PHM) and beyond it, scarcity of training data can be over-
come with the help of transfer learning (TL). The models are
trained on a source unit with enough representative data and
the knowledge of the trained model is transferred to other tar-
get units, possibly operated under different conditions, or suf-
fering from limited training data.

TL has been applied in the past for WT data. Similarly to
other PHM applications (see Zheng et al., 2019; Moradi &
Groth, 2020 and references therein), most of the works fo-
cus on TL for classification tasks for fault diagnosis (Li et al.,
2021; Chatterjee & Dethlefs, 2020; Yun et al., 2019; Zhang
et al., 2018; Guo et al., 2020; Chen et al., 2021). However,
classification methods for WT FD using 10-minute SCADA
data are hard to implement practically. To the best of our
knowledge there was no attempt to develop TL frameworks
for FD tasks on WT which are based on healthy data alone
with no fault labels available, both for the source turbine and
for the target turbine. Moreover, the application of standard
TL methods to time series data in general has been rather lim-
ited to classification or forecasting (Fawaz et al., 2018; Ye
& Dai, 2021), including the use of TL with deep networks
for wind farm short term power forecasting, as in Hu et al.,
2016; Qureshi et al., 2017; Wang et al., 2020, and classifica-
tion based anomaly detection (Vercruyssen et al., 2017).

A past application of TL for semi-supervised (i.e based on
healthy data only) FD of WTs is not known to us. Moreover,
semi-supervised TL for anomaly detection in any other PHM
application except WTs has been demonstrated up to now in
one paper (Michau & Fink, 2021). The anomaly detection
task was solved using dimensional reduction for feature ex-
traction followed by a one class classifier. The domain adap-
tation TL method presented there cannot be effectively ap-
plied to regression based FD in which the output time-series
is most strongly affected by the faults, whereas domain shift
is expected both for the input and for the output.

In this paper we suggest TL approaches to transfer a FD task

based on a semi-supervised training (only healthy labels are
available) of a regression CNN with 10-minute WT SCADA
data as its input. One of the TL frameworks we test is fine-
tuning, a well established method for classification task TL
in various application fields. A model is trained on a large
labeled source data set and then fine tuned partially or fully
using the (small) available target data set, with possibly mod-
ified or missing classes. Fine tuning TL has been proven to
outperform the alternative of training from scratch with the
small data set for various applications, including for wind
power forecasts (Qureshi et al., 2017). However, the effec-
tiveness of fine tuning TL has not been demonstrated for semi-
supervised anomaly detection tasks on multivariate time se-
ries data, and in particular not using deep CNNs for regres-
sion.

A key feature of our problem is that in case of scarce data
from the target turbine, this data may be from a specific sea-
son and thus not representative for operating conditions out-
side the training set. In case the seasonal effects are strong,
conventional fine tuning TL may fail to extrapolate into the
test data domain.

To address this difficulty we suggest two additional TL frame-
works. We compare the performance of all three TL frame-
works and analyze the advantages and potential use-cases of
each framework for the case of WT FD. All three frameworks
are designed as extensions to a base CNN model for normal
state modeling of various WT monitoring variables, such as
component temperatures. The base model is pre-trained using
one year of 10-minute resolution SCADA data from a source
turbine. Next, a TL framework is applied in order to obtain
predictions and use them for FD on a target turbine, either
from the same wind farm or from a different farm.

The contributions of this paper are the following:

• We address the problem of TL for FD in WTs using only
the readily available 10-minute SCADA data.

• We suggest simple approaches for TL for semi-supervised
regression-based anomaly detection tasks rather than clas-
sification tasks that were previously addressed for wind
turbine FD.

• We test the various TL frameworks for both within-farm
and across-farm transfer and elucidate the practical ben-
efit of TL in each case.

• We suggest new frameworks to quantify and compare the
performance of TL methods for unlabeled data, a com-
mon situation for FD tasks in most industrial applica-
tions.

• We tackle the problem of transfer between units in the
presence of seasonal domain shift, and deal with the chal-
lenge of limited and in particular season-specific target
data.
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2. TL FOR WIND FARM FAULT DETECTION

Implementing large scale FD for wind farms requires going
beyond the single turbine modeling approach. Training a sep-
arate model for each turbine is not always feasible out of two
reasons. The main reason is the lack of sufficient historical
data for training ML models for some of the turbines. This
could be because certain turbines are newly installed, and the
SCADA system accumulated only little data. Alternatively,
in some cases, all or some of the historical data is not infor-
mative for future predictions because of a recent component
replacement or re-calibration. The second motivation to de-
velop TL algorithms for FD of WTs is the prospect of train-
ing ML algorithms on one turbine instead of the entire farm
(sometimes containing hundreds of turbines). This would
amount to upscaling of the algorithm deployment to be at
least an order of magnitude faster, offering an attractive re-
duction of the implementation costs.

Motivated by these two reasons we develop approaches of TL
between WTs. These methods are aimed at training a base
ML model on a source turbine and transferring the learned
knowledge when using the model to predict on a different
turbine.

The paper addresses the two scenarios separately. In Section
4.1 we focus on cross-turbine TL within a single wind farm.
In this case the main objective of TL is to scale up training
by transferring the FD task from one source turbine to all the
rest in the farm. We evaluate the TL goodness of two different
frameworks by comparing the FD performance to a baseline
model trained on the target turbine with enough representa-
tive data.

A second scenario is demonstrated in Section 4.2. There we
focus on TL across different wind farms, assuming a source
turbine in an older farm, thus with abundant training data and
a target turbine in a new farm, with only several months of
data. The transfer in this case is particularly challenging, be-
cause the target data set is not only small in size but often also
not representing all operating conditions, but only those of a
single season. An additional challenge is a domain shift both
in the input and in the output space between the source and
the target.

2.1. Problem Definition

In this paper we address the problem of TL of a semi-supervised
regression-based anomaly detection (or FD) task from the do-
main of a source turbine DS = {XS , YS} to a target tur-
bine domain DT = {XT , YT }. The real valued output vari-
able yt ∈ Y (for example, the generator bearing tempera-
ture) is regressed on a multivariate time series input (in our
case these are the power, wind speed, rotor speed and ambi-
ent temperature). The common situation in practice is that
healthy training data of both inputs and output D(train) =
{X(train), Y (train)} is abundant for the source turbine and
is rather limited for the target turbine. The FD task is thus

Figure 1. Raw gearbox bearing temperature of the turbine T0.
Lower panel: zoom in of the measured and predicted values
when training the base CNN model with one year of data from
this turbine (baseline training scheme).

semi-supervised, because in both domains only healthy data
is assumed to be available, with no fault labels at all.

The TL task can thus be formulated as learning a regression
model fT (·) in the target domain DT by training a model
fS(·) in the source domain D(train)

S = {X(train)
S , Y

(train)
S }

and exploiting the target domain data which we denote as
D(tune)

T = {X(tune)
T , Y

(tune)
T } in order to tune or adapt the

trained source model with the goal to achieve a high FD per-
formance on the unseen test data in the target domain,D(test)

T =

{X(test)
T , Y

(test)
T }.

Our pre-trained source model fS(·) which serves as the base
model for TL is based on a CNN that has been previously
developed and optimized for single-turbine FD (Ulmer, Jarl-
skog, Pizza, Manninen, & Goren Huber, 2020). In the fol-
lowing section we describe the base model and the TL ap-
proaches we tested on various examples of wind turbine FD.

3. METHODS

3.1. Base Model Description

Our base single-turbine fault detection pipeline includes as a
first step a CNN for either single- or multi-target regression.
In a single target setup, the target variable yt is typically a
temperature of a certain turbine component, e.g a genera-
tor bearing, the gearbox oil or the hub temperature at time
t. The inputs are multivariate time series X = {xji}, i ∈
[t − m, t], j ∈ [1, N ] where m is the size of the look-back
window and N = 4 is the number of input variables. These
are measured variables which were shown to serve as effec-
tive predictors independent of the fault type: output power,
ambient temperature, wind speed and rotor speed. The base
CNN model is trained with healthy data of a single turbine to
minimize the mean squared error L = |yt − ŷt|2 between the
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Figure 2. Training schemes for TL of CNN- based fault de-
tection. (a) Pre-training of the base model with data from
the source turbine. (b)-(d) the 3 TL schemes suggested in
the paper for tuning the model to predict on target turbine
data: (b) LRT (c) LRCNNT (d) Fine Tuning. Training from
scratch, fine-tuning of pre-trained weights and no training
(fixed weights) are colored green, blue and gray respectively.

predicted ŷt and the measured yt target variable. In a multi-
output CNN configuration, the sum over the errors of all tar-
gets is minimized, such that the CNN is trained to predict a
set of turbine variables, commonly temperatures of various
components. The details of our architecture are described in
(Ulmer, Jarlskog, Pizza, Manninen, & Goren Huber, 2020).

The base model is trained using enough representative 10-
minute SCADA data. This is typically data from a full year,
representing all potential seasonal variations, and including
around 40, 000 data points. To test the base model we feed it
with unseen data and measure the prediction errors (PEs). We
expect large PEs whenever one of the target variables deviates
from normal behavior. An example of the predicted and mea-
sured values of the gearbox bearing temperature is shown in
Figure 1.

We note that for the sake of the analysis of TL frameworks
we compare the different TL algorithms with a base model
for a single output variable. The extension to TL for the
multi-output CNN model is technically straightforward and
its analysis will be discussed in a separate paper.

The next steps of the FD algorithm amounts to calculating the
residuals (PEs) rt = yt− ŷt and assigning a health index (HI)

to each PE. To calculate the HI (also known as the anomaly
score) we perform a Kernel Density Estimate of the PE distri-
bution of our healthy training set and estimate it as a Gaussian
probability distribution function (pdf) with mean µ and vari-
ance σ2. We then assign to each new PE the following HI
ht:

ht =
1

σ
√

2π

∫ rt

−∞
e−

1
2

(
x−µ
σ

)2
dx (1)

To detect faulty measurements we set a threshold at a desired
significance level α and declare a point as faulty if the prob-
ability to obtain its PE (or higher) assuming a healthy state is
smaller than α, or equivalently if the HI satisfies ht ≥ 1− α.

The post processing steps were optimized for FD tasks with
the base (single turbine) model and comprise of a low-power
filter and a moving median calculation of the PEs and their
HIs.

3.2. TL Frameworks

We discuss three different TL frameworks, as depicted in Fig-
ure 2. The first step of all three frameworks is pre-training
the base CNN model f (b)(·) on a data set D(train)

S from the
source turbine to predict the output variable y(b)St ,

y
(b)
St = f (b)

(
{xjSi}i∈[t−m,t],j∈[1,4]; Θb

)
. (2)

The trained network is then used differently in each frame-
work in order to achieve accurate predictions for the target
turbine. Below we describe the details of each of the three
TL frameworks. In the results section we present two differ-
ent use cases and test the performance of the TL frameworks
in each case. We then discuss the advantages and disadvan-
tages of each approach for the different use cases.

3.2.1. Linear Regression Tuning

In a previous paper we introduced a cross-turbine training
scheme (Ulmer, Jarlskog, Pizza, & Goren Huber, 2020). In
this scheme we first use the pre-trained CNN to predict on
the target turbine input data XT ,

ŷ
(b)
Tt = f (b)

(
{xjT i}i∈[t−m,t],j∈[1,4]; Θ∗bS

)
. (3)

The optimal parameter set Θ∗bS is determined using the source
data. The next step is aimed at transferring the regression
model to the target domain. To this end we use the target
tuning data set D(tune)

T to tune the predictions ŷ(b)Tt with a
linear regression model f (lr)(·),

y
(lr)
Tt = f (lr)

(
{xjT t}, ŷ

(b)
Tt ; Θlr

)
. (4)

Note that unlike the CNN, the linear regression model is time-
local, that is, uses only the inputs {xjT i}, j ∈ [1, 4] at time
i = t. The resulting corrected predictions ŷ(lr)Tt are used for
the calculation of the PEs of the Linear Regression Tuning
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(LRT) framework,

r
(LRT )
t = yTt − ŷ(lr)Tt (5)

The HIs for all future predictions on the target turbine are
computed according to Eqn. 1 using the estimated pdf of the
PEs based on the tuning data D(tune)

T .

Despite its simplicity and its low computational load on top
of the source model training, the LRT framework was shown
in (Ulmer, Jarlskog, Pizza, & Goren Huber, 2020) to be effec-
tive for TL in various cases. We demonstrated the ability of
this approach to transfer the CNN-based FD task into a target
domain with scarce data of a target turbine inside and outside
the farm. In particular, even for a commonly encountered
case in which the target turbine data is of a single season, the
TL method performed well on test data from the other sea-
sons which is clearly out of the training distribution. We are
thus encouraged to test the LRT approach on various turbines
and compare its performance to other methods.

3.2.2. Linear Regression+CNN for Error Component Tun-
ing

As we show below, the ability of the LRT framework to trans-
fer the FD task between turbines is quite good. However, un-
der more severe domain shifts, such as the case of transfer
between different farms, there is still potential to improve on
the FD performance of the LRT. To this end, we introduce
an additional tuning step subsequent to the linear regression
part. This step aims at modeling the remaining error com-
ponent which is not transferred well enough using the linear
time-independent transformation of the LRT,

δy
(e)
Tt ≡ yTt − ŷ(lr)Tt . (6)

To this end we train an additional CNN, denoted by CNNe, to
predict δy(e)Tt using the tuning set time series inputs from the
target turbine,

δy
(e)
Tt = f (e)

(
{xjT i}i∈[t−m,t],j∈[1,4]; Θe

)
. (7)

In the Linear Regression followed by CNNe Tuning (LRC-
NNT) framework, the final estimate of the target variable yTt

is given by the sum of the LRT prediction and the CNNe error
prediction,

ŷ
(e)
Tt = ŷ

(lr)
Tt + δ̂y

(e)

Tt . (8)

The resulting PEs,

r
(LRCNNT )
t = yTt − ŷ(e)Tt , (9)

are used for the calculation of the HI in this case, using the
tuning set from the target turbine to estimate a reference pdf.

Note that training a CNNe to learn the residuals is not equiva-
lent to training a CNN from scratch, nor to skipping the LRT
step altogether. By including both the LRT and the CNNe,

and training them subsequently and not simultaneously, we
make sure that each step focuses on learning a different part
of the transfer: the LRT corrects for the linear domain shifts
whereas the CNNe corrects for more complex, non linear and
time dependent shifts both in the data distributions and in the
functional behavior of the two turbines.

3.2.3. Fine Tuning

Fine tuning is a common method for TL which has been
demonstrated for various classification and forecasting tasks.
Here we apply it for a regression-based anomaly detection
task with a multivariate time series input. To this end we pre-
train the base CNN model on the source training data (Eqn. 2)
and subsequently fine-tune the entire CNN with a reduced
learning rate, using the tuning data set D(tune)

T from the tar-
get turbine,

y
(ft)
Tt = f (b)

(
{xjT i}i∈[t−m,t],j∈[1,4]; Θft

)
. (10)

In this case we focus on full fine tuning rather than partial fine
tuning, which clearly showed worse TL performance.

The HIs for the target turbine are calculated again using the
estimated pdf of the PEs of the tuning data set, r(FineTune)

t =

yTt − ŷ(ft)Tt .

3.3. Model Evaluation

Developing FD algorithms for a specific application using
only field data can be a challenging task. One of the main dif-
ficulties lies in model evaluation. As in most practical appli-
cations, also here we lack true labels for almost all turbines,
with very few exceptions of annotated faults. To circumvent
the lack of true labels we suggest an evaluation methodology
for TL models which analyzes the performance in compari-
son to a fixed reference model. In this case the natural can-
didate for a reference model is the base model, trained with
enough representative data X(ref)

T on the target turbine. This
is possible in our evaluation experiments since we can select
a target turbine with enough training data, emulating the lim-
ited data scenario by using only part of it for tuning the TL
models.

To set the baseline reference we assign ”true labels” (healthy
or faulty) to each measurement based on its HI as calculated
using the base model trained on X(ref)

T . We label as ”faulty”
only measurements that are above the 95% (α = 0.05) de-
tection threshold of the base model. We then use these ”true”
labels to evaluate all models in terms of recall and precision
scores. While the threshold choice of 95% is arbitrary, setting
it allows us to measure the similarity of all models to a base-
line defined by training the base CNN model on the target
turbine with enough healthy data. Such a comparison makes
sense if we refer to the baseline as an accurate and robust fault
detector, a task that we would like to transfer as well as pos-
sible using the various TL frameworks. We note that for the
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sake of clarity of the evaluation, we select an evaluation pe-
riod which contains both healthy and faulty data (according
to the baseline scores).

4. RESULTS AND DISCUSSION

We test several approaches for TL on two different use cases,
as described in Sec.2. The first one is TL for the purpose
of increasing the computational efficiency of training the FD
algorithms for a large number of WTs. The second use case
is transferring the FD task to turbines with too little training
data. We will demonstrate the first use case using source and
target turbine from the same wind farm. The second use case
will be tested on a source and a target out of two different
farms.

4.1. Cross-Turbine TL Within One Wind Farm

A wind farm often contains tens or even hundreds of tur-
bines, usually of the same manufacturer and often of the same
model. The prospect of training FD models on one turbine
and using the trained models to predict on all other turbines
in the park, with no (or very little) additional computational
effort, is very attractive for practical implementations. Since
the ambient conditions are similar for all turbines in the same
farm, one could expect a good TL quality between a source
and a target of the same farm. In our case the typical domain
shift between WTs in the same farm is in the output variables,
such as component temperatures, that may differ due to dif-
ferent calibration or component age.

To evaluate the potential of TL for an existing wind farm
we assume that all turbines would potentially have enough
healthy data for training, that is in our case representative data
of one full year. However, instead of training the CNN from
scratch on the individual data set of each turbine we train it
on data DS from one of the turbines, the source turbine S0.
We then use the trained source model as a starting point for
two different TL approaches to transfer the FD task to a target
turbine T0. The entire target data set is split to a ”tuning set”
D(tune)

T , in this case one year of healthy data used for training
the TL part of the algorithm, and ”test set” D(test)

T the rest of
the data, used for testing the entire TL framework. The TL
approaches we evaluate are:

1. Linear Regression Tuning (LRT), see Section 3.2.1.

2. Fine Tuning (FineTune), see Section 3.2.3.

Figure 3 displays the comparison of the two TL approaches
for the transfer from turbine S0 to turbine T0 within the same
farm for the task of FD on the gearbox bearing temperature.
Fig 3(a) shows the PEs of the base CNN model when trained
(in a standard single-turbine scheme) with one year of healthy
data D(ref)

T of the target turbine T0 as a reference. Panels (b)
and (c) show the results for the LRT and FineTune transfer
frameworks respectively with S0 as source and T0 as target.
We note that in this case we skip the comparison with the

LRCNNT framework since the results of the LRT are already
satisfactory to the extent that we avoid the additional compu-
tational step of the CNNe on top of the LRT step. This makes
sense from a practical point of view, since the main goal be-
hind the use case we describe is to allow for computational
upscaling of the training.

The colored area in each plot marks the time period used for
training (in the baseline case) or for tuning (in the TL frame-
works). After assigning HIs we set the threshold for detection
at α = 0.01 for all three models. With this threshold, red col-
ored PEs are detected as faulty, whereas blue ones are healthy.
We observe only minor differences in the FD performance of
both TL approaches and the baseline.

In order to quantify these differences and evaluate the perfor-
mance of the different TL frameworks we use the baseline as
reference as described above in Sec. 3.3. Figure 3(d) com-
pares the performance of the models in terms of precision and
recall scores using the true labels which were assigned in this
way. The average precision (AP) scores, which correspond to
the area under the curves, are given in the legend in brack-
ets for each training method. The time period used for model
evaluation ranges between June 2018 and September 2019,
containing a high fraction of points that are labeled as faulty.
Both TL frameworks perform quite similarly to the baseline,
which was trained on one year data. In particular, there is
only a slight advantage in performance to the FineTune ap-
proach (AP=0.76) over the LRT model (AP=0.74) whereas
the latter requires close to zero additional computation on top
of the source model training. Concretely, fine tuning allows
for around 40% reduction of the training time compared to
training from scratch. The LRT computation time is however
negligible even compared to the data pre-processing time, and
can offer a massive reduction of the computational time when
deployed on a farm of tens or hundreds of turbines.

Since the goodness of transfer of both schemes is similar, we
select the one TL framework which is more computationally
efficient and demonstrate it on several other turbines from the
same farm. The PEs and HIs are then compared with the
baseline for each target turbine, achieved by training the base
CNN model on D(tune)

T .

Figure 4 displays the transferred PEs for 5 different target tur-
bines trained with the same source S0 in the left column. The
period used for tuning the LRT is colored blue. The TL results
are contrasted with the result of the respective base model us-
ing the same data as an input for training or tuning, shown in
the second column. The training period is marked in green.
Note that data availability differs between the turbines, there-
fore some of the predictions start later than others. For the
sake of the discussion we selected the most appropriate year
for training the models for each turbine, and we plot the PEs
also for time periods prior to the training period (differently
from operational deployment).
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Figure 3. Comparison of approaches for TL between turbines within one farm. Prediction errors (PEs) are plotted vs. time for
three training schemes: (a) baseline training of the base CNN model from scratch on target turbine data (b) LRT framework
for TL (c) FineTune framework for TL. Both TL frameworks are between turbines from the same wind farm. PEs are colored
red when the fault detection threshold using significance level α = 0.01 is exceeded. The training or tuning period (1 year)
is marked with colorful background. panel (d): Precision-Recall curves for the 3 training schemes of panels (a)-(c). Average
precision values (area under curve) are stated on the legend in brackets.

The two right columns of Figure 4 show the PE distributions
for the training (or tuning) set, contrasted with the same quan-
tity for a test set of one year outside the training set. The
test set was selected to be as healthy as possible, similarly
to the training set. The distributions are contrasted for the
LRT framework (third column) and the base model (fourth
column). The purpose of this visualization of the results is to
stress the importance of looking at error distributions, since
they are used for the HI calculation and the threshold setting
for the entire data. If there is a significant distribution shift
between the healthy training and test PEs, we expect either
missed detections or false positives to be frequent. The main
result we would like to stress here is the similarity of the dis-
tribution plots between the TL and the base model. For most
target turbines the shift between train and test PE distributions
is small. In all cases we note that this shift is comparable in
the TL and the base model, such that the FD performance of
the TL framework is very similar to the baseline, explaining
the similarity in the time-dependent HIs. We note that the
analysis of the PE distributions allows for an evaluation of
TL methods for semi-supervised FD even in the absence of
labeled validation data.

For the FD task we observe almost no difference between
training the base model and TL from the source turbine using
the LRT framework. The difference in run times is however
significant and scales linearly with the number of turbines in
the farm. We conclude that for turbines within the same wind

farm, the LRT TL framework provides a high quality alter-
native to training from scratch on the individual turbines for
regression based FD.

4.2. Cross-Farm TL

In contrast to wind turbines within the same farm, turbines
from different farms may have a much stronger domain shift,
leading to a more challenging transfer of the FD task. In par-
ticular, the domain shift in this case is no longer only in the
output variable but both in the inputs and the outputs. This
can be due to different ambient conditions (such as temper-
ature, wind speed and direction and their dynamic behavior
over time) between the source and the target turbine in addi-
tion to differences in the operational modes of the turbines.
We thus expect the task of transferring knowledge between
wind farms for the purpose of early FD to be more complex
than within the same farm. This includes also the challenge
in selecting a good source for a given target, an important
question that goes beyond the scope of the present paper.

The cross-farm TL is particularly useful in case of newly in-
stalled wind farms, with only very little data for FD model
training. In this case the source turbine is older and has abun-
dant healthy historical data that can be used to train the base
CNN model. Similarly to the previous section we pre-train
the base model on a source turbine using a one year train-
ing set D(train)

S . This time, however, the source turbine S1
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Figure 4. Scaling up FD training using TL within the farm. Each row displays the results of TL to another target turbine, all
with the same source turbine. Two left columns: PEs for the LRT transfer framework, PEs using the base CNN model to train
from scratch on the target turbine data. Two right columns: the corresponding PE distribution comparison between train and
(healthy) test set for each training scheme. Color code: green for training from scratch, blue for TL, red for testing. The training
or tuning periods are marked with the corresponding color in the left two columns.

is located in another wind farm. We then apply various TL
methods to tune the model with the tuning set of the target
turbine D(tune)

T as input and generate predictions for the tar-
get turbine T0. To emulate the data scarcity scenario we select
only 3 months of winter data of the target turbine as the tun-
ing set and use the rest of the data of this turbine D(test)

T for
testing the performance of the following TL frameworks:

1. Linear Regression Tuning (LRT), see Section 3.2.1.
2. Linear Regression + CNN Tuning (LRCNNT), see Sec-

tion 3.2.2.
3. Fine Tuning (FineTune), see Section 3.2.3.

The results of the three TL frameworks are contrasted with
those of the base model trained from scratch with a full year
data from the target turbine, D(ref)

T , denoted by ”baseline”
training. In addition we compare the results to the ”limited
data” case by using only the tuning set D(tune)

T to train the
base model from scratch. Note that the same limited data set
is used for training from scratch and for the three TL meth-
ods. This allows a comparison of using TL vs. training from
scratch if we assume that only 3 months of healthy data are

available from the target turbine, as would be the case if this
turbine were newly installed.

The left column of Figure 5 displays the PEs colored accord-
ing to their HI with a detection threshold of α = 0.01 for
all 5 training schemes; baseline, limited data and the three
TL frameworks above. Measurements that would be detected
as faulty with this threshold by each scheme are marked in
red. Time periods used for training the base CNN model from
scratch plotted on a green background, and periods used for
tuning a TL algorithms using the limited target turbine data
with a blue background. In addition we selected a 3 months
healthy period outside the training and tuning set as a test set
and marked it with a red background on all plots.

The right column of this figure shows a comparison of the
PE distribution between the train (or tune) and the test set
for each of the 5 training schemes. In all cases the training
(green) or tuning (blue) set are the first 3 months of 2016.
In the Baseline scheme these are the first 3 months of the
training data and for the other 4 schemes it amounts to the
entire tuning data, colored in the corresponding color in the
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Figure 5. Comparison of different training schemes for cross-farm TL. Time dependent PEs (left column) and their distributions
(right column) for 5 training schemes for FD on the same target turbine T0. The baseline (a) and Limited data (b) schemes
correspond to training from scratch of the base CNN model with 1 year and 3 months data respectively. In the TL frameworks
LRT (c), LRCNNT (d) and FineTune (e) the base model is pre-trained with data from a source turbine S1 of another wind farm
and then tuned using the different TL frameworks to obtain PEs for the target turbine. Color code: green for training from
scratch, blue for TL, red for testing. The training, tuning and testing periods are marked with the corresponding background
color in the left column.

left column of this figure. The test sets (red) are of the same
3 months for all schemes.

Both the time dependent PEs and the distribution plots show
clearly that training from scratch with 3 months data of the
target turbine leads to a poor FD performance compared with
the baseline, trained from scratch with 12 months of data. The
main reason for this are seasonal domain shifts between the
training months (winter 2016) and the test months (summer
2017): the functional dependence of the component (in this
case gearbox bearing) temperature on the environmental vari-
ables (wind speed and ambient temperature) changes over the
time scale of months. Therefore, training the CNN on win-
ter data exclusively does not allow to extrapolate and lead to
accurate enough predictions on summer data, which in turn
causes a high false positive rate in summer. This seasonal-
ity of the PEs is largely corrected already by the simple LRT

transformation of the target predictions. The resulting tuning
and test distributions are only slightly shifted from each other
and the false positive rate is rather low. However, the LRT
yields a higher spread of the PE distribution than the base-
line, leading to a high rate of missed detections of the true
faults.

In order to preserve the good extrapolation provided by the
LRT to the unseen summer domain, we use the LRT as a
starting point for the LRCNNT framework. The additional
CNNe is meant to allow for non-linear and time dependent
corrections of the target domain predictions on top. We note
that replacing the two-step training (LRT followed by CNNe)
by a single step of a CNN only did not yield a similarly good
transfer. The reason is that training a CNN from scratch on
little and season-specific data has a poor performance, as we
conclude from Figure 5(b). However, using a linear trans-
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Figure 6. Precision-Recall curves for cross-farm TL. The
source and the target turbines are from two different wind
farms. The FD performance scores of the TL frameworks are
compared with the baseline training scheme (solid black), and
with the limited data scheme (dashed green), where the base
CNN model is trained with 1 year and with 3 months of data
from the target turbine respectively. Average precision val-
ues (area under curve) are stated in brackets for each training
scheme.

formation to fix the linear component of the transfer, allows
the CNNe to focus on learning only the non-linear and time
dependent residuals instead of training it from scratch.

Both the LRCNNT and the FineTune transfer schemes are
very effective in addressing both of the above difficulties:
they both manage to correct for the winter-summer domain
shift and avoid seasonal PEs. The PE distributions during tun-
ing and testing periods are thus largely overlapping for both
of these schemes. Moreover, the distributions are of a simi-
lar width as the baseline, thus leading to a FD performance
which is similar in its FPR and TPR to the baseline reference.

The last statement can be quantified using the same approach
as described in Section 3.3 to assign ”true labels” to the data
points. The resulting comparison of the recall-precision curves
of all 5 schemes are displayed in Figure 6 together with their
AP scores (see legend). Also here it is seen that the LRCNNT
(AP = 0.76) and the FineTune (AP = 0.75) TL frameworks
perform similarly to the baseline (AP = 0.79), with a slight
advantage to the LRCNNT. The improvement achieved by
supplementing the LRT with an additional CNNe for the pre-
diction of the residual error component is seen clearly in this
case: While the LRT (AP = 0.67) alone does not perform
much better than training from scratch with only 3 months of
data of the target turbine (AP = 0.66), the LRCNNT curve

is close to the baseline, trained from scratch with a full year
of data of this turbine. As opposed to the high performance
of the LRT framework for transfer within the same farm, here
the TL task is more complex and requires a more elaborate
framework, involving either training of the additional CNNe
or fine tuning of the original CNN using the 3 months of data
of the target turbine.

Table 1. Seasonal Error Distribution Shifts

Model µ shift σ shift

Base Model 0.2± 0.03 −0.1± 0.02
Limited Data 1.46± 0.38 0.65± 0.32
LRT −0.1± 0.11 −0.34± 0.05
LRCNNT 0.22± 0.09 −0.09± 0.04
FineTune −0.24± 0.18 −0.15± 0.07

Table 1 summarizes the properties of the error distributions
plotted in the right column of Figure 5 in terms of the dis-
tribution shift between the train/tune (winter) and test (sum-
mer). We quantify the distribution shift using the differences
of the estimated mean µ and standard deviation σ between
test and train. Note that these results are averages of 8 runs of
the entire training scheme and are therefore given along with
the standard deviation of the repeating experiments. From
this quantification we confirm our finding that the LRCNNT
framework provides the closest reproduction of the baseline
results, both in terms of the distribution shift and in terms of
the stochastic property of the training schemes (fluctuations
between runs).

The opposite µ shift and the strong fluctuations for the Fine-
Tune imply that this TL framework is more sensitive to ran-
dom effects in the training process. Therefore, despite its sim-
plicity and relative efficiency, the FineTune framework suf-
fers from drawbacks compared with the LRCNNT. Another
clear conclusion from the table is that the limited data train-
ing suffers significantly more from random effects (due to the
difficulty to regularize it properly), thus from fluctuations of
the results between different runs. As such it is not only lead-
ing to low FD performance but also to high sensitivity of the
outcomes to the choice of training data. We note that for Fig-
ures 5 and 6 we chose to display the ”worst case scenario” of
each of the training schemes.

It is worth discussing the common problem of goodness of
transfer also in our context. Our transfer task comprises of
two challenges. The first is overcoming the domain shift be-
tween turbines, both in the input data (due to variable ambient
conditions, especially between farms) and in the output data
(e.g due to different thermal insulation mechanisms, heating
effects and other operating conditions). The second effect is
the need to extrapolate from the tuning data set of the target
turbine into an unseen season, with potentially different de-
pendencies and dynamic properties of the data.

The goodness of transfer depends, as in other applications of
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TL, on the selection of appropriate source for a given target.
In particular we note that the LRT and LRCNNT algorithms
are more effective than the fine tuning in extrapolating be-
tween seasons. This is to be taken with caution, especially if
there are physical mechanisms that are only present in one of
the seasons (such as active heating of the WT components in
winter or cooling in summer).

Fine tuning methods are prone to forget important knowledge
learned on the source turbine and be similar to training from
scratch in case of a too high learning rate. Although this
might require careful tuning of the learning rate, we found
the a learning rate of 1/5 of the original base model performs
well for a large set of transfers between various farms. Since
fine tuning ends up finding a compromise between the source
and target domains and benefits from both, it usually requires
an appropriate selection of the source turbine in order to ex-
trapolate well out of the training distribution (Recht et al.,
2019). An optimal selection of the source turbine, and the
evaluation of seasonal effects on the TL task are both active
research topics and will be pursued by us in the future.

5. CONCLUSIONS

In this paper we tested three algorithms for TL of a regression-
based FD for WTs based on 10-minute SCADA data. After
pre-training a base CNN model to predict the gearbox bear-
ing temperature using healthy data from a source turbine, the
different TL methods were used to obtain predictions for a
target turbine, which were then used to extract HIs and set a
threshold for fault detection. One of the three TL algorithms
is the common fine tuning. The other two were developed
by us to overcome the complex problem of TL with domain
shifted inputs and outputs, having only single-season training
data in the target domain. We showed that:

• For TL between WTs from the same wind farm a sim-
ple and computationally efficient TL method we devel-
oped based on linear regression achieves comparable FD
performance to the base model trained on the target tur-
bine. This framework can be therefore used to scale up
the training of large wind farms by training on one source
WT only instead of individually on each turbine.

• For TL across different farms, with a target turbine with
limited healthy data, our LRCNNT framework outper-
formed other frameworks including a standard fine tun-
ing approach.

• All three TL algorithms outperform training from scratch
with limited data of the target turbine.

• The LRCNNT algorithms was shown to have a similar
FD performance to the base model trained with abundant
data from the target turbine.

• Evaluating and comparing TL approaches is possible even
in the absence of true fault labels if one defines the base
model as the reference for good FD performance.

We conclude that TL algorithms can enable scalable and re-
liable FD of WT based exclusively on readily available 10-
minute SCADA data. The most adequate algorithm depends
on the specific use-case (whether inside the same farm for up-
scaling purposes or between farms to overcome data scarcity).
One of the most important open questions that will be pursued
by us in the future is the challenge of optimizing the goodness
of transfer by an appropriate selection of the source turbine.
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