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ABSTRACT

Testing equipment is a crucial part of production quality con-
trol in the automotive industry. For those equipments a data-
based Health Monitoring System could be a solution in order
to avoid quality issues and false alarms, that reduce produc-
tion efficiency, potentially leading to huge losses. In man-
ufacturing industries, a widely accepted index for evaluat-
ing process performance is the process capability, which as-
sumes data following a normal distribution. In this article we
propose a capability-based health monitoring method based
on electrical test data. These data might vary according to
the testing equipment, but also on manufacturing parameters.
Gaussian Mixture Models (GMM) are used to model the data
distribution exposed to equipment and parameter variations
supposing that the hypothesis of normal distribution of the
data holds. Two approaches are discussed for selecting the
GMM number of modeled distributions. The first approach
is based on the well-known Bayesian Information Criterion
(BIC). The second approach uses a new multi-criteria index
function. The health monitoring method is evaluated on real
data from In-Circuit Testing (ICT) machines for electronic
components at a Vitesco factory in France.

Alexandre Gaffet et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

In the automotive industry, the large amount of available equip-
ment data promotes the development of data-driven methods
when designing health monitoring systems. If complete in-
formation about the equipment health status and its mainte-
nance operations is available, supervised methods are pre-
ferred. Conversely, if the information is uncertain or unavail-
able, unsupervised methods should be considered. Unsuper-
vised methods are often based on statistical models that learn
trends or anomalies in the data.

One major challenge of the monitoring is to find the appropri-
ate health indicator for the problem. An approach could be to
use a known health indicator with some interesting properties
linked to the problem under study. For instance, (Baraldi,
Di Maio, Rigamonti, Zio, & Seraoui, 2015) used spectral
residual as input of an unsupervised algorithm. Another ap-
proach is to learn it using artificial neural networks (Ren et
al., 2019).

In industry, Statistical Process Control (SPC) is a common
approach to achieve a good quality of production. Links be-
tween the actual performance of production and specification
limits are made using capability indexes (Wu, Pearn, & Kotz,
2009). With these indexes the health monitoring is based
on the probability of finding out-of-bounds outputs from a
process. Nonetheless, process capability indexes are usually
used to supervise the production and do not distinguish the
source of anomalies. Possible sources are the equipment, the
product or its components. The goal of this article is to use
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such capability indexes for health monitoring purposes and
isolate the cause of an anomaly. To this end, the use of Gaus-
sian Mixture Models (GMM) is proposed. Mixture modeling
is a powerful statistical technique for unsupervised density
estimation, especially for high-dimensional data (Mehrjou,
Hosseini, & Araabi, 2016).

The GMM method requires the selection of a number of mix-
ture components, a fitting algorithm and an initialisation method.
To select the right number of mixture components at least two
approaches are possible: the Maximum A Posteriori (MAP)
approach and the full Bayesian approach. The MAP approach
selects the most likely hypothesis according to the data and a
prior distribution of the parameters and is often more tractable
than full Bayesian learning (Montesinos-López et al., 2020).
For the MAP approach, two criteria are presented: the Bayesian
Information Criteria (BIC) and a Mixed-criteria method cre-
ated by machine learning. In this work the Expected Max-
imisation (EM) algorithm is chosen as a fitting algorithm for
GMM. Different initialisation methods are compared on real
data in order to select the most appropriate method for the
application.

In the considered industrial use case the tested products corre-
spond to Printed Circuit Boards (PCB) where electronic com-
ponents are placed using Surface Mount Technology (SMT).
These components are then tested by In Circuit Testing (ICT)
machines. Because of the uncertainty on the completeness
of maintenance data, this paper proposes an original unsuper-
vised health monitoring method using capability index as a
health indicator. It uses tests values to detect faults linked to
the equipment or with the products. The main contribution of
the work is to show that these kinds of methods can provide
useful knowledge for equipment health monitoring.

This paper is organized as follows. Section 2 is devoted to the
presentation of the dataset and our capability-based method-
ology. Section 3 presents the MAP approach and the two
proposed criteria to find the best number of mixture compo-
nents. Section 4 discusses three different initialisation strate-
gies. Application of the capability based methodology is pro-
vided in Section 5. Conclusions and future work are finally
presented in Section 6.

2. METHODOLOGY

2.1. Industrial database

Vitesco production is grouped into product families, accord-
ing to their design and application. Within each of these
product families several product references can be found. For
the sake of standardisation, the production of electronic cards
uses substrates of similar size for each family. This substrate
is called a panel. Panels are composed of identical dupli-
cates of the same product. Electrical tests are designed for
individual product references and have an associated test ver-

sion. A PCB contains several components of different forms
and sizes. The amount of components varies from 10 to 1000,
however, each component needs to be tested individually. For
that purpose one or more test steps are required. The usage of
test versions allows to track any changes on the test steps and
parameters. This product specific approach entails a tremen-
dous amount of combinations to analyse, accordingly, the
chosen monitoring methodology must easily adapt to prod-
uct references and test versions.

The study uses two years of historical data from ICT equip-
ment for several products. As illustrated in Figure 1, on the
ICT two elements interact to make the process product spe-
cific. The first element is the ICT machine, which analyses
the results. All machines can be used for all product families.
The second element is the interface composed of a pneumatic
bed-of-nails wired to fit the specific design of each product
family and to test its electronic components.

Data coming from one interface, one test, one test version and
multiple machines can be seen as a time series. These time
series will be truncated since the production of one specific
product and test version is often discontinuous. Furthermore,
in the meanwhile the same machine can be used for testing
other products with other interfaces. It is then impossible to
extract a continuous time series from test data, which repre-
sent one of the main challenges of this dataset.

Figure 1. ICT equipment

Another challenge in the dataset is the large number of fea-
tures. For each reference of product there are around 1000
tests. The developed a solution should be valid for all these
tests, therefore, have a large power of generalization. Since
ICT tests are supposed to follow a normal distribution, the use
of a process capability index, defined in Section 2.2, seems to
be adapted to evaluate the test process and the health of the
testing equipment. For each test in our dataset the parameters
are the ICT machine, the interface and the product position.
All of these parameters are equipment related. Nonetheless,
there are also product-related parameters. Indeed, for each
product, the mounted electronic components, i.e. the raw ma-
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terials, might come from different providers or have different
values within the expected tolerance. These sources of vari-
ability cannot be controlled in the manufacturing process. For
example, the temperature of the oven may be different and
have an influence on the distribution of the component val-
ues. The idea is then to create groups of products that have the
same parameters. In theory, splitting the data set by machine,
interface and test will result in a normal distribution for each
split. However, this neglects the influence of the raw mate-
rials and the manufacturing process. Nonetheless, including
this information is difficult because the number of parame-
ters to define each group is significantly large. The idea is to
group the data samples according to the distribution created
by the unconsidered parameters. In fact, multiple sets of pa-
rameters could lead to the same distribution. Henceforward,
the hypothesis of normality for these distributions is made.

2.2. Capability

We propose a methodology based on process capability which
is a well-known index in the industry. This index is calcu-
lated over a sample of data given an upper limit and a lower
limit. These limits are defined by an expert during the design
and pre-industrialisation stages of the product. Under some
normality conditions, the index is directly proportional to the
probability that a point in the sample is greater than the up-
per limit or lower than the lower limit. There are different
capability indexes depending on the controlled process. We
decide to use the CPk process capability index.

The choice of this particular capability index among all pos-
sible capability indexes is guided by the application and the
dataset. In machine tool capability (CP ), the size of the de-
viations from the average value of the process determines
the location of the process within the specified limit. Nev-
ertheless, as in our case the process is not always centred
between the specification limits, the CPk index is a better
index. Two other capability indexes could also be interesting:
CPm, so-called Taguchi index (Hsiang, 1985) and CPmk,
which combines the CPm and CPk indexes (Boyles, 1991).
The Taguchi index measures the ability of a process to re-
turn values around a target value. We decide not to use these
indexes because they require the target value of the compo-
nents which in our case does not change in time, contrary to
the specification limits. TheCPk index is defined as follows:

CPk(X) = min

(
UL− µ(X)

3σ(X)
,
µ(X)− LL

3σ(X)

)
(1)

with X a sample of points, µ, σ, UL, LL the mean, the stan-
dard deviation, the upper limit and the lower limit, respec-
tively.

2.3. Overview of the methodology

The proposed methodology is described in Figure 2. The in-
coming time series is defined by selecting one test version,
one test, one period and one interface for that test version.
Production periods are defined for one interface as the time
between two machine replacements. The method starts with a
clustering stage during which Gaussian distributions are iden-
tified in the input data. To each identified mixture component
corresponds a cluster. Then, for each of these mixture compo-
nents, a criticality index is computed as well as a cluster con-
fidence index. This index is called the Posterior Uncertainty
Index (PUI) in the following sections. Then, a detection stage
compares both indexes to thresholds to decide whether the in-
put triggers an alarm or not. When an alarm is triggered, its
root cause analyse starts.

To identify Gaussian models, the method starts by fitting a
GMM that clusters the input data. A MAP approach is used
to determine the best number of components in the mixture.
There are no constraints on the variances and means of GMM.
A particular initialisation strategy is chosen and argued in
Section 4. The clustering stage takes as input a time series
defined as one period of one test and returns as output the
mixture components identified in the period. The clusters
correspond to the different Gaussian distributions identified
in the time series.

In order to obtain an index with highly generalizing prop-
erties related to the health state of the equipment, the CPk
index has been chosen as the criticality index. One of the ad-
vantages of GMM is to build cluster membership functions
for all points. These functions are used to propose an index
of the quality of the mixture. The objective of this second in-
dex, the PUI index, is to control the posterior uncertainty of
the chosen mixture components of all GMM points.

During the detection stage, the CPk and the PUI indexes are
used. The CPk index is compared to a threshold fixed as a
model parameter. It determines the criticality of the input data
cluster. Indeed, the smaller the CPk, the higher the proba-
bility of encountering out-of-bounds tests. The PUI is also
compared to a threshold to determine if the built mixture is
acceptable. If mixture is not acceptable, all test values in the
period are assigned to the same cluster and CPk is recom-
puted with it. The goal of this health monitoring stage is to
detect within the acceptable mixtures those input clusters that
have a high probability of containing out-of-bounds test val-
ues.

If the input clusters have out-of-bounds CPk index and PUI,
then an isolation stage starts. These clusters are then called
critical clusters. The idea is to compare the criticality index
between ICT machines, interfaces and product positions in
order to isolate the detected fault. In our case, the isolation
consists in finding the elements responsible for the critical
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Figure 2. Overview of the proposed method

clusters. Possible candidates are the ICT machine, the inter-
face and the product group.

2.4. Gaussian Mixture Model

Our methodology requires an unsupervised machine learning
algorithm to automatically identify the distributions in a time
series defined for one test and one period. For our data, the
hypothesis of normality is considered, i.e. the distributions to
be identified are Gaussian distributions.

Among the iterative clustering algorithms, k-means is one of
the most popular. However, in our case, its application is diffi-
cult because the variance for each distribution can be different
and k-means can be seen as a GMM with spherical Gaussian
functions having a common width parameter σ (Bishop et al.,
1995).

The Expected Maximisation (EM) algorithm for the GMM
method seems to be more appropriate for the data. The EM
algorithm iteratively improves an initial clustering solution in
order to better fit the data to the chosen mixture (McLachlan
& Thriyambakam, 1997). The solution is the locally optimal
point with respect to a clustering criterion. The criterion used
in the EM algorithm is the log-likelihood. It represents the
probabilistic measure of how well the data of the EM algo-
rithm fit the mixture. Another advantage of the EM algorithm
compared to k-means concerns the membership function of
the identified clusters. Indeed, k-means uses a membership
function that assigns a point to a single cluster. Therefore, it is
not possible to describe the uncertainty of clustering for each
point. On the contrary, for GMM, the membership functions
can take any value between 0 and 1 and can be used to build
an uncertainty index (Bradley, Fayyad, & Reina, 1999). Let
µk(x) denote the membership function of the cluster k ∈ K
for a point x with K the number of mixture components of
the GMM. Posterior Uncertainty Index (PUI) is defined by

PUI =

n∑

i=1

max
k∈K

(µk(xi)) (2)

with n the number of points of one period.

Nonetheless, like k-means, the EM algorithm gives a local
optimum solution. This means that the solution depends on
the initialisation of the algorithm. The quality of the solu-
tion relies on the chosen initialisation strategy. Initialisation
strategies are discussed in Section 4.

3. MODEL SELECTION STRATEGIES

In order to choose the best number of distributions to con-
sider during the GMM stages, two solutions are investigated.
The first solution is linked to the popular Bayesian Informa-
tion Criterion (BIC) (Schwarz et al., 1978) and Akaike In-
formation Criterion (AIC) (Akaike, 1998). To determine the
best number of distributions, this solution considers the prob-
lem as a component density estimation problem. It searches
for a mixture solution that has a Probability Density Func-
tion (pdf) as close as possible to the pdf of the data. If the
hypothesis of normality of data is respected, the considered
approximation is adequate according to the properties of the
BIC explained in Section 3.1. The second solution considers
a trade-off between the BIC and some properties of the mix-
ture components and the distributions formed by the GMM.
These properties are: the skewness and kurtosis of the mix-
ture components and the overlap of the distributions. We pro-
pose a Mixed-criteria method to determine the best number
of mixture components for the GMM.

3.1. Model order selection : BIC

Determining the correct number of mixture components in an
unsupervised learning problem is a difficult task. For GMM
the problem can be translated into finding the right number
K of normal distributions in the mixture. A finite mixture
distribution G is defined as:

G =

K∑

k=1

ηkfk(y|θk) (3)
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where ηk are the weights of the kth GMM normal distribu-
tion, fk is its density function parametrised by θk and y =
(y1, ..., yn) are the observations, i.e. the data in one period.

Selecting a wrong K may produce a poor density estimation.
A common approach to select the best number of features
is the MAP approach. This approach creates mixtures with
different numbers of distributions. Depending on a criterion,
the approach will select the best mixture model. The most
popular criteria for model selection are BIC and AIC. These
criteria are based on the log likelihood function of a mixture
modelMK withK being the number of mixture components.
Let n be the number of points of the dataset, the log likelihood
is defined as:

l(θK ;K) = log(L(θK ;K)) (4)

with

L(θK ;K) =
n∏

i=1

[
K∑

k=1

ηkfk(yi|θk)]. (5)

Both BIC and AIC use the penalty term vK defined as vK =
K(1 + r + r(r + 1)/2)− 1 with r the number of features in
the dataset. This penalty term is proportional to the number
of free parameters in the mixture modelMk and penalises the
complexity of the model. BIC is defined as follows:

BIC(K) = −2l(θK ;K) + vK log(n) (6)

with n the number of points.

AIC is defined as follows:

AIC(K) = −2l(θK ;K) + 2vK (7)

BIC approximates the marginal likelihood of a mixture model
Mk and AIC is related to the Kullback-Leibler divergence be-
tween the mixture model and the real dataset. Both criteria
have, under appropriate regular conditions, interesting prop-
erties. In particular, they both assume that the true distribu-
tion of the data lies within the created mixture models. Under
this condition, BIC has been shown to be consistent (Yang,
2005). Indeed, if among the created mixture models, a model
has the distribution of the data, it will be selected by BIC. For
AIC, it has been shown that it is minimax optimal, i.e. it will
select the model that minimises the maximum risk among all
the built models (Yang, 2005). However, these regular con-
ditions are often not met in practice. In particular for BIC,
Laplace approximations are often invalidated. Nevertheless,
in practice the consistent property of BIC seems to still be
present if the objective of the mixture is to estimate density
(Fraley & Raftery, 2002), (Roeder & Wasserman, 1997). On
the contrary, if the objective is to estimate the real number of
mixture components, AIC is known to overestimate this value
(Celeux & Soromenho, 1996). Therefore, we choose to use
BIC as the first method for our application case.

3.2. Model based clustering : Mixed-criteria method

As AIC and BIC have different, interesting properties, some
articles try to combine them. (Barron, Yang, & Yu, 1994)
proposed the creation of a criterion that combines both of
them into a single one, while (Hansen & Yu, 1999) proposed
to switch between these criteria using a statistical parameter.
More recently, (Peng, Zhang, Kou, & Shi, 2012) proposed a
multiple criteria decision-making based approach using valid-
ity indexes for crisp clustering. We propose a method that can
mix BIC with other criteria, combining their strengths to ob-
tain clusters better suited to our problem than those obtained
with a single criterion. To improve the completeness of the
method, a dataset with similar properties to the one of this
study is created. The learning of the criteria aggregation is
done with that dataset. This subsection describes our propo-
sition for the chosen criteria and the aggregation function.

3.2.1. Chosen criteria

Several criteria are chosen as input parameters. In addition to
the inference-based criteria BIC and AIC mentioned before,
we also considered the Normalized Entropy Criteria (NEC)
introduced by (Celeux & Soromenho, 1996) and defined as:

NEC(K) =
E(K)

l(θK ;K)− l(θ1; 1)
(8)

where E(K) is an entropy measure which involves the pos-
terior probabilities of yi belonging to the kth mixture com-
ponent. Entropy measure is computed by the following equa-
tion:

E(K) = −
K∑

k=1

n∑

i=1

tikln(tik) (9)

with

tik =
ηkfk(yi|θk)

∑K
j=1(ηjfj(yi|θj)

(10)

and l(θK ;K), l(θ1; 1) the log likelihoods as defined in Equa-
tion (4). By definition, NEC(1) = 1.

NEC is linked to the overlap between the normal distribu-
tions of the studied mixture. AIC, BIC and NEC can take
very different values depending on the dataset. That is why it
is mandatory to normalise them in order to use them for ma-
chine learning. A min-max normalisation is chosen, so that
each new criterion will take a value between 0 and 1. The
normalisation procedure is described as follows: Let Fe,k be
the value of the input feature for the experiment e and clus-
ter number k. Let NormFe,k be its normalised value, it is
defined as:

NormFe,k =

{
−minp∈[1:P ](Fe,p)+Fe,k

θ(e) if θ(e) 6= 0

0 else
(11)
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with

θ(e) = − max
p∈[1:P ]

(Fe,p) + min
p∈[1:P ]

(Fe,p) (12)

Other criteria linked to the normality of the clusters created
by K mixture components are also considered:

Mkj = max
k∈[1,K]

(|kurtosisk,j |) (13)

mkj =

k=K∑

k=1

(|kurtosisk,j |) (14)

Msj = max
k∈[1:K]

(|skewnessk,j |) (15)

msj =

k=K∑

k=1

(|skewnessk,j |) (16)

Mmj = max
k∈[1,K]

(
|1− mediank,j

meank,j
|
)

(17)

mmj =

k=K∑

k=1

(
|1− mediank,j

meank,j
|
)

(18)

In these equations, the index k, j implies that the selected
value is calculated on the kth distribution of the mixture for
the period j.

For clarity, the set of normalised BIC, AIC, NEC and normality-
linked criteria is henceforth called Xj,K .

3.2.2. Aggregation function and performance assessment
of the criteria

The aggregation function is based on the results of a cluster-
ing stage. This article uses the random forest classifier as it
outperforms support vector machines and logistic regression
for our application. The algorithm classifies the GMMs with
the right number of mixture components into the class “rec-
ognized” and the others into the class “not recognized” using
the chosen criteria Xj,K as input. Nevertheless, this clus-
tering has a major drawback: for one period, several GMMs
can be classified in the “recognized class”. Instead of using
these classes directly, the aggregation function uses the poste-
rior probability of the “recognized” class defined as α(Xj,K).
This allows to choose the best model among the models clas-
sified in the recognized class. The selected model is the one
with the maximum posterior probability.

The pseudo-algorithm for the aggregation function is described
in Algorithm 1. First, for each period in [1 : J ], GMMs are
fitted with a number of distributions ranging from 1 to P .
Next, the chosen criteria Xj,k required by the random forest
classifier are computed for each GMM. Then, the posterior
probability α(Xj,k) given by the random forest classifier is

computed and the GMM with the maximum probability for
the selected period j and number of distributions k in [1 : P ]
is chosen as GMM∗j,K .

Algorithm 1 Best Model Selection

1: Input:
2: Dataset with J periods
3: P , number of distributions to test
4: Random forest classifier already fitted
5: Empty list of GMM
6: Dataset with J periods
7:
8: Output:
9: List of GMM∗

10:
11: for j in 1, ..., J do
12: Maxproba = 0
13: for k in 1, ..., P do
14: Fit GMM with period j and k number of distribu-

tions GMMj,k
15: Compute Xj,k

16: Compute α(Xj,k) using Random forest classi-
fier

17: if α(Xj,k) > Maxproba then
18: GMM∗j,K = GMMj,k

19: Maxproba = α(Xj,k)

20: Insert GMM∗j,K in list of GMM∗

In order to assess the performance of the models selected as
best for each criteria (GMM∗), an evaluation metric m is
defined. This metric is computed for each dataset sample s
and each criterion Xj,K as follows:

ms,Xj,K
=





1 if the criterion Xj,K finds the right number of
mixture components for sample s

0 else.

3.3. Synthetic database

In order to compare the results of the model selection with the
two approaches described in the sections 3.1 and 3.2, some
1D synthetic databases composed of several normal distribu-
tions are created. For the database generation, the procedure
given by (Qiu & Joe, 2006a) is adapted. The general idea is
to create several datasets based on an experimental design. In
order to generate a balanced database, four factors are used:

1. The number of clusters for one example,

2. The minimum separation degree,

3. The relative cluster density,

4. The sample size.

For the first factor, values [1, 2, 3, 4, 5] are used to match the
tests to the exploratory analysis conducted on the industrial
dataset.
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Table 1. Factors of the design of experiments

Factor Values
Number of clusters {1, 2, 3, 4, 5}
Minimum separation degree {10−5, 0.01, 0.21, 0.34}
Relative cluster density {all equal, one cluster 10%

of data, one cluster 60% of
data}

Sample size {500, 1000, 2000}

The minimum separation degree is defined in (Qiu & Joe,
2006b) as an index extracted from an optimal dimension pro-
jection. In our case, the degree is simplified as follows:

Z(a) =
Lk(a)− Uk′(a)

Lk′(a)− Uk(a)
(19)

with Lk, Uk, Lk′ and Uk′ the lower and upper a
2 percentiles

of classes k and k′.

(Qiu & Joe, 2006b) present three separation values for the
generation: Z = 0.01 indicates a close structure, Z = 0.21
indicates a separated structure and Z = 0.34 indicates a well-
separated cluster structure. We choose to add the value Z =
10−5 to create a very closer structure because in our data, we
have closer structure than the ones created with Z = 0.01.

The relative cluster density factor is based on (Shireman, Stein-
ley, & Brusco, 2017) and is defined as follows:

1. all clusters have the same number of points,
2. one cluster has 10% observations and the other clusters

have the same number of observations,
3. one cluster has 60% of the observations and the other

clusters have the same number of observations.

Finally, the considered sample size values are [500, 1000, 2000].
This corresponds to the period length in the application. Ta-
ble 1 summarized the factors used in the proposed design of
experiment.

3.4. Results

Model selection results are obtained by a cross-validation over
the test data. The dataset is divided into four random parts in-
dexed by t in the following. Then, each part of the dataset
is chosen as the test dataset, the three other parts are used to
learn the random classifier inside the Mixed-criteria method.
The results presented in Table 2 correspond to the following
evaluation metric D:

D =
1

4 · S ·
4∑

t=1

S∑

st=1

mst,i (20)

with S the number of samples per parts. The closer D is to 1,
the better the model selection.

The results in Table 2 show that BIC is very good at deter-
mining the right number of mixture components and works

Table 2. Performance comparison of criteria

Criterion Generated Distributions
All 1 2 3 4 5

AIC 0,684 0,808 0,752 0,665 0,640 0,561
BIC 0,986 0,989 0.995 0,989 0.993 0,965
NEC 0,926 0,872 0,992 0,936 0,908 0,921
mk 0,524 0,975 0,890 0,363 0,226 0,175
Mk 0,664 0,955 0,884 0,534 0,471 0,478
Ms 0,423 0,994 0,661 0,273 0,135 0,056
ms 0,339 0,994 0,554 0,138 0,006 0,003
mm 0,264 0,978 0,179 0,064 0,074 0,021
Mm 0,227 0,895 0,115 0,050 0,049 0,019
Mixed-criteria 0,993 0,997 0,997 1,000 0,995 0,997

much better than AIC. The Mixed-criteria method improves
the results of the BIC criterion and almost always finds the
right number of mixture components.

In our case, both BIC and Mixed-criteria method can be used.
The main differences in the clusters obtained with both ap-
proaches are found for the overlap cases. The Mixed-criteria
method is less likely to accept mixtures with overlapping be-
tween distributions, while this does not directly affect BIC.

4. INITIALISATION STRATEGIES

Initialisation strategies are very important to limit cost time
of an algorithm. As the method has to be run at least 1000
times per product, the cost time is an important parameter.
For our application, the choice is made to test three different
categories of initialisation strategies.

4.1. Random initialisation

Initialisation strategies based on stochastic methods are quite
popular. Among them, two methods are tested. A first basic
strategy consists in initialising the EM input parameters ran-
domly for a fixed number of Gaussian distributions. The EM
parameters are in that case the variance, the mean, and the
weight of each mixture component.

(Biernacki, Celeux, & Govaert, 2003) presents the second
strategy called “emEM” (for expected maximisation Expected
Maximisation). This method starts with a stage called short
EM. In this stage, an EM algorithm is run for several itera-
tions from random starting points. The number of iterations
of this stage is set as a parameter. Finally, among the solutions
given by the short EM, the strategy with the highest likelihood
is chosen. Then the EM algorithm is run, starting with the pa-
rameters of the chosen solution. This allows more initialisa-
tion solutions to be explored or less time to be spent exploring
the same number of initialisation solutions. This approach,
which is considered the most efficient by (Biernacki et al.,
2003), has some drawbacks. The maximum number of itera-
tions in the short EM stage has to be defined by the user and
can have a huge impact on the final result of the algorithm.
Moreover, this parameter can change depending on the con-
sidered test and period. Another drawback, shared by both
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approaches, is that they can lead to locally optimal solutions
when too few initialisations are performed. This drawback is
aggravated for the emEM because the first stage restricts the
search space by construction.

4.2. K-means initialisation

Some methods use the results of a k-means clustering al-
gorithm as input of the EM algorithm. In (Steinley & Br-
usco, 2011), a theoretical property between the parameters
extracted from a solution given by a k-means algorithm and
a mixture model is demonstrated. The main drawback of this
approach is that, as for random methods, it could lead to lo-
cally optimal solutions. Additionally, the number of initiali-
sations of the k-means procedure is also a parameter to settle.
Another drawback relates to the solutions generated by this
method. When clusters overlap, k-means has difficulties in
representing correctly the data. Moreover, when the data have
a large difference in variance within their Gaussian distribu-
tion, k-means is not the most suitable algorithm (Shireman et
al., 2017).

A classical procedure with a fixed number of initialisations
of the k-means method has been tested. It gives a set of so-
lutions which are then used as input for the EM algorithm.
In addition, an approach with “short EM”, similar to the one
with the random initialisation method, has also been tested.

4.3. Otsu initialisation

One of our contributions is a new initialisation strategy adapted
to small dimensions. It is based on a clustering procedure,
named the Otsu method. This method, described in (Otsu,
1979), is widely used for image segmentation. The initial ob-
jective of the method is to select thresholds between levels in
a greyscale image. It is based on the 1D histogram of grey
levels. For a foreground/background problem, the selected
threshold is defined as the one that minimises the intra-cluster
variance. This problem can be translated as finding different
distributions in a greyscale histogram, which has similarities
with our clustering problem. For multiple clusters, an im-
plementation of this algorithm is described in (Liao, Chen,
Chung, et al., 2001). For our application, the outputs of the
multi-cluster Otsu method are used as input by the EM al-
gorithm. One of the main drawbacks of this approach is the
restriction of the search space to only one possible result.

4.4. Evaluation of the initialisation strategies

The following procedure is used in order to evaluate the qual-
ity of performance of different initialisation methods. The in-
put is a dataset divided into samples. One sample represents
a period of production of one test. The performance of each
initialisation method is evaluated according to three criteria:
the ability to find the best global solution (BIC in our case),
the ability to find the closest result to the optimal solution and

the computation time of the evaluated strategy.

4.4.1. Best global solution

The best global solution is given by BIC. The lowest BIC is
the best local solution that can be given by the EM algorithm
in terms of fitting the Gaussian mixture density. Therefore,
this criterion is chosen as an indicator of the fitting algorithm.
For each input, the l strategy with the lowest BIC receives a
score ζj,l equal to 1 and the other strategies receive a score
of 0. Then, for each initialisation strategy l, a global index
called GFIl (Global Fitting Index) is built over all inputs and
is defined as follows:

GFIl =
1

J

J∑

j=1

ζj,l (21)

with

ζj,l =

{
1 if BICj,l = maxi∈[1,L](BICj,i)
0 else. (22)

where J is the number of inputs, l is the evaluated strategy, L
is the total number of strategies evaluated and j indexes over
all inputs.

4.4.2. Distance to the optimal solution

One of the main drawbacks of the previous metric is that if an
initialisation strategy is always the second best, it will have a
GFI of 0, even if it could be an acceptable solution. In order
to complete the evaluation, another metric ∆ is proposed and
defined as follows:

∆l =

J∑

j=1

scorej,l (23)

with

scorej,l =

{
Distopt(j, l) if βj 6= 0
0 else. (24)

Distopt(j, l) =
mint∈L(BICj,t)−BICj,l

βj
(25)

and
βj = (max

t∈L
(BICj,t)−min

t∈L
(BICj,t)) (26)

with l a strategy of initialisation and j one period.

4.4.3. Time and Parameters

In order to evaluate the efficiency of each initialisation strat-
egy, the elapsed time required by the EM algorithm and the
initialisation is measured. The time was measured from the
beginning of the initialisation for the first test to the end of
the clustering for the last test of the database. Then, the mean
elapsed time per period for each set of parameters and each
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initialisation method is computed.

In order to assess the performance of an initialisation method,
a design of experiments is proposed. Four factors are used:

1. The initialisation method: k-means, Random or Otsu;
2. The convergence threshold;
3. The number of iterations of the short EM part of the al-

gorithm;
4. The number of initialisations.

For the Otsu initialisation method, the only possible factor is
the convergence threshold. When the convergence threshold
is less than the lower bound gain on the likelihood, the EM it-
erations stop. The convergence threshold tested values are
[10−5, 10−4, 10−3, 10−2]. The tested number of iterations
of the short EM part are [10, 20, 50, 100, 200, inf ], when the
number is infinite, then there is no short EM stage. The tested
values of the number of initialisation are [10, 20, 40, 50, 60].
The presented results are obtained with 100 tests and 14 peri-
ods for each test.

Figure 3. Best global solution vs mean time per period

By analysing the results presented in Figure 3, it can be ob-
served that the k-means method has globally the best solu-
tions in terms of GFI . In the meanwhile, the solutions pro-
vided by the random initialisation method are faster than those
obtained with k-means but provide less fitted solutions. The
Otsu initialisation method has a GFI score close to that of
k-means only for the smallest convergence threshold. Fur-
thermore, the initialisation time of the Otsu method seems to
be too large to be competitive against the k-means method.
For these reasons, the k-means initialisation method is cho-
sen in the following part and the different scores are then re-
computed for the solutions given by the k-means initialisation
method.

Figure 5 and Figure 4 respectively give the GFI and the ∆
scores as a function of the mean time per period. One set of
parameters seems to be the best compromise between com-
putation time and fitting: the k-means initialisation method,
a convergence threshold of 10−5, no short EM stage and 10
initialisations.

Figure 4. Best global solution vs mean time per period for
k-means initialisation method solutions

Figure 5. Distance to the optimal solution vs mean time per
period for k-means initialisation method solutions

5. APPLICATION OF THE PROPOSED METHOD FOR ONE
TEST VERSION

The method described in Section 2.3 was implemented on a
dataset formed by the test values for one test version and for
two interfaces. The method was implemented with Python 3.
The EM algorithm and Random Forest are from the scikit-
learn library. The studied version has 1012 tests per product.
In order to choose the thresholds of the CPk index and of
the PUI, a directory of maintenance operations is used. Three
tests lead to maintenance operations. The value of threshold
1 for the CPk index and 0.8 for PUI allow the detection of
these three tests found in the maintenance operation direc-
tory. Moreover, the method also detects ten other tests whose
distributions are in contradiction with the specification lim-
its previously defined as UL and LL in Equation 1. This
section illustrates the health monitoring methodology on one
test with product-related faults. The shown tested component
is a resistor with a nominal value of 1000Ω, a lower limit of
970Ω and an upper limit of 1030Ω.

The time series is presented in Figure 6 where different colours
correspond to different periods. Period number 3 is identi-
fied by the orange rectangle, and seems to be abnormal as the
tested components group has a mean closer to the lower limit
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than the mean of the groups in the other periods. Moreover,
this period is particularly interesting as it seems to have at
least two groups with different means.

Figure 6. Time series of resistance example for the year 2020
and one test version

The method starts with the identification of clusters with a
GMM algorithm. Both BIC and Mixed-criteria method find
4 clusters with the initialisation parameters chosen as con-
cluded in Section 4.4: k-means initialisation method, a con-
vergence threshold of 10−5, no short EM stage and 10 ini-
tialisations. The Mixed-criteria method uses an aggregation
function with a random forest classifier trained on the syn-
thetic database created in Section 3.3

The results of the clustering stage are presented in Figure 7:
the best number of clusters is 4, according to the BIC method.
The figure shows the number of samples for each test value
for the period number 3.

Figure 7. Histogram of the classes of the period number 3

Four clusters are identified by the clustering algorithm: clus-
ters 1, 3 and 4 correspond to the mixture components with a
mean close to the lower limit while cluster 2 corresponds to a
distribution with a mean close to the nominal value.

Figure 8 illustrates the actual density and the density estima-
tion for GMM if only 2 clusters are selected: the fitting error
is clearly important. Figure 9 illustrates the actual density and
the density estimation for GMM if 4 clusters are selected. The
GMM with 4 clusters exhibits a lower fitting error and higher
cluster overlapping than the GMM with 2 clusters.

Figure 8. Kernel density estimation for GMM with 2 mixture
components

Figure 9. Kernel density estimation for GMM with 4 mixture
components

During the detection stage, the CPk and the PUI indexes are
computed and compared to the chosen thresholds. The criti-
cality index computed for each cluster is presented in Table 3.
Cluster 3 has a criticality index smaller than the threshold,
so this cluster triggers an alarm. The PUI value is 1, that is
higher than the chosen threshold. The isolation stage must
then be launched for cluster 3.

As an alarm is triggered by the detection stage for cluster
3, the isolation stage of the method is then started. Table 4
presents the criticality indexes of the other product positions
and interfaces for the same test. The studied interface is in-
terface number 1160 and the position on the panel is 1. The
studied product has two positions and two interfaces (1160
and 1161).

The results of Table 4 imply an anomaly related to the product
itself. Indeed, for this period, all the positions and interfaces
have one mixture component (clusters in bold in Table 4) with
a criticality index lower than the acceptable threshold. It is

Table 3. CPk per cluster for period 3

cluster Number of points CPk
1 168 1.44
2 165 2.46
3 212 0.68
4 373 2.20
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Table 4. CPk for period 3 for the two positions and the two
interfaces

Cluster number Position Interface CPk
1 1 1161 4.81
2 1 1161 0,63
3 1 1161 4.25
1 2 1161 4.19
2 2 1161 0.69
3 2 1161 4.76
4 2 1161 2.29
1 1 1160 1.44
2 1 1160 2.46
3 1 1160 0.67
4 1 1160 2.20
1 2 1160 1.58
2 2 1160 2.42
3 2 1160 0.72

impossible for two different machines and two interfaces to
have the same anomaly at the same period. Considering this,
it can be concluded that the found anomalies (CPk < 1)
come from the products and the equipment.

6. CONCLUSION AND FUTURE WORK

This article proposes a data-based health monitoring method
for both fault detection and isolation that uses the CPk as a
health indicator. The results show that the CPk is linked to
the health of the equipment or product group. The study of
initialisation strategies allows to choose a strategy and a set of
parameters adapted to our application. The proposed method
allows to detect more tests close to the acceptable limits with-
out triggering false alarms. It also provides fault isolation by
comparing the criticality index from different product posi-
tions, machines and interfaces. It can also provide decision
support to ICT machine operators and maintenance person-
nel.

The CPk is directly linked to the probability of having one
value out-of-bounds if the hypothesis of data normality is re-
spected. One improvement could be to check the normality
of the built classes. Then, if the data normality hypothesis is
not respected, another method should be used to compute the
probability of having one out-of-bound test value. A good so-
lution could be the Extreme Value Theory (De Haan & Fer-
reira, 2007). Future work will also study a prognosis stage
based on the history of the CPk values and the computed
clusters.
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