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ABSTRACT

Every system in existence is prone to failure and analysis and
early detection of said failures (for Predictive Maintenance)
is becoming a crucial aspect of modern systems design. Most
catastrophic issues start from the smallest parts of a compo-
nent within the system (physical failures) and minute changes
to certain sensor readings from this level may indicate that an
incipient failure will occur. Much of this information and
system knowledge is often captured during typical Reliabil-
ity, Availability and Maintainability (RAM) activities but is
not often re-purposed for diagnostics. Recent endeavors have
been made to utilize AI-based calculations to analyze such
measurements to notify that an anomaly is observed, how-
ever the nature of such correlation-based methods have a limit
both on the information on such events and the reliability of
the analysis due to spurious correlation. In this paper, we
present a novel strategy to ’catch’ failures before they hap-
pen using a combination of both correlation and causation,
i.e. a causation-based AI and demonstrate its advantage over
‘classic’ correlation based methodology.

1. INTRODUCTION

Physical failures are the usually the initial cause of system
disruptions in complex structures. These often include wear
and tear, fatigue, cracks and so on which eventually cause the
loss of the function of the component. These effects are often
detected by symptom sensors such as vibration and tempera-
ture sensors placed upon certain parts. Such symptoms allow
us to determine the possibility of certain failures before their
occurrence (incipient failures). This means that signals from
these sensors must be processed in real-time and the quantity
of data to be analysed begs the use of machine learning tech-
niques. Using clever correlation, these methods are able to
detect anomalies and novelties thus are suitable to alert users
of symptoms appearing within components. However, corre-
lation will only estimate the likelihood of a symptom occur-
ring but not the root cause or path to and from a fault. This
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paper outlines a causation-based AI approach, which takes
into account the domain knowledge involving the dynamics
of failure propagation whilst taking advantage of the comput-
ing power of machine learning and AI.

2. DEFINITION OF PHYSICAL FAILURES

2.1. Physical and functional failures

Broadly speaking all failures have some basis in the physical
realm. The distinction that is made in this paper is regarding
separating the physical phase of failure from the functional
phase of failure for the purpose of diagnosis. Whereby phys-
ical failures may be detected based on observations arising
from within the failing item pre-functional failure and func-
tional failures may be detected based on functional changes
to the system post-functional failure. Or in other words:

• Physical failures are referring to the failure dynamics in-
ternal to the local item experiencing the failure (e.g. the
mechanism of failure is occurring on an item and that is
resulting in a fault on that item).

• Functional failures are an evolution/continuation of a phys-
ical failure whereby the local item’s ability to function is
now disrupted.

Note that the principles of physical failure detection remain
relevant post-functional failure, however the emphasis should
be on pre-functional failure in order to place the potential di-
agnosis before failure effects begin to manifest.

2.2. P-F intervals as a method of identifying physical fail-
ures

This interpretation of failure progression shares much in com-
mon with the Potential to Functional (P-F) interval model
elaborated on in Reliability-Centered Maintenance (RCM) 2
(Moubray, 1997). The P-F time interval plots the failure initi-
ation point, the potential failure point (the theoretical point at
which a failure can be detected), and the functional failure
point (where the function of the item/system is degraded).
The P-F interval or curve is for the most part theoretical as
there is variability in both the P and F points. The potential
failure point varies according to condition monitoring method
(Bengtsson, 2007) and the functional failure point varies ac-
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Figure 1. Typical P-F interval

cording to a variety of factors such as operating context and
item variability (Dunn, n.d.). However, whilst the unique,
specific characteristics of a P-F curve are not easily assess-
able, the general estimation and presence of the curve per
failure is a key characteristic in determining viability of a
prospective physical failure diagnosis approach as the pres-
ence of a large P-F curve allows:

1 The use of physical failure sensing on failures pre-functional
failure

2 The mitigation of severe failure effects due to enough
time between failure diagnosis and functional failure

As per RCM 2 (Moubray, 1997) the criteria for determining
applicability of on-condition maintenance is:

1 A clear potential failure condition
2 The P-F interval is reasonably consistent
3 It is practical to monitor at intervals less that the P-F in-

terval
4 The net P-F interval is long enough to be of use

With the application of real-time sensing, criteria 2 and 3 are
practically negated, and the net P-F interval becomes synony-
mous with the P-F interval itself (assuming detection at first
possible opportunity). Identification of clear failures is dis-
cussed further in terms of modelling (in section 3) and actual
diagnosis (in section 4). In order to decently estimate a P-F
interval, Moubray suggests two viable options. Firstly, testing

and simulation of failures and secondly, educated judgement
from those with knowledge of the system and its failure. If
the P-F interval can be established to be of decently large size,
then it should be considered a candidate for physical failure
diagnosis.

3. MODELING OF PHYSICAL FAILURES

3.1. RAM and diagnostic engineering roles

In order to cross the technical bridge between RAM and di-
agnostic engineering activities, a framework of understanding
failures needs to be established that is consistent and serves
the purposes of both practitioners.

The specific interests of RAMS and diagnostic engineers over-
lap in terms of their requirement to understand failures. The
RAMS engineer needs to understand failures in terms of their
broad statistical occurrence and consequences on the system
(e.g. for use in Failure Modes, Effects and Criticality Anal-
ysis (FMECA) and reliability analysis). The diagnostics en-
gineer needs to understand failures in order to detect and/or
predict specific instances of failure. Whilst the use cases are
different, ensuring a common paradigm to understand fail-
ures allows information developed in the RAMS space to be
utilized in diagnostics as well as insights derived during diag-
nostics to be fed back to RAMS personnel, ultimately bene-
fiting both roles.

3.2. Failure causes

A cause is the abnormal state of input, loading or environ-
ment that leads to the degradation of an item (Rudov-Clark &
Stecki, n.d.). A cause can relate to design, manufacture, en-
vironmental, operational or maintenance actions or an input
flow that exceeds specified limits. Causes are a key consider-
ation when mitigating risk, however in every instance cannot
be avoided entirely, as many are tied to the inherent operation
of the system. As a result diagnostics and prognostics of the
failure progressing post-cause is a viable additional mitiga-
tion method.

3.3. Failure mechanisms

Failure mechanisms are the physical process through which
causes act to result in failure. As a mechanism is a process
resulting in degradation (the fault) they may be the first ob-
servable occurrence in the failure path that can confirm a fail-
ure is happening.

3.4. Failure faults

A failure fault is the damaged or degraded state of the item
that renders it unable to perform its function. This strict def-
inition of a fault would indicate that once a fault is present
then the functional failure associated with it will be observed
through loss of function. Realistically the mechanism-fault-
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functional failure process is a progressive one in which the
item may begin degrading due the mechanisms action while
the function of the item is not disrupted (to an observable
degree). Faults as they begin to manifest progressively im-
pact item (and system) function. This paper is focused on the
detection of failures prior to their functional manifestation.
Detection of failures prior to functional failure requires some
observable manifestation of failures. Faults themselves may
be difficult to observe in their early stages. As such symp-
toms of those faults are used as secondary indicators of the
failure.

3.5. Physical failure modelling in context of condition mon-
itoring

The above cause-mechanism-fault framework of understand-
ing failure development allows RAM engineers an optimal
method of conducting analysis that can ultimately be used
in specific failure mitigation activities. The framework also
achieves the condition monitoring criteria of clear failure iden-
tification. As a result the implementation of a consistent tax-
onomy and structure of failure analysis benefits both parties
as the knowledge of RAM engineers is fed directly into the
diagnostics space. The proposed physical failure modelling
framework is reconciled with the P-F model of incipient fail-
ures as follows (as per figure 2). The physical failure path
is the entirety of failure from cause through to fault but prior
to the functional failure. Functional failure is here defined as
the local functional failure as well as any up or down stream
effects on other items that the failure may have.

4. SYMPTOMS AS ANOMALIES

4.1. Physical Symptoms and Sensors

Physical events that occur as a result of a failure (fault) are
called physical symptoms, which can be sensed by the phys-
ical sensors attached to them, aiding in detection and diagno-
sis.

Symptoms such as vibration, heat, and noise, can be inter-
preted as being binary, meaning that either the symptom oc-
curs or not, which indicates the possibility of utilizing anomaly
detection algorithms in the machine learning context to anal-
yse these attached sensor signals (time series data) so as to
detect possible failure faults. Whenever a symptom occurs
in the system, a well-performed anomaly detection algorithm
should be able to detect the existence of an anomaly by analysing
the real-time data of the sensor measuring this specific symp-
tom. Further, an alert could be triggered to inform the respon-
sible parties to take action and avoid more severe failures.

Anomalies can be defined under various types or taxonomies
such as contextual (dependent on operating condition or pre-
vious states), point (novelties or ’odd one out’) and group
(more akin to clustering, several points belonging to an ’anoma-

Figure 2. Failure path and the where it corresponds to P-F
interval

lous group’). The taxonomy tackled in this paper is the con-
textual kind, since the method proposed takes into considera-
tion the current operation mode and/or loading of the system
when determining anomalies and single samples will consist
of a window or several points, thus temporal effects are part
of the features that are input.

4.2. Anomaly Detection In General

In general, anomaly detection or outlier detection aims to
detect rare observations that are different from the majority
of the sensor dataset (for example, in Figure 3, the black
points (anomalies) are far away from the green points (normal
points)), which is divided into three categories: supervised,
semi-supervised, and unsupervised. If the training data con-
sists of labels that indicate normal or abnormal, a supervised
classification model can be trained on this labeled and imbal-
anced dataset and make predictions on the unknown data.

While training on dataset consisting only of normal observa-
tions, semi-supervised techniques define anomalies as obser-
vations deviating from the distribution of the training data.
Unsupervised algorithms train on unlabeled data containing
both normal and abnormal observations, which is taken un-
der the assumption that anomalies are located in low-density
regions in the data. Therefore, any new observations that are
not located in high-density regions are considered anomalies.
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Figure 3. Anomaly Detection

The general idea is that an anomaly score is computed based
on one or multiple measurements and the anomalies are deter-
mined based on a certain threshold, and if the anomaly score
of observation is higher than this threshold, it is considered
as an anomaly, otherwise, it is considered as a normal point.
This threshold can be either pre-defined or computed from
the data.

4.3. Individual Anomaly Detection Methods

Individual anomaly detection methods are commonly used to
solve anomaly detection tasks, with which a single model is
trained and the labels (normal or abnormal) of new observa-
tions are predicted using this trained model.

In the case of anomaly labels stated in the data itself, we can
use methods such as Support Vector Machines (SVM) (Platt,
1999), a min-max based hyperplane and Gradient Boosting
(Friedman, 2001), a tree-booster. For SVM, C, the regulariza-
tion parameter which determines the amount of ’looseness’ of
the hyperplane and gamma are important. The kernel is com-
mon to keep to RBF (Radial Basis Function). For Gradient
Boosting, as a tree method, parameters such as max depth
and number of estimators are worth tuning.

Some of the these methods are proximity-based, for example,
K-Nearest Neighbors (KNN) (Angiulli & Pizzuti, 2002) de-
tect anomalies based on distance; the parameters that would
be tuned are commonly the number of nearest neighbors to
consider with regards to the distance. Local Outlier Factor
(Breunig, Kriegel, Ng, & Sander, 2000) is based on local den-
sity and the number of neighbours within a certain density
are tuned as parameters. Local Correlation Integral (LOCI)
(Papadimitriou, Kitagawa, Gibbons, & Faloutsos, 2003) are
based on clusters, also including micro-clusters, the diameter
of clusters and distances between clusters.

Angle-base Outlier Detection (ABOD) (Kriegel & Zimek, 2008)
is a probabilistic model which views the variance of an obser-
vation’s weighted cosine scores to all neighbors as the anomaly
score.

Principal Component Analysis (PCA) (Aggarwal, 2017), a

Figure 4. LSCP Workflow

linear dimensionality reduction technique, can also be used
in detecting anomalies (called PCA detector in this paper),
where the sum of the projected distance of a sample on all
eigenvectors is utilised as the anomaly score. Anomalies tend
to have higher scores.

4.4. Ensemble and Combination Methods

In contrast to individual methods, outlier ensemble methods
can obtain more robust anomalies by combining the results
from the different algorithm executions (Aggarwal, 2017),
with Isolation Forest, Feature Bagging, and Locally Selective
Combination in Parallel Outlier Ensembles (LSCP) (Zhao,
Nasrullah, Hryniewicki, & Li, 2019) as representatives. De-
tector combination is a sub-field of ensembles, which com-
bines various anomaly detector outputs by averaging, maxi-
mizing, average of maximum, maximum of average.

Isolation Forest trains a forest of random trees on random sub-
datasets and a new observation is considered abnormal when
these trees collectively produce shorter path lengths for it. As
a tree method, parameters such as the number of estimators
(number of trees) and depth (of each tree) are important to
tune.

The idea of Feature Bagging is that it randomly selects a sub-
set of features, separately trains different anomaly detectors
on these sub-spaces, and then aggregates the results by above-
mentioned combination methods. The number of estimators
used to ’bag’ each prediction can make a significant differ-
ence for this method.

5. WORKFLOW FOR PHYSICAL FAILURE DETECTION

5.1. Overall Workflow

Figure 5 shows the full process from start to finish for detect-
ing and isolating physical failures. Firstly the domain knowl-
edge is established via a physical failure model which encom-
passes the possible routes of failure. Subsequently a machine
learning tool is selected accordingly and trained (if required,
in some unsupervised cases this is not required) using the his-
torical data containing previous incidents. The trained algo-
rithm and physical model are both used to determine the path
of failure.
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Figure 5. Workflow incorporating RAM and diagnostic activ-
ities

5.2. Case Study

5.2.1. NASA Bearing Dataset

To demonstrate the capability of the strategy on physical fail-
ures, a NASA Bearings Dataset (Qiu, Lee, Lin, & Yu, 2006)
from which a single bearing will be considered, sensed by a
pair of accelerometers, each measuring x and y axes. Thus,
the data consists of two columns which will be used for the
diagnosis of physical failures in this system. It is stated that
the roller element part of the bearing fails at the end of the
test cycle, which takes over a month. The files used are vibra-
tion records separated by 10 minute intervals. In this section,
a step-by-step description of the workflow in figure 5 is pro-
vided in the context of the NASA bearing dataset.

1 Determination of item failures is a typical systems engi-
neering task whereby the item in question is defined by
the functional outputs they provide / facilitate. For the
bearing being analysed in this case study, it can be said
that it has a functional flow of ”allow rotational/angular
velocity”. By defining the functional flow of an item,
it allows for the definition of the functional failure of the

item and how the functional failure may propagate to im-
pact other items / the system mode broadly. For exam-
ple, the bearing in a system which functionally fails (no
longer allows for angular velocity) will cause other items
downstream to be unable to perform their function.

2 The definition of the functional flow of the bearing (allow
angular velocity) will allow for functional failures being
defined. Functional failures are used to describe how the
item has failed from a functional perspective, and for this
bearing it’s functional failure is ”allow angular velocity
low”. The ”low” describes that the angular velocity out-
put of the bearing is lower than the nominal or expected
value. Similarly, ”high” would be used to describe the
angular velocity output of the bearing is higher than the
nominal or expected value, but since this is not possible
due to physical failures of the bearing, it is not defined as
a functional failure in this case study.

3 The cause-mechanism-fault framework defined above is
used to create the physical failure diagram for the bear-
ing in this case study. Failure diagrams are developed
at the most granular level of information applicable. In a
bearing that is an inner ring, outer ring and rollers For the
interest of this case study, only the roller element failure
diagram will be shown in figure 6.
Cause, mechanisms and faults are represented by their
icons as described earlier, and each of them are popu-
lated in the failure diagram as they are common failure
concepts of roller elements in bearings - the physics of
failure will depend on loading and operating conditions,
so common physical failures are used in this failure dia-
gram (SKF, n.d.).

Figure 6. Bearing Failure Diagram

4 The brown hexagon icon in the failure diagram is a symp-
tom. The symptom is used to describe what physical ob-
servations can be manifested as a result of a fault occur-
ring - these are used to determine when failures have oc-
curred in an item. For this case study, since accelerom-
eter sensors are placed on the bearing, it is appropriate
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to place the vibration symptom in the failure diagram
to describe that this will be measured and observed, and
that these faults cause vibration in the bearing to increase
when/if they occur.

5 To determine the suitability of a symptom for sensing,
assessing the length of the P-F interval is required. Based
on the loading characteristics (bearings are underloaded)
and short timeframe of data, it can be assumed that there
is a sufficient P-F interval for the failures defined in the
failure diagram in figure 6 (Qiu et al., 2006).

6 Since the vibration symptom is attached to all faults in
the failure diagram, it can be said that 100% of the fail-
ures of interest are covered by the accelerometer sensors.
Data is split into training, validation (used to fine tune
algorithms) and testing where the latter is completely
unseen by the algorithms until prediction is attempted.
Since it is already stated that a run-to-failure test is done
on the bearing, the final few (656 files) are labelled as
failure/anomaly and readings before that are essentially
healthy (1500 files are used as healthy). Using this in-
formation, the data is labelled as anomalous or not and
fed into the training/testing pipeline to prepare the algo-
rithms. The data was first feature engineered and then
presented to several supervised and unsupervised algo-
rithms. The metrics used for supervised include f1-score,
accuracy and ROC-AUC (Area Under Receiver Operat-
ing Curve); in addition to these, for unsupervised we
used EM (Excess-Mass, the more the better) and MV
(Mass-Volume, the less the better) (Goix, 2016). A sum-
mary of the results and label details are provided in table
1 and 2 respectively. The results table compares both su-
pervised and unsupervised methods for this problem.

7 The algorithm will be trained and ready for operation.
Sensors will be collected via an IoT platform, which is
able to organize and translate values from digital read-
ings to the correct format. This will be transferred to
the algorithm operating either within the platform itself
or running in the cloud, as a server application. In the
case that it is the latter, the platform will communicate
through high-speed protocols such as MQTT or other-
wise to send sensor readings ASAP for analysis.
In this case study, we emulated the real-time sensors us-
ing data from the testing set to simulate a operational
scenario.

8 Vibrations on the bearing are visualized in 7 via the stan-
dard deviation obtained from the bearing dataset. These
images show a clear change when the bearing is failing.
As real-time information (emulated here) is inferred upon,
we use the predicted results and the failure diagram to-
gether to determine that the roller element had failed as
well as trace the possible faults back to their root cause.

(a) Vibration deviation for x-axis (b) Vibration deviation for y-axis

Figure 7. The vibration signals’ standard deviation for the
bearing

Table 1. Summary of results. Full table in Appendix, table 3

Best Algorithm Feature Extractor ROC-AUC Score EM
Gradient Boost (supervised) Statistical 99.79% N/A
PCA Detector (unsupervised) Statistical 97.29% 1.77

Table 2. Table for the labels in the bearing data split up

y split Total in split Labels Distribution
y train 943 [0, 1] [656, 287]
y val 566 [0, 1] [394, 172]
y test 647 [0, 1] [450, 197]

6. LIMITATIONS OF THIS METHOD

This method is highly effective when domain knowledge about
the system/component is known and can be modelled into a
failure diagram equivalent. Training data is also a require-
ment in order to apply the ML methods mentioned. Real-time
failure analysis is the goal for this paper - to predict anoma-
lies and determine incipient failures, not analysis on static
data. The case study was used to demonstrate the capabil-
ity, however in operation, the vibration data are expected to
be received from a streaming engine with the algorithms and
domain information working as a server application.

7. CONCLUSION

To summarize, this paper has presented a method to perform
physical failure detection and analysis, utilizing both causal
information involving the physics of failure and correlation to
achieve real-time estimation of faulty readings. The real time
aspect is crucial in these situations since the goal is to ’catch’
the failure before it affects the function of the component.
Thus we not only predict an (expected, in this case) anomaly
in the bearing but can also tell what part and possible causes
involved.
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8. APPENDIX

Table 3. Table for comprehensive tests done

NoScaler + Stat (Reducer) Accuracy f1 score AUC EM MV
Feature Extractor Algorithm X val X test X val X test X val X test X val X test X val X test

Supervised PCA SVM 0.62 0.62 0.63 0.63 0.62 0.63
PCA GradientBoost 0.69 0.70 0.59 0.60 0.57 0.57
Stat SVM 0.95 0.96 0.95 0.96 0.99 0.99
Stat GradientBoost 0.98 0.98 0.98 0.98 1.00 1.00

Unsupervised Stat OCSVM (always predict 0) 0.70 0.70 0.57 0.57 0.50 0.50 1.13 0.00 1.74E+11 8.63E+11
Stat KNN 0.70 0.70 0.57 0.57 0.66 0.70 0.00 0.01 2.56E+14 2.33E+12
Stat Feature Bagging 0.70 0.69 0.58 0.57 0.44 0.49 0.01 0.00 1.77E+12 9.77E+14
Stat LOF 0.69 0.70 0.57 0.58 0.47 0.53 0.00 0.02 1.02E+12 3.48E+15
Stat Isolation Forest 0.82 0.85 0.81 0.84 0.91 0.93 0.11 0.04 1.37E+12 6.38E+15
Stat PCA detector 0.93 0.91 0.93 0.91 0.97 0.97 0.00 0.17 1.21E+15 7.22E+14
PCA OCSVM 0.67 0.68 0.59 0.61 0.56 0.52 1.77 7.03 0.05 0.03
PCA KNN 0.68 0.68 0.59 0.58 0.66 0.59 0.40 0.77 0.07 0.05
PCA Feature Bagging 0.69 0.69 0.57 0.57 0.57 0.58 0.08 0.01 0.28 2.62
PCA LOF 0.70 0.69 0.58 0.58 0.59 0.56 1.33 0.72 0.03 0.05
PCA Isolation Forest 0.66 0.67 0.55 0.57 0.51 0.55 0.01 0.07 2.03 0.35
PCA PCA detector (always predict 0) 0.70 0.70 0.57 0.57 0.55 0.56 0.99 0.71 0.03 0.04
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