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ABSTRACT 

More stringent environmental requirements for gas turbine 

pushed towards the development of new methodologies to 

sense and monitor the combustion process. 

New dynamic pressure sensors based on optical 

interferometry have been developed to improve 

performances of traditional piezoelectric sensors at low 

frequency and high temperature which limit their capability 

of detecting impending blowout conditions. 

By acting on combustion settings, equivalence ratio has been 

varied to produce lean combustion regimes under which 

optical and piezo sensors performance have been compared. 

The data collected were analyzed with two wavelet-based 

signal processing methods designed to represent flame health 

indicators. The first algorithm simply exploits the well-

known wavelets time/frequency analysis capability to carry 

out an investigation of signal variations at a lower frequency 

range up to 40 Hz. The second uses wavelets to extract non-

linear characteristics of the signal related to the fractal 

dimension of the signal itself.  

The flame health indicators computed on data acquired by the 

optical sensor, reacted to changes in combustion dynamics 

preceding the blow out event. This was not the case with the 

data set acquired from the piezoelectric technology.  

The combination of optical sensing and wavelet analysis 

allows to define quantities that can be associated to the health 

of the flame and give hints about the imminence of the flame 

extinction. 

1. INTRODUCTION

Increasingly restrictive emission standards compel power 

generation systems to operate within lean combustion limits 

in order to reduce the formation of NOx. Under lean 

conditions, the combustion process becomes more vulnerable 

to small dynamic pressure perturbations caused by load 

changes, variations in air temperature or humidity. When the 

air-fuel ratio shifts towards a lean mixture the flame speed 

gradually decreases from its value at stoichiometric 

conditions. Once the flow velocity of the fuel mixture 

exceeds the local flame speed of the reacting components, the 

flame becomes unstable and can be swept away by the flow 

from the unburned reactants and blowout can take place. A 

blowout event, i.e., the disappearance of the flame, caused by 

an excessive leanness of the reacting mixture is generally 

referred to as a lean blowout (LBO) and may occur due to a 

flame blow-off or flame extinction. LBO represents the main 

challenge when operating combustors in lean conditions 

(Lieuwen & Yang, 2006) and it is a serious problem for 

operations of land-based gas turbines, which may lead to 

engine shutdown, impacting productivity and generating 

revenue losses. 

Currently the risk of LBO is mitigated by operating the 

combustor with a wide margin above the uncertain LBO 

limit. The ability to sense or detect LBO precursors would 

provide significant benefits in terms of engine reliability and 

operability. Trustworthy blowout precursors would enable 

optimal performance by reducing maintenance, shutdown 

time and operating costs overall, while increasing the engine 

life expectancy. Gianluca Nicchiotti et al. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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The present paper is structured as follows.  The first part 

gives an overview of the current methodologies used for LBO 

precursor’s detection. Subsequently, a dynamic pressure 

measurement technology based on optical interferometry is 

introduced.  The improvements brought to the low frequency 

analysis, when compared to piezoelectric sensors are then 

described in details.  Afterwards, two different algorithmic 

approaches used to identify LBO precursors are proposed. In 

conclusion, we will examine the results obtained during an 

“ad hoc” test campaign aimed at studying the behavior of the 

pressure signal in the vicinity of the LBO, where the proposed 

algorithms have been used to analyze data recorded by the 

interferometric optical sensing system. 

2. LBO SENSING: STATE OF THE ART 

 

Development of data acquisition and analysis schemes and 

strategies requires a thorough understanding of the flame 

characteristics which precede LBO. 

Numerous schemes (Glassman, Yetter, & Glumac, 2014), 

(Cheng & Kovitz, 1958) and (Peters & Williams, 1983) have 

been suggested to explain blowout, focusing on the thermal 

balance between heat release rate and heat loss rate.  

Three main mechanisms have been proposed to explain the 

LBO phenomenon. According to Kalghatgi and Gautam 

(1981)  blow-out occurs when the local reactant flow velocity 

exceeds the maximum premixed turbulent burning velocity. 

Broadwell, Dahm and Mungal (1985) identified, among other 

causes, the reaction time not keeping the pace of the changes 

in mixing time, whilst Kim, Williams and Ronney (1996) 

suggested that intrinsic flame-front instability may lead to the 

blowout. In general, burning velocity, flame thickness and 

flow dynamics seem to be the most fundamental parameters 

that govern flame processes close to its extinction. Their 

presence determines changes in thermo-acoustic patterns, 

chemiluminescence and ion emissions, in addition to the 

changes in flame temperatures. These physical quantities can 

be detected by readily available sensors and can be used to 

determine impending blowout identification. 

Chemiluminescence provides information on the presence of 

the combustion process and its energy, as its measurements 

are linked to reaction rate and heat release rate. Therefore, 

chemiluminescence is commonly employed for monitoring 

the flame stability and  blowout detection   (Keller & Saito, 

1987), (Lawn, 2000), (Roby, Hamer, Johnsson, Tilstra, & 

Burt, 1995), (Mehta, Ramachandra, & Strahle, 1981) and 

(Khanna, Vandsburger, Saunders, & Baumann, 2002). In this 

case, the primary chemiluminescent species of interest in a 

hydrocarbon flame are electronically excited OH. This 

method depends on the optical interface, supposedly having 

constant properties, while in practice it may blacken or lose 

transparency, which is a shortcoming regarding embedding 

such sensors in combustors. 

Particle Image Velocimetry (PIV) is a quantitative flow 

visualization technique, used by  Chaudhuri, Kostska, Renfro 

and Cetegen (2010), Raffel, Willert and Kompenhans (1998) 

and Stohr, Boxx, Carter and Meier (2011), to determine the 

instantaneous whole-field fluid velocity, which is one of the 

key parameters characterizing combustion instabilities. This 

is a laboratory method, also requiring large optical access. 

Moreover it results extremely demanding in computation 

time. 

High-speed intensified Charge-Coupled Device (CCD) 

cameras employed to measure flame shape, in conjunction 

with edge detection image processing algorithms, can also 

provide information about the flame health. 

Each of the above sensing technologies features drawbacks 

like: maintainability, operating temperature limits or slow 

response time, which makes pressure sensors based on piezo-

electric effect, the most widely adopted systems for this kind 

of application.  

Dynamic pressure is proportional to the temporal rate of 

change of heat release and many ground-based systems are 

instrumented with dynamic pressure piezoelectric 

transducers (Pressure Sensors, 2021), (Pressure Transducers, 

2021) and (Dynamic Pressure Sensors, 2021). With respect 

to other sensing technology their main advantage lies in the 

possibility of placing them near the fuel injectors in the 

combustor front-end. 

 

3. LBO SENSING:  PIEZO LIMITATIONS 

 

When combustors operate in lean conditions, oscillations 

arise as the equivalence ratio is reduced. Observations and 

numerical simulations have shown that oscillations are 

characterized by high amplitude pressure fluctuations caused 

by the local flame blowout and re-ignition events, happening 

at low frequencies. The occurrence of these partial extinction 

and re-ignition events increases as the flame approaches lean 

blowout. 

All predicted (Yi & Gutmark, 2009) and observed (De Zilwa, 

Uhm, & and Whitelaw, 2000), (Muruganandam & Seitzman, 

2012) and (Nair & Lieuwen, 2005) frequencies are below 40 

Hz, hence the precise observation of low frequency pressure 

signal is central for the analysis of LBO phenomena. 

Piezoelectric (PE) phenomenon has been utilized for decades 

in dynamic pressure measurements.  Various piezoelectric 

materials have extensively been researched for high-

temperature (HT) applications (Cavalloni, Sommer, & and 

Waser, 2011) and each one of them has its own unique 

advantages and drawbacks for use in HT sensors.  

PE pressure sensors exploit the property of piezoelectric 

materials to produce charge output proportional to pressure. 
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However the way in which piezoelectric materials react to 

high temperatures or temperature transient conditions may 

affect sensor performance at low frequencies. 

In general, PE sensors cannot produce output proportional to 

static pressure. The charge created by applied static pressure 

will eventually leak through the material and disappear.  The 

pace of the electric charge leakage shapes the sensor 

sensitivity to low frequency pressure changes, i.e., its low 

frequency response.  The resistance, which drops with 

temperature increase at about a factor 10 every 100°C (Jiang, 

Kim, Zhang, Johnson and Salazar, 2014), accelerates the 

charge leakage through the PE crystal, hence dropping the 

sensitivity to low frequency pressure changes. At the same 

time at high temperatures, phenomena like twinning and 

pyro-electricity arise increasing the measurement noise. 

The combination of all these factors makes quantitative and 

qualitative evaluation of low frequency measurements at 

temperatures above 450°C with PE sensors difficult or even 

not possible in certain particular cases. 

 

 

4. LBO SENSING: OPTICAL INTERFEROMETRY 

 

Physical limitations of PE based technologies were the 

driving factors for exploration of pressure sensors designs 

based on Fabry-Pérot interferometry (Hernandez, 1986), 

(Berthold & Lopushansky, 2014). In addition to enhanced 

sensitivity at low frequency, optical interferometry should 

provide advantages over piezoelectric sensing also for their 

inherent insensitivity to external perturbations, such as 

electromagnetic interferences and vibrations. 

The interferometric pressure sensing system can be 

subdivided into an optoelectronic interrogator and an optical 

transducer. The subsystems are connected together through an 

optical fiber, so that light signals can be exchanged, as 

shown in Figure 1. 
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Figure 1: Interferometric system working principle 

 

The interrogator sends a light signal out to the Fabry-Pérot 

cavity. The cavity is composed of two semi-reflecting glass 

mirrors. One mirror is directly connected to the optical fiber 

and the other is bonded to a diaphragm, such that the cavity 

dimension varies when it is subjected to pressure. 

Within the Fabry-Pérot cavity, the light is frequency-

modulated by the applied external pressure and returned to 

the remote control side.  The interrogator converts the 

frequency modulation of the light into spatial modulation by 

means of a Fizeau wedge interferometer (Born & Wolf, 1999), 

that produces a fringe signal. The spatially modulated light is 

recorded by a CCD, whose signal is then processed to extract 

the dynamic pressure measurement. 

5. LBO PROCESSING:  LOW FREQUENCY ANALYSIS OF 

NON-STATIONARY SIGNAL 

 

With any type of sensor, implementing a LBO precursor 

detection technique, requires inserting a software module into 

the existing monitoring system. 

A valid LBO precursor should display at least three key 

features: 

 a fast time response,  

 increase monotonically as blowout is approaching,  

 robustness against noise and small deviation of 

signal parameters. 

Based on the phenomenology of an imminent LBO, three 

main signal-processing methods have been used for 

extracting precursors: conventional spectral or wavelet-based 
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time-frequency analysis (Farge, Kevlahan, Perrier, V., & 

Goirand, 1996), statistical analysis and threshold crossing 

analysis (Muruganandam, et al., 2002). As previously 

discussed, in the vicinity of LBO, transients in the low 

frequencies band occur and there is a marked increase in 

power in the 10-50 Hz range. The power in these spectral 

bands increases by a factor of nearly 60 near blowout (Nair 

S. , 2006). 

The primary limitation of a conventional examination of the 

spectrum through Fourier Transform is its insensitivity to 

time-localized events. This shortcoming can be avoided with 

time-frequency data analysis using the wavelet transform, for 

instance. 

5.1. Wavelets 

Wavelets are zero average waveforms with compact support. 

Continuous Wavelet Transform (CWT) is the result of 

convolving the signal 𝑋(𝑡)  with appropriately scaled and 

shifted versions of the mother wavelet 𝝍(t): 

 

𝐶𝑥(𝑎, 𝑏) = ∫ 𝑋(𝑡)
1

√𝑎
𝜓 (

 𝑡−𝑏

𝑎
) 𝑑𝑡     (1) 

  

It determines how much the signal in some localized interval 

around time 𝑏, matches the wavelet basis function 𝜓(t) at the 

scale 𝑎. Thus, it can be used for detection of features with 

certain prescribed characteristics and time scales.  

CWT can be viewed as a generalization of short time Fourier 

transform, which can be recovered by replacing the so called 

mother wavelet 𝜓(𝑡) by the complex exponential 𝑒−𝑖𝑡 , and 

the scale factor is the inverse of the frequency. 

Continuous wavelet coefficients 𝐶𝑥(𝑎, 𝑏)  in Equation (1) are 

the sum of signals, over time, multiplied by scaled and shifted 

versions of the mother wavelet. The higher the 𝐶𝑥, the closer 

the similarity between the signal and the wavelet. Hence, by 

selecting an appropriate wavelet characteristics, the CWT can 

be used to extract precursors from noisy data, with precise 

signal localization. 

If the chosen wavelet belongs to the orthogonal family the 

Discrete (or Dyadic) Wavelet Transform (DWT) can be used 

to reduce the number of coefficients whilst keeping the full 

reconstruction capability of the original signal. DWT limits 

to powers of 2 the variation in scales and shifts. Hence the 

two wavelet parameters are defined as 𝑎 = 2−𝑗 , 𝑏 = 𝑘2−𝑗 

Where j and k are integers. Equation (1) becomes: 

𝐶𝑗,𝑘 = ∫ 𝑋(𝑡)2𝑗/2𝜓(2𝑗𝑡 − 𝑘)𝑑𝑡    (2) 

5.2. Wavelet Flame Health Indicators 

A practical question is often which orthogonal wavelet to use 

and why.  In addition to the popular Morlet wavelet, a variety 

of analytic wavelets have been proposed, including the 

Cauchy, Derivative of Gaussian, lognormal or log Gabor, 

Shannon, and Bessel wavelet (Holschneider, 1995) and 

(Mallat, 1999). For our application, Morse wavelet basis has 

been used. The generalized Morse wavelets were introduced 

by Daubechies and Paul (1980) as the eigenfunctions of a 

time/frequency localization operator. Morse wavelets are 

particularly useful for analyzing localized discontinuities and 

events. They can be parametrized with two values, which 

makes them more versatile than other wavelet families, such 

as Morlet wavelets. Morse wavelets are defined in the 

frequency domain as: 

Ψ𝛽,𝛾(𝜔) = ∫ ψ𝛽,𝛾(𝑡)𝑒−𝑖𝜔𝑡 𝑑𝑡  (3) 

 
where γ > 0 is the shape parameter and β > 0 is the oscillation 

control parameter. In our tests, we set the values γ = 0.1 and 

β = 22, which approximates Bessel wavelet (Lilly & Olhede, 

2012). 

Based on the computed Morse wavelet coefficients, we 

developed two flame health indicators whose objective is to 

behave as LBO precursors. The rationale is to track in time 

the relative wavelet energy within the low frequency band 

between 3 and 40 Hz; a strategy recalling the wavelet entropy 

approach (Rosso, Blanco, & al., 2001). 

The former indicator compares the relative intensity of the 

wavelet coefficients 𝐶𝑗,𝑘 with scale parameter j, spanning a 

frequency range between 3 and 40 Hz. We named it hard 

indicator 𝐼𝐻: 

𝐼𝐻 = ⟨

0,    𝑖𝑓 (𝑚𝑎𝑥(|𝐶𝑗,𝑘|) − 𝑚𝑖𝑛(|𝐶𝑗,𝑘|)) < 𝑚𝑒𝑎𝑛(|𝐶𝑗,𝑘|)
 

𝑚𝑎𝑥(|𝐶𝑗,𝑘|)−𝑚𝑖𝑛 (|𝐶𝑗,𝑘|)

𝑚𝑒𝑎𝑛(||𝐶𝑗,𝑘|)
, 𝑒𝑙𝑠𝑒

  (4) 

 
where max, min and mean indicate the maximum, minimum 

and average operations, respectively. 

The latter follows the evolution of the statistical dispersion of 

the coefficients 𝐶𝑗,𝑘 in the same range of frequencies defined 

above and we named it soft indicator 𝐼𝑆: 

𝐼𝑆(𝑡) =
𝑠𝑡𝑑(|𝐶𝑗,𝑘(𝑡)|)

𝑚𝑒𝑎𝑛(|𝐶𝑗,𝑘(𝑡)|)
  (5) 

 
where std indicates the standard deviation operation. 

 

6. LBO PROCESSING:  NONLINEAR PROPERTIES OF LBO 

TRANSITION 

 

Nonlinear time series analysis approach inspired by chaos 

theory is becoming an increasingly reliable tool for clarifying 

the nonlinear properties of complex dynamics (Henry, 

Lovell, & Camacho, 2001). Investigating nonlinear dynamics 
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of combustors, Kabiraj and Sujith (2012), Gotoda, et al. 

(2012) and Nair and Sujith (2014) showed that the 

‘combustion noise’ generated by the flame is not composed 

by merely stochastic fluctuations and possesses multifractal 

characteristics. The transition to blowout exhibits 

dynamically rich behavior, more specifically, prior to 

blowout, the system switches from low-amplitude periodic 

fluctuations to high-amplitude chaotic fluctuations. 

Noiray and Schuermans (2013) showed that the ‘noise’, 

which in general is either filtered out or treated as stochastic 

background, contains relevant information about the 

dynamical state of the system and can be used to understand 

the combustion health. As a consequence, the separation of 

the measurements into a signal and noise may lead to loss of 

valuable information because the ‘noise’ might be a direct 

consequence of inherent complexity of turbulent combustion 

dynamics. 

Nonlinear dynamical systems are characterized by invariant 

measures, which can be estimated from observed time series. 

The invariant measures are associated with the complexity of 

the underlying system dynamics. The effectiveness of the 

fractal description in detection of pressure fluctuations 

preceding the LBO has been initially presented by Gotoda, et 

al. (2012). Taking advantage of better quality signals from 

the interferometric optical sensors, as a measure of nonlinear 

signal correlation multifractal features, pressure data have 

been extracted and analyzed in quest for LBO precursors. 

6.1. Multifractal analysis and Holder exponent 

 

The term ‘fractal’ (Mandelbrot, 1974) is used to describe 

objects that have a fractional dimension. Fractal structures 

appear naturally in dynamical systems. The analysis of these 

structures provides knowledge about the relation between 

systems, uncertainty and indeterminism. They are especially 

effective for obtaining information about the future behavior 

of complex systems (Aguirre, Viana, & Sanjuán, 2009).  

Fractals are objects presenting self-similarities across 

different scales, which implies long-term memory 

persistence. Mathematically, for a fractal time signal X, 

holds: 

 

𝑋(𝑐𝑡) = 𝑋(𝑡)/𝑐𝐻     (6) 
 

for some scaling c and a constant H. H is called Hurst 

exponent and its value lies between 0 and 1. Hurst exponent 

quantifies the persistence of the signal, and characterizes 

scaling behavior in the time domain. For completely 

uncorrelated noise (white noise), H = 0.5, whereas 

persistence in the random time series yields H > 0.5 and anti-

persistence yields H < 0.5. Hurst exponent can be estimated 

from sampled data and it is linked to fractal dimension D by 

the equation D = 2 – H. 

Low-frequency trends and scaling behavior can also be seen 

in the frequency domain. As opposed to broadband white 

noise, low frequencies dominate for persistent noise. More 

precisely, a time series that exhibits scaling behavior follows 

the frequency-domain scaling behavior described by: 

 

𝐴(𝜈) ∝ 𝜈−|𝛽| (7) 
 

where A is the magnitude of the frequency spectrum and ν 

the frequency. The negative sign in the exponent indicate an 

amplitude decay with higher frequencies. For a time signal, 

mono dimensional, the scaling exponent is related to the 

Hurst exponent through: 

 

𝛽 = 1 − 2𝐻 (8) 
 

The scaling exponent β can be determined by fitting a 

regression line into the log-transformed data points of the 

spectral magnitude over the frequency. These reveals the key 

role played by a precise measurement at low frequencies 

provided by the interferometric optical sensor. 

The Hurst exponent H, describing scaling behavior in random 

processes, can also be determined as a local property when a 

single window of variable length t remains centered on the 

observational point in time t0. In this case, H is referred to as 

the local Holder exponent as opposed to the Hurst exponent, 

which applies to a global property. The rescaled range 

analysis yields one value of the Holder exponent for each 

observational point in time and therefore provides a time 

series H(t). 

Wavelet Leader Multifractal Analysis (WLMA), also known 

as Wavelet Transform Modulus Maxima (WTMM) (Jaffard, 

2004) (Muzy, Bacry, & Arneodo, 1993), is a method which 

allows to estimate the scaling exponents and the 

corresponding fractal features of the signal. 

The Holder exponents of signal X and its singularity 

spectrum can be determined from wavelet leaders (Jaffard, 

Lashermes, & Abry, 2006). Wavelet leaders are constructed 

from the wavelet coefficients, by selecting a subset of 

wavelet transform coefficients 𝑐𝑗,𝑘 , representing the local 

maxima of the coefficients across adjacent dyadic segments 

(Hytönen & Kairema, 2013). The wavelet leader at 𝑡0 at the 

scale j is defined as: 

𝑑𝑗(𝑡0) = 𝑚𝑎𝑥{|𝑐𝑗′,𝑘′|:𝜆𝑗′,𝑘′  ∈ 3𝜆𝑗,𝑘(𝑡0)}   (9) 

 
where 𝜆𝑗,𝑘(𝑡0) is the dyadic segment at the scale j, containing 

𝑡0 and 3𝜆𝑗,𝑘(𝑡0)  is a three times enlarged version of  𝜆𝑗,𝑘(𝑡0), 

i.e., it consists in the union of  𝜆𝑗,𝑘(𝑡0) and its 2 neighbors at 

scale j. The Holder exponent ℎ𝑋 of X at 𝑡0 is then given by: 
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ℎ𝑋(𝑡0) = lim
𝑗→+∞

𝑚𝑖𝑛
log 𝑑𝑗(𝑡0)

log 2−𝑗  (10) 

 
Again the limit can be computed through a regression 

requiring long range time scale (𝑗 → +∞), hence high quality 

data at low frequency are crucial for the correct estimation of 

the parameter. 

Following the concepts of nonlinear time series analysis 

presented by Kabiraj, Saurabh, Wahi and Sujith (2012), (De, 

Bhattacharya, Mondal, Mukhopadhyay and Sen (2020) and 

Gotoda et al. (2012), Holder exponent time-evolution has 

been evaluated as a possible flame health indicator to detect 

impending LBO events. 

Tests on pressure signals recorded with the optical sensor, 

whilst varying combustion equivalence ratio and approaching 

LBO will be presented in the next sections. 

7. LBO MONITORING: TEST SETUP 

 

To assess the performance of the flame health indicators 

described above, we used the data collected during the tests 

presented in  Nicchiotti, et al. (2021). The main objective of 

this study was to compare the optical sensing system with its 

piezo-electric counterpart in a controlled, precise and 

repeatable environment, while running several realistic 

scenarios representative of gas turbine combustion. 

For the flame health indicators, the results obtained by 

processing pressure data from both piezo-electric and optical 

sensors will also be compared. A schematic representation of 

the test rig is shown in Figure 2. The two-stage burner 

generates a swirl stabilized premixed flame of air and 

propane. The pilot and main burner are coaxial and the flame 

evolves in a glass liner of 100-mm diameter and 400-mm 

length. Sensors locations are shown in Figure 3. 

 

 
Figure 2: Schematic representation of the test rig. 

 

Tests were run up to 20 kW thermal power. Both burning air 

(pilot + main air) and cooling air mass flow rates could be set 

up to 8 g/s. Acting on combustion parameters, cooling slots 

and the pulsator parameters, the test rig allows to create 

conditions for premixed to diffusive flame transitions, 

thermoacoustic instabilities, flashbacks and LBO. 

 

Flame

Optical Probe 
#1,
12h

Optical Probe 
#2,
1h

Piezo 
Sensor 

#1,
9h

Piezo Sensor 
#2,
6h

 
Figure 3: Sensors locations; all sensors are flush mounted at 

75 mm downstream from the burner front plate. 

 

Controlled LBOs are initiated at 16 kW by gradually 

increasing the mass flow of burning air, until a strong flame 

dynamic moving up and down along the liner is observed, 

while a characteristic coughing noise is heard. The air mass 

flow rate is maintained over periods of half a minute. The 

lean flame fights for stabilization and loses its footing while 

the combustor walls cool down, moving the heat strain 

downstream in the flame tube.  

LBOs were observed at equivalent ratio Φ ≅  0.6 at low 

power, degrading down to the Φ ≅ 0.7 at high power. 

 

8. LBO MONITORING: TEST RESULTS 

 

Six different controlled LBO tests were performed. For each 

of them the proposed flame health indicators were computed 

for both optical and piezo-electric sensors. An initial analysis 

of scalograms confirms that higher levels of noise at low 

frequencies are observed with piezo-electric sensors. Figure 

4 shows scalograms produced with optical (top) and piezo-

electric (bottom) sensors recordings.  On the optical sensor 

scalogram, the flame “cough” phase or pattern, where the 

main flame detaches and reattaches to the flame holder, is 

clearly observable and the LBO event can be clearly seen at 

time t = 9s. On the contrary, with the piezo-electric data, such 

phenomena are partly hidden by the low frequency noise, 

represented by the lighter areas of the scalogram. 
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Figure 4: Scalograms in proximity of the LBO event for 

both the optical (top) and piezo-electric (bottom) sensors; 

arrows indicate the LBO time event at t = 9s. 

 

8.1. Low Frequency Wavelet Indicators 

 

Behavior of the hard and soft indicators, as described in 

Paragraph 5.2, has been investigated. The hard indicator 𝐼𝐻  is 

displayed in Figure 5 and shows sharp and well visible peaks 

approaching the LBO event. In this test, peaks start appearing 

about 10 seconds before the event and increase in size as the 

flame extinction approaches. The hard indicator 𝐼𝐻   has a low 

response far from the blow out, mitigating the risk of false 

alarms. However, it does not appear really appropriate for a 

continuous measurement of the health of the flame due to its 

discontinuities. 

 

 

 

Figure 5: Hard indicator 𝐼𝐻  derived from the optical sensor 

measurements at low frequency; AU stands for Arbitrary 

Units. 

 

 

 
Figure 6: Soft indicator 𝑰𝑺 derived from the optical sensor 

measurements at low frequency; AU stands for Arbitrary 

Units. 

 

Instead, the soft indicator 𝐼𝑆 has a more gradual response to 

an impending LBO and it starts “reacting” about 15 seconds 

prior to the event, as displayed in Figure 6. The transition is 

not as sharp as for the hard indicator 𝐼𝐻 , but it increases 

smoothly as the event approaches. The soft indicator 𝐼𝑆 seems 

to be able to better represent the state of health of the flame 

at the expense of producing some spurious peaks, as Figure 7 

(top) indicates.

 
 

 
Figure 7: Two test results displaying the soft indicator 𝑰𝑺 

(curve on top) and the raw data (bottom signal) in Arbitrary 

Units (AU). 
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The two indicators have also been computed with the piezo-

electric sensors data. As expected, the lower measurement 

quality at low frequency carried out with these sensors affects 

the indicator performance. Figure 8 shows the two indicators 

computed with the piezo-electric data obtained during the 

same test presented in Figure 5 and Figure 6 for the optical 

measurements. In this case, the LBO event is not visible at 

all. 

Wavelet based health indicators show an overall good 

capability to react as the LBO is approaching, across all tests. 

However they respond more efficiently when the blow-out is 

preceded by a phase, where the main flame detaches and 

reattaches to the flame holder and less when it occurs in a 

smooth, continuous and silent way. Another limitation of 

such indicators is that they do not produce comparable peak 

levels before each LBO. This makes difficult to set thresholds 

for operating a control loop or managing alerts. On the 

contrary, Holder exponent, introduced in Paragraph 6.1 

above, produces peak values more similar across different 

LBOs, as we are going to show in the next paragraph. 

 

 

 
 

 
Figure 8: The hard (top) and soft (bottom) indicators derived 

from the piezo-electric sensor measurements at low 

frequency; AU stands for Arbitrary Units. 

 

 

8.2. Holder exponent 

The Holder exponent was computed for all available LBO 

tests. The general behavior, shown in Figures 9 to 12 (top), is 

quite repeatable.  The Holder exponent value stays around 0.6 

far from the blow-out event, which corresponds to a white 

noise situation, and then increases to 0.7-0.8, indicating 

persistence in the time-series when the flame becomes more 

unstable and comes nearer to extinction. 

 

 

 

Figure 9: Behavior of the Holder exponent, derived from 

optical sensor measurements at low frequency, approaching 

the LBO event; pressure values in arbitrary units are plotted 

below (dotted line). 

 

 

Figure 10: Values of the Holder exponent, derived from 

optical sensor measurements at low frequency, and the mass 

flow rate (dashed line), approaching the LBO event. 

 

In our tests, the Holder exponent increases with the increase 

of air mass flow, whilst fuel rate is kept constant. This affects 

the equivalence ratio and the flame stability. Figure 10  shows 
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both the mass air flow and holder exponent plotted as a 

function of time. Decreasing the equivalence ratio by 

increasing air flow rate brings the flame closer to extinction, 

which happened at about 12:55:45. The plot shows that flame 

health deterioration is well captured by the Holder exponent. 

A comparison with the data obtained with the piezo-electric 

sensors was performed and is presented in Figure 12. As it 

happened for wavelet indicators, even in this case the values 

computed with the piezo-electric data are affected by noise, 

as they required low frequency information. As a 

consequence, the corresponding Holder exponent shows 

values randomly oscillating around 0.5, which represents the 

value expected for uncorrelated noise, as discussed in 

Paragraph 6.1 above. 

 

 

 

Figure 11: The Holder exponent, derived from optical 

sensor measurements at low frequency, approaching the 

LBO event; pressure values in arbitrary units are plotted 

below (dotted line). 

9. CONCLUSIONS 

Dynamic pressure sensors, based on optical interferometry, 

provide good quality, low frequency data at temperatures 

exceeding 450°C. This capability offers a reliable foundation 

for impending LBO indicators estimation.  

This paper introduced three different flame health indicators 

based on low frequency analysis to detect and/or predict 

flame extinction.  When deriving these indicators from low 

frequency measurements from the optical sensing system, it 

enabled the design of flame condition monitoring strategies 

with promising results for LBO detection and prognostics. 

This could lead to a new generation of monitoring tools, 

probably outperforming the current state-of-the-art, when 

applied to extremely aggressive environments, such as the hot 

core of a gas turbine. 

 

 

 

Figure 12: The Holder exponent, derived from both optical 

(top) and piezo-electric (bottom) sensor measurements at 

low frequency, approaching the LBO event. 
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