
Model-Based Remaining-Useful-Life Prognostics for Aircraft
Cooling Units

Ingeborg de Pater, Mihaela Mitici

Faculty of Aerospace Engineering, Delft University of technology, Kluyverweg 1, 2628HS Delft, The Netherlands
i.i.depater@tudelft.nl
m.a.mitici@tudelft.nl

ABSTRACT

In this paper we develop model-based RUL prognostics for
aircraft Cooling Units using operational data recorded dur-
ing the flights of several aircraft. We estimate the distribution
of the RUL of aircraft Cooling Units using a particle filter-
ing algorithm with an exponential degradation model. The
obtained RUL prognostics are assessed once a Cooling Unit
is diagnosed as unhealthy, and just before failure. The re-
sults show that our proposed methodology is able to estimate
well the RUL of the Cooling Units, both when a Cooling Unit
crosses a prediction threshold and is expected to fail in the
near-future, and just before failure. The choice of the pre-
diction horizon is relevant from the point of view of the plan-
ning of aircraft maintenance. In practice, regular maintenance
checks are scheduled at short time intervals of a few weeks.
Having accurate RUL prognostics over such time horizons
enables maintenance planners to efficiently plan maintenance
tasks. In addition, the fact that we estimate the uncertainty as-
sociated with the RUL prognostics enables the maintenance
planners to prioritize the maintenance of aircraft components.

1. INTRODUCTION

Global aircraft Maintenance, Repair and Operations (MRO)
costs in 2018 represent 9% of the total airlines operational
costs (IATA, 2019). To reduce the costs of aircraft mainte-
nance, and, in particular, to reduce the costs with unscheduled
maintenance due to unexpected failures, MROs are striving
to conduct predictive maintenance by making use of continu-
ously recorded data on the health of aircraft systems and com-
ponents. As such, prognostics of the Remaining-Useful-Life
(RUL) of aircraft components are crucial to support effective
predictive aircraft maintenance planning.

In general, the RUL prediction methods can be classified as
data-driven methods, model-based methods, and hybrid mod-
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els. Data-driven methods make use of machine learning algo-
rithms to identify degradation patterns in the measurements
recorded for systems/components with a focus on neural net-
works (Atiya, El-Shoura, Shaheen, & El-Sherif, 1999; Liang
& Liang, 2006), such as neural fuzzy networks and recurrent
neural networks (Liu, Wang, Ma, Yang, & Yang, 2012).

Model-based methods propose degradation models, usually
using stochastic processes such as Markov processes (Dui,
Si, Zuo, & Sun, 2015; Cui, Xu, & Zhao, 2010), Wiener pro-
cesses (Zhang, Si, Hu, & Lei, 2018; Si, Wang, Chen, Hu,
& Zhou, 2013), Gaussian mixture models (Yu, 2013) and
Gamma processes (Lee & Mitici, 2020). In some studies,
these mathematical models have a direct physical interpreta-
tions (Lei et al., 2016; Guérin, Barreau, Cloupet, Hersant, &
Hambli, 2010). In (Lei et al., 2016) the authors assume a
Paris-Erdogan law for the degradation of machineries caused
by micro fatigue cracks. In (Guérin et al., 2010) a physical
model (Archard law) for disc brake wear is compared against
a Bayesian estimation of the parameters of a Wiener degra-
dation process for the brakes. Regarding the types of sys-
tems/components considered, model-based methods for RUL
estimation have been applied for white-light LEDs (Huang,
Xu, Wang, & Sun, 2015), bearings and rotating machinery
(Li, Lei, Lin, & Ding, 2015; Lei et al., 2016), axial piston
pumps (Wang, Lin, Wang, He, & Zhang, 2016), disc brake
wear (Guérin et al., 2010), electric motors (Çağlar, İkizoğlu,
& Şeker, 2014) and inertial navigation systems (Si et al., 2013).

One of the main challenges for model-based RUL predic-
tion methods is to approximate the functional form of the
degradation model and to estimate the model parameters us-
ing recorded degradation measurements. Here, many stud-
ies assume a generic functional form for a Wiener process
(Zhang et al., 2018) or an exponential process (Park & Pad-
gett, 2006; Gebraeel, Lawley, Li, & Ryan, 2005; Elwany, Ge-
braeel, & Maillart, 2011; Chen & Tsui, 2013), often also tak-
ing into account expert knowledge. Together with a given
functional form of the degradation process, particle filtering
is often employed to estimate the degradation state of the sys-
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tems/components and predict the future development of this
degradation state, based on recorded degradation measure-
ments and model parameters updates.

From a practical point of view of MROs, which provide and
plan maintenance for large fleets of aircraft, it is also impor-
tant that such prognostics can be integrated in their mainte-
nance planning algorithms. Usually, maintenance planners
aim to have RUL prognostics available on a prediction hori-
zon of a few weeks, which allows the preparation of the nec-
essary tools and equipment. The flight schedules, and thus,
the actual availability of aircraft for maintenance is also known
across a planning horizon of a couple of weeks.

In this paper, we address the challenges mentioned above as
follows. We propose a model-based methodology to estimate
the RUL of aircraft Cooling Units. In doing so, we consider
sensor measurements which were recorded while the aircraft
were in operation. We next apply a particle filtering algorithm
and estimate RUL of the component considered using an ex-
ponential functional form of the degradation process for the
components. With this, we estimate the RUL for the compo-
nents. Overall, our results are expected to support MROs in
their efforts for predictive aircraft maintenance planning.

The remainder of the paper is organized as follows. In Sec-
tion 2 we introduce a particle filtering algorithm which is
used to obtain RUL prognostics. In Section 3 we illustrate
our methodology for aircraft Cooling Units. In Section 5 we
provide conclusions and discuss future research directions.

2. REMAINING-USEFUL-LIFE PROGNOSTICS USING PAR-
TICLE FILTERING

In this section we briefly introduce a particle filtering algo-
rithm, which is used to estimate the distribution of the RUL
of aircraft components.

We first introduce the following definitions. Let a stochastic
process {Xt, t ≥ 0} be the degradation of a component over
time, where Xt = x is the degradation level of this compo-
nent at time t. Let D > 0 be a failure threshold. Let the his-
tory of the monitoring time and corresponding measurements
be {t0, . . . , ti} and {Xt0 , . . . , Xti}, respectively, i.e., at the
kth measurement at time tk, the degradation equals Xtk . .

Definition 1 (Component failure) For a component that de-
grades according to {Xt, t ≥ 0}, we say that this component
has failed if Xt ≥ D, t > 0.

Definition 2 (Component RUL) Given a current time ti,
the RUL of a component is defined as follows:

RUL = inf{τ : Xτ+ti ≥ D|Xt0 , . . . , Xti}.

Letmtk denote the sensor measurement of a component taken
at time tk. where these measurements are a function of the

degradation at time tk:

mtk = g(Xtk , vk), (1)

with g(·) a function and with vk i.i.d. Gaussian variables.

Particle filtering (Djuric et al., 2003) is a sequential Monte
Carlo method which recursively computes probability distri-
butions by means of importance sampling and approxima-
tions of probability distributions.

Let us consider the following recurrence function:

Xtk = f(Xtk−1
, ωk), (2)

where Xtk−1
is the degradation level of a component at time

tk−1 and ωk are i.i.d. Gaussian variables.

To obtain RUL prognostics, the particle filtering algorithm
has four steps: i) prediction, i) updating, iii) resampling, and
iv) prognostic.

i) The prediction step

We are interested in the conditional probabilities:

pXtk
|Xtk−1

(Xtk |Xtk−1
) (3)

pXtk−1
|mtk−1

,mtk−2
,...,mt1

(Xtk−1
|mtk−1

,mtk−2
, . . . ,mt1)

(4)

where eq. (4) is the conditional probability density function
of the degradation level of the component at time tk−1, given
the measurements mtk−1

,mtk−2
, . . . ,mt1 , whereas eq. (3)

is the transition probability density function to reach future
degradation state Xtk , given the current degradation Xtk−1

.

Using the Chapman-Kolmogorov equation, we have the fol-
lowing probability density function for the state degradation
at time tk:

pXtk
|mtk−1

,mtk−2
,...,mt1

(xtk |mtk−1
,mtk−2

, . . . ,mt1) (5)

=

∫
pXtk

|Xtk−1
(Xtk |Xtk−1

)

· pXtk−1
|mtk−1

,...,mt1
(Xtk−1

|mtk−1
, . . . ,mt1)dXtk−1

.

ii) The updating step

As soon as new measurements are available, the state prob-
ability density function is updated, using Bayes’ theorem, as
follows:

pXtk
|mtk

,mtk−1
,...,mt1

(Xtk |mtk ,mtk−1
, . . . ,mt1) =

pmtk
|Xtk

(mtk |Xtk)pXtk
|mtk−1

,...,mt1
(Xtk |mtk−1

, . . . ,mt1)

pmtk
|mtk−1

,...,mt1
(mtk |mtk−1

,mtk−2
, . . . ,mt1)

.

iii) The resampling step

We approximate eq. (5) numerically using Importance Sam-
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(a) Sensor 1 (b) Sensor 2 (c) Sensor 3

(d) Sensor 4 (e) Sensor 5 (f) Sensor 6

(g) Sensor 7 (h) Sensor 8 (i) Sensor 9

Figure 1. Mean and maximum sensor measurement per flight for a CU for all nine available sensors. This CU fails at flight 77.

pling as follows. First, we sample M particles from a pdf
p̃Xtk

|Xtk−1
,mtk

,...,mt1
(Xtk |Xtk−1

,mtk , . . . ,mt1).

Then the probability density function of the degradation state
of the component at some time tk is approximated as:

pXtk
|mtk−1

,mtk−2
,...,mt1

(Xtk |mtk−1
,mtk−2

, . . . ,mt1) (6)

∼
M∑

i=1

witk · δ(Xtk −Xi
tk

),

where δ is a Dirac function . Also, witk is the weight of the
ith particle, i ∈ {1, 2, . . . ,M}, at time tk, which is updated
and normalized as follows:

ŵ
(i)
tk

= w
(i)
tk−1

p
mtk
|X(i)

tk

(mk|x(i)tk ) · p
X

(i)
tk
|X(i)

tk−1

(X
(i)
tk
|X(i)

tk−1
)

p̃
X

(i)
tk
|X(i)

tk−1
,mtk

,...,mt1

(X
(i)
tk
|X(i)

tk−1
,mtk , . . . ,mt1)

,

(7)

w
(i)
tk

=
ŵ

(i)
tk∑M

i=1 ŵ
(i)
tk

. (8)

In every re-sampling cycle, particles with higher weights are
re-sampled proportionally to their weight. As the number of

iterations increases, the particles with small weight are elim-
inated, while the particles with large weights are re-sampled,
i.e., a new particle set {x(j)tk }, i ∈ {1, 2, . . . ,M} is gener-
ated by re-sampling M new particles, where the probability
to be resampled is proportional to the weight.

iv) The prognostic

Lastly, we consider a threshold D > 0 and define the follow-
ing stopping time T :

T = inf{t : Xt ≥ D}. (9)

3. MODEL-BASED RUL PROGNOSTICS FOR COOLING
UNITS OF AN AIRCRAFT

In this section we estimate the distribution of the RUL of
Cooling Units (CUs) of wide-body aircraft. The CU is a
vapor cycle refrigeration unit consisting of a compressor, a
condenser, an evaporator, a filter and a flash tank (see Figure
2). After some time of usage, the filter of the CU is clogged
with burned oil, moist and sludge from the compressor, ac-
celerating the compressor wear. Long time exposure to these
conditions negatively affects the condition of the CU, which,
in time, leads to a failure.
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Table 1. Overview of considered health indicators. For each sensor, the correlation coefficient between the health indicator and
the time to failure is given. The highest absolute correlation coefficient is given in bold.

Health-indicator Sensors
1 2 3 4 5 6 7 8 9

RMSf =

√
1
Bi

f

∑Bi
f

b=1(ŷi,sf,b)
2 -0.02 -0.10 0.27 0.45 0.47 -0.11 0.43 0.47 0.27

∆RMSf = RMSf − RMSf−1 0.01 0.02 0.01 0.03 0.00 0.02 0.02 0.00 0.01

Peak-to-peakf = -0.24 0.12 0.25 0.44 0.36 -0.21 0.43 0.36 0.25
max

b∈1,...,Bi
f

(ŷi,sf,b)− min
b∈1,...,Bi

f

(ŷi,sf,b)

Crest Factorf =

max
b∈1,...,Bi

f

(ŷi,sf,b)

RMSf
-0.16 0.09 0.14 -0.10 -0.14 0.05 -0.10 -0.14 0.19

Kurtosisf -0.05 0.16 0.10 -0.11 0.16 0.21 -0.11 0.16 00.10

Skewnessf -0.28 0.03 0.10 -0.22 -0.16 -0.09 -0.22 -0.16 0.10

Each aircraft is equipped with a Cooling System consisting of
four Cooling Units. According to the Minimum Equipment
List (MEL, (EASA, 2018)), an aircraft is allowed to fly if at
least three out of these four Cooling Units are operational (de
Pater & Mitici, 2021).

Figure 2. Schematic representation of a Cooling Unit

3.1. Health indicator for CU

We consider a set of J CUs. For each CU, run-to-failure mea-
surements are considered, available after some initial usage
of the component. Each CU is monitored using nine sensors
S = {1, 2, . . . , 9}, each generating a measurement every 10
seconds during each flight. For the purpose of our analysis,
the data sets are anonymized, and the type of measurement
each sensor generates is thus unknown. Figure 1 shows the
mean and maximum sensor measurement per flight until the
moment of failure for a CU and the nine available sensors.

Let yi,sf,b denote the bth measurement during flight f for CU
i generated by sensor s, and let Bif denote the total number
of measurement for CU i generated during flight f . We first
normalize the sensor measurements as follows:

ŷi,sf,b =
yi,sf,b −mins

maxs − max
b∈1,...,Bi

f

(yi,sf,b)
, s ∈ {1, 2, . . . , 9}, (10)

with mins and maxs the available minimum and maximum
measurement generated by sensor s for the set J of CUs, re-
spectively. For the sensor measurements for CU i, we only
consider the measurements up to flight f .

The normalization is performed to be able to combine the
measurements from multiple sensors, each with different mea-
surement ranges. Moreover, the proposed normalization is
aimed to capture the increase in the maximum sensor mea-
surements per flight towards failure (see Figure 1).

We consider several health indicators, as discussed in (Zhu,
Nostrand, Spiegel, & Morton, 2014). Table 1 shows an overview
of the considered health indicators and the corresponding cor-
relation coefficient. The highest correlation coefficients are
obtained for the Root Mean Square (RMS) health indicator.
We thus construct a health indicator based on the Root Mean
Square (RMS) of the normalized measurements (Zhu et al.,
2014). Let Bif denote the total number of measurements
recorded during flight f for component i. Then the RMS of
sensor s of CU i during flight f is:

RMSi,sf =

√√√√√ 1

Bif

Bi
f∑

b=1

(ŷi,sf,b)
2. (11)

Now, a health indicator mi
f for CU i during flight f is ob-

tained as the moving average of the maximum RMS obtained
by the sensors s ∈ S′, as follows:

mi
f =

1

N




f∑

l=f−N

(
max
s∈S′

RMSi,sl

)
 , (12)

where S′ ⊆ S is the set of sensors for which the RMS of the
measurements obtained in the last 50 flights before failure has
an absolute correlation coefficient (also called trendability)
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(a) Health-indicator for CU 1. (b) Health-indicator for CU 2. (c) Health-indicator for CU 3.

(d) Health-indicator for CU 4. (e) Health-indicator for CU 5.

Figure 3. Health-indicator for CU i ∈ {1, 2, . . . , 5}.

with the time of failure of at least 0.40 (Lei et al., 2018; Yang
et al., 2016). Moreover, N = 10 is the number of flights over
which the moving average is taken. This health-indicator is
shown for CU i ∈ {1, 2, 3, 4, 5} in Figure 3.

3.2. Model-based RUL prognostics

Based on the form of the health-indicators in Figure 3, we
next consider the following exponential degradation model
for the degradation:

Xi
t = αi + exp(βit) + σiBt (13)

where Xi
f is the degradation of component i at time t, αi is

the initial degradation, βi and σi model parameters, and Bt a
standard Brownian motion.

Taking the derivative,

dXi
t = βieβ

itdt+ σidBt

Re-writing the above equation in the form of equations (2)
and (1) with tk − tk−1 = 1 flight, we obtain:

Xi
tk

= Xi
tk−1

+ βitk(tk − tk−1)eβ
i
tk
·tk + σitk∆Btk , (14)

mi
tk

= Xi
tk

+ νitk (15)

where νif ∼ N(0, σνi
f
) is the measurement noise at flight fk.

The distributions of the model parameters are initialized as
βi0 ∼ U(0.01, 0.1), σi0 ∼ U(0, 0.01) and σνi

0
∼ U(1, 2).

The functional form in eq. (13) is assumed based on the fact
that the cumulative damage in the component has an effect on
the degradation rate (Si et al., 2013). It has been shown that an
exponential type of degradation model is a good approxima-
tion for non-linear degradation processes such as corrosion,
bearing degradation, deterioration of LED lighting (Elwany
et al., 2011; Chen & Tsui, 2013). In fact, the CU can also
be seen as subject to corrosion and accelerated wear accumu-
lated over time.

Lastly, with the degradation models introduced above, we ap-
ply the particle filtering algorithm (see Section 2, Step 4) to
estimtate the RUL of the CUs.

We start generating RUL prognostics as soon as the degra-
dation of the CU exceeds a prediction threshold T defined
by the Chebyshev’s inequality (Shakya, Kulkarni, & Darpe,
2014), which specifies that for any probability distribution
with a specified mean µ and standard deviation σ, at most
1
k2 percent of the values from this distribution fall outside the

5

Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN – 978-1-936263-34-9

Page 120



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

(a) Component i = 1. (b) Component i = 2. (c) Component i = 3.

(d) Component i = 4. (e) Component i = 5.

Figure 4. Estimated distribution of RUL for components i ∈ {1, 2, . . . , 5} at the moment the health-indicator of the component
exceeds a prediction threshold T.

µ± kσ interval, k > 0. This implies that

P (|mi
f − µ| ≥ kσ) ≤ 1

k2
, (16)

where µ is the mean and σ is the standard deviation of the
health indicator while it is healthy. We approximate µ and
σ using the measurements available for the first 5 flights (the
beginning of the measurement series). We thus use the fol-
lowing prediction threshold T :

T = µ+ kσ. (17)

We use k = 2 in our approach. The corresponding prediction
threshold is denoted by the red, dotted line in Figure 3. Once
the health-indicator of a component crosses this prediction
threshold, we expect a near-future failure and we expect that
reliable RUL predictions can be made.

4. RESULTS - RUL PROGNOSTICS FOR COOLING UNITS

The results are obtained using a total amount of M = 5.000
particles for the particle filtering algorithm and a failure thresh-
old of D = 22.

Tables 3 and 2 show the mean RUL and the actual RUL for
components i ∈ {1, 2, . . . , 5} at the moment a prediction
threshold T is exceeded (i.e., the CU is expected to fail in
the near-future) and 10 flights before the actual failure time,
respectively. Moreover, Figures 4 and 5 show the estimated

probability density function of the RUL for component i ∈
{1, 2, . . . , 5} at the moment a degradation threshold T is ex-
ceeded and 10 flights before the actual failure time, respec-
tively. From Figure 4c and Table 2, it is clear that the RUL of
CU 3 is underestimated when the health-indicator of the CU
crosses the prediction threshold. However, the prediction of
the RUL for this CU improves when the data of more flights
is gathered, as is clear from the RUL prediction 10 flights
before failure (see Figure 5c and Table 3). In contrast, the
RUL prediction of CU 1 at the moment it crosses the predic-
tion threshold T is very well (see Figure 4a and Table 2), but
the RUL is underestimated 10 flights before failure (see Fig-
ure 5a and Table 3). However, the results show that the RUL
of most components is well estimated across the considered
prediction horizons (at the moment when their degradation
exceeds a prediction threshold T , as well as 10 flights before
the actual failure).

Table 2. Actual and mean estimated RUL (in flights) of CUs
i ∈ {1, 2, 3, 4, 5} at the moment their health-indicator ex-
ceeds a prediction threshold T .

CU i Actual RUL
(flights)

Mean estimated RUL
(flights)

1 38 39
2 10 12
3 18 7
4 10 10
5 12 13
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(a) Component i = 1. (b) Component i = 2. (c) Component i = 3.

(d) Component i = 4. (e) Component i = 5.

Figure 5. Estimated distribution of RUL for components i ∈ {1, 2, . . . , 5}, using a prediction horizon of 10 flights before
failure.

Quantifying the uncertainty associated with RUL prognostics
enables maintenance planners to prioritize maintenance tasks.
Moreover, the horizon of the predictions of 10 to 40 flights
allows the planners to efficiently allocate the resources (man
power, equipment and machines), while the availability of the
aircraft for maintenance, relative to their flight schedule, is
known.

Table 3. Actual and mean estimated RUL (in flights) of CUs
i ∈ {1, 2, 3, 4, 5} 10 flights before the actual failure.

CU i Actual RUL
(flights)

Mean estimated RUL
(flights)

1 10 5
2 10 12
3 10 11
4 10 10
5 10 8

5. CONCLUSIONS

We have proposed a model-based RUL estimation method for
aircraft components, which we illustrated for aircraft Cooling
Units (CUs). For this RUL estimation, we applied a particle
filtering algorithm to the sensor measurements of these CUs.
In doing so, we assumed an exponential functional form for
the degradation process of the components, which is repre-
sentative for the degradation trend of the CUs. Furthermore,
we defined a prediction threshold T after which we started to
predict the RUL, thus ensuring reliable RUL estimates.

The results show that our proposed methodology is able to es-

timate well the RUL of the components for various prediction
horizons. By using a particle filtering algorithm, we are also
able to quantify the uncertainty associated with the RUL pre-
dictions. From a practical point of view, our RUL estimation
results of 10 to 40 flights before failure have the potential to
support aircraft maintenance planning with predictive, short-
term maintenance task scheduling.
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Çağlar, R., İkizoğlu, S., & Şeker, S. (2014). Statistical wiener
process model for vibration signals in accelerated aging
processes of electric motors. Journal of Vibroengineer-
ing, 16(2), 800–807.

Chen, N., & Tsui, K. L. (2013). Condition monitoring and
remaining useful life prediction using degradation sig-
nals: Revisited. IiE Transactions, 45(9), 939–952.

Cui, L., Xu, Y., & Zhao, X. (2010). Developments and appli-
cations of the finite markov chain imbedding approach
in reliability. IEEE Transactions on Reliability, 59(4),
685–690.

de Pater, I., & Mitici, M. (2021). Predictive mainte-
nance for multi-component systems of repairables with

7

Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN – 978-1-936263-34-9

Page 122



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

remaining-useful-life prognostics and a limited stock
of spare components. Reliability Engineering & Sys-
tem Safety, 214, 107761.

Djuric, P. M., Kotecha, J. H., Zhang, J., Huang, Y., Ghirmai,
T., Bugallo, M. F., & Miguez, J. (2003). Particle filter-
ing. IEEE signal processing magazine, 20(5), 19–38.

Dui, H., Si, S., Zuo, M. J., & Sun, S. (2015). Semi-
markov process-based integrated importance measure
for multi-state systems. IEEE Transactions on Relia-
bility, 64(2), 754–765.

EASA. (2018). Easy access rules for master minimum
equipment list (CS-MMEL). European Aviation Safety
Agency (EASA).

Elwany, A. H., Gebraeel, N. Z., & Maillart, L. M. (2011).
Structured replacement policies for components with
complex degradation processes and dedicated sensors.
Operations research, 59(3), 684–695.

Gebraeel, N. Z., Lawley, M. A., Li, R., & Ryan, J. K. (2005).
Residual-life distributions from component degrada-
tion signals: A bayesian approach. IiE Transactions,
37(6), 543–557.
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