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ABSTRACT 

The diversity of variants rises continuously within 

production of complex and modular mechanical components 

such as geared motors. At the same time, the requirement 

for a good sound quality of the product increases. In a batch 

size one production, it is difficult for the assembly worker to 

consistently evaluate the product quality. Automation of the 

end-of-line test leads to several challenges. Common 

vibration and acoustic measurements are time-consuming 

and the features must be defined individually for every 

single product configuration. This paper presents a full 

concept for automation or semi-automation of end-of-line 

tests in a highly variant production of geared motors. It is 

shown, how acoustic measurement can be done in common 

industrial production and an overview is given on typically 

used machine learning methods and features for quality 

prediction of geared motors. Furthermore, a concept for 

dealing with the lack of labeled examples is provided to 

analyze historically unknown product configurations. 

Finally, it is discussed how to structure classifiers to capture 

all known and unknown faults. The end-of-line concept is a 

fundamental module for industry 4.0 and can be generalized 

to all modern industrial productions, where batch size one 

and a high diversity of variants are typical. 

1. INTRODUCTION 

Industrial geared motors are often complex and freely or 

modularly configured components. This leads to a high 

diversity of variants, which rises continuously. Additionally, 

the batch size decrease, so that often a batch size one 

production is required. Therefore, it is hard for the assembly 

worker to evaluate the product quality without an automated 

end-of-line test. Firstly, this paper describes the challenges 

of an end-of-line test in a highly variant production and 

presents how geared motors can be analyzed in general. 

This includes a discussion of usable sensor types, feature 

creation, and fault diagnosis, which requires two machine 

learning (ML) use cases. These are the anomaly detection, 

to identify whether the geared motor is healthy, and the fault 

classification, which classifies the type of anomaly. 

Furthermore, a solution is presented of how to augment the 

concept for an end-of-line test in a highly variant 

production. Therefore, further ML techniques are proposed, 

including clustering, data augmentation, and transfer 

learning. 

2. CHARACTERISTICS OF THE END-OF-LINE TESTS 

Constant product quality is important. Therefore an end-of-

line test is used to evaluate, whether a product is of high 

quality or not. In a batch-size-one production with a high 

diversity of variants this test is often carried out by the 

assembly worker. During a functional test, this worker must 

hear and feel faults the product may have. This could be 

difficult in a rough industrial environment. Firstly, it is 

determined whether the quality criteria are met. For 

products, which do not pass the test a decision is made 

whether the product will be repaired or sorted out. But there 

is no time planned for extra evaluation and it is often hard 

for the worker to evaluate. This decision mainly depends on 

the type of fault, its strength, and its location considering the 

repair time, material supply, and urgency. The test result is 

tracked for quality management reasons, including the type 

of fault. This is important to avoid further faults of the same 

type as well as to detect serial faults. Additionally, some 

customers demand good sound quality and quantify it.  
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To guarantee consistent quality, parts of the test must be 

automated, especially the measurement and fault diagnosis. 

The according quantification is achieved by using data-

based methods. To summarize, an automated end-of-line 

test must provide, whether the quality is met and if not 

which fault has occurred. Automation of the end-of-line test 

leads to several challenges described below. 

2.1.  Challenges in Measurement 

Vibration measurements are used for fault diagnosis as 

state-of-the-art signals. Acoustic signals can often be used in 

the same way as vibration signals. To achieve cost 

optimization, the time to prepare a motor for measurements 

must be as short as possible, but common vibration and 

acoustic measurements take a lot of time. Several methods 

are available to connect a vibration sensor head. However, 

those connections have repeatability problems with different 

types of motors. Often no unique connection rule can be 

defined or it requires plenty of installation time. 

Furthermore, many fault diagnosis methods are based on 

high frequencies. The maximum transfer frequency depends 

on the vibration sensor connection and is typically limited 

between 1 kHz and 20 kHz. Equipment for higher 

frequencies is very expensive and it is mainly used for 

laboratories. Some contact-free, laser-based measuring 

techniques exist. But position-based techniques, such as 

triangulation have resolution problems in the higher 

frequency range (Soave, D’Elia, & Mucchi, 2020). Acoustic 

measurements are an obvious choice, since quality issues 

reported by a customer are often associated to sound quality. 

The authors found out that the main problem in using 

acoustic signals is the rough acoustic environment in a 

typical production hall. The shielding of the end-of-line test 

from the production environment by using a chamber is very 

complex and requires a lot of time during production. 

2.2. Challenges in Fault Diagnosis 

Common end-of-line tests work for minor or major series 

production with ML. Often literature assumes, that all 

examples are associated with the same type of motor. In 

addition, for different fault types, different methods are 

evaluated to be the best. (Gangsar & Tiwari, 2020) The fault 

diagnosis must be set up separately for each product and 

fault, which is not feasible considering a high diversity of 

variants. Each dataset of a new configuration starts without 

examples and slowly increases. This leads to small datasets 

for both, examples with and without faults. In complex 

systems not all types of faults are well known, so anomaly 

detection is required that detects both, known and unknown 

faults.  

As the target of fault classification is to identify the type of 

fault, it needs labeled data for all types. It can be assumed, 

that for each class there is a different number of labeled 

examples but sometimes none. Therefore, faults cannot be 

classified until they occur on this product often enough for 

model learning. In the target of fault classification, data 

behavior is much more complex with respect to different 

configurations, fault types, and intensities of faults. 

Additionally, the fault diagnosis must allow unidentified 

classes, which many classifiers do not support. It can be 

assumed that nowadays a single model cannot handle this 

complexity. When the number of labeled examples 

increases, one likes to update the classifier, but to do so it 

would be necessary to learn and evaluate all classes again. 

The result indicates to the worker, where to look first in 

order to find a possible fault. It would be helpful if the 

classifier gives a metric of how strongly the fault is 

associated with its class, for example a probability. 

Many common ML methods work with features. It is often 

discussed, which are the best features to use for fault 

diagnosis. But it is rarely shown, how to handle multiple 

and perhaps unknown faults or changing environmental 

conditions like noise or vibration, which does not come 

from the test motor. Additionally, it is rarely shown in 

literature how to identify features, which describe motor 

faults in general and not only for a specific variant. Those 

research gaps make it difficult to decide, which features or if 

any should be used. In addition, a priori knowledge has to 

be provided automatically and is sometimes not available. 

2.3. Definition of an End-of-Line Test Approach 

A test system is required, which provides a reproducible test 

run. The test assumes steady operation of the motor or 

several cycles with steady operation, for example driving 

the motor at nominal speed for several seconds in both 

directions. During inspection of geared motors with a high 

gear ratio some errors are only present once every few 

seconds. The test should include more than two full cycles 

of the slowest shaft. The sensor measurement starts after the 

motor has reached nominal speed. The proposed concept 

works for nearly all types of vibration and acoustic sensors. 

Additionally, motor signals, such as current and velocity, 

are expected to work in principle (Jigyasu, Sharma, 

Mathew, & Chatterji, 2018).  

In real-world problems labeled datasets are often not 

available before the data-based system is used. Then firstly 

only data is collected. Anomaly detection can be used to 

circumvent the problem of missing labeled datasets. This is 

referred to as semi-supervised learning and requires only 

data, which is labeled as normal. As mentioned in (Olivotti, 

Passlick, Axjonow, Eilers, & Breitner, 2018) all detected 

anomalies should be labeled by the worker, who is 

responsible for the product quality, so that labeled data for 

classification can be collected. If pseudo anomalies occur 

they will be labeled as well, so that the classification can 

handle them. Some faults are only present if the motor is 

under load. If it is tested without load, the recorded data has 

to be labeled by the service department. 
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Figure 1. Fault diagnosis in an end-of-line test. 

Figure 1 shows the proposed architecture with a pre-trained 

system. The creation of features is the first step after the 

measurement, which is optional. Then the anomaly 

detection indicates, whether the test is passed or not. If not, 

the fault classification indicates, which fault has occurred. 

Once a fault class is well trained, it indicates the true class 

to the worker, so only the unknown examples must be 

labeled. Often different names are feasible for the same fault 

so that the user interface should propose names to the 

worker. 

3. POSSIBLE SOLUTION METHODS 

In the next sections, it is discussed how the necessary steps 

for this end-of-line test can be set up with regard to the 

challenges mentioned above. Furthermore, the authors 

propose an augmentation of this concept, which enables it to 

be used in highly variant production. 

3.1. Acoustic Measurement 

Acoustic signals are a compelling alternative and sometimes 

reach better results than vibration signals for bearing 

(Grebenik, Zhang, Bingham, Srivastava, & others, 2016) or 

gear faults (Dhami, Pabla, & others, 2018). High-frequency 

areas can be used with nearly every microphone. To set up 

the motor for measurement it is only necessary to position it 

under the microphone. Microphones with directive 

efficiency can be used to reduce the problem of 

environmental sounds. Array microphones with calculation 

of the local sound are of rising interest in production 

environments (Benko, Tinta, & Mussiza, 2005). The amount 

of the directive efficiency is associated with the width of the 

array. In case of cardioid microphones, the directive 

efficiency depends on its length. Commonly used versions 

of those types work better within high-frequency areas. In 

case of using micro-electro-mechanical sensors, known as 

MEMS, array microphones may have the advantage of 

longer calibration periods. For both techniques, versions for 

laboratory and productive usage exist. 

3.2. Feature Creation 

Feature creation for fault diagnosis in geared motors is well 

described in literature (Henriquez, Alonso, Ferrer, & 

Travieso, 2013), but not always easy to use. Both, features 

based on engineering data are discussed as well as those 

calculated without a priori knowledge. The features can be 

summarized in five areas. Their main advantages in fault 

diagnosis are shown in Table 1. The authors conclude to use 

a mix of more than one category of features to guarantee a 

robust system with a maximum of self-learning capability 

on different product types. Neural networks (NN) can be 

used for direct computation on raw signals, allowing the 

step of feature creation to be skipped. However, if one 

chooses not to use feature creation, the behavior of the 

overall system is similar to a system that uses artificially 

learned features. But it may have disadvantages in terms of 

the resources required. 

1. The area of statistical features can generalize the 

behavior of sensor-data at a stationary working 

condition, so that every type of fault can be addressed 

without a priori knowledge of the faults and the motor. 

Often, kurtosis is used to describe if a signal is 

superimposed by impulses (Wei, Li, Xu, & Huang, 

2019) and therefore directly linked to anomaly 

detection. 

2. Features of the second area, the fault-associated 

features, can show the behavior of impulses. In 

literature, it is often discussed how to identify faults in 

that way. An overview of features for motor faults can 

be found in early literature (Finley, Hodowanec, & 

Holter, 1999). Most features in the second area describe 

fault frequencies and are thus dependent on the basic 

velocity. Discussing the behavior of the multiple of the 

basic frequency is called order analysis. If the signal is 

present in the order spectrum, it will be easier to 

compare different types of motors. However, in case of 

mechanical faults, it is necessary to separate the order 

spectrum for each shaft of a geared motor. 

3. To address the sound quality itself, psychoacoustic 

features are discussed, which provide a basis for 
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simulating human hearing. Those features show better 

or nearly the same accuracy in classification as 

statistical features (Kane & Andhare, 2020) and thus 

can generalize the signal. Here the target of 

psychoacoustic is to generate features that match the 

worker’s “ear”-evaluation as well as possible. 

4. Model-based features from simulation models mostly 

require a priori knowledge of the motor and often 

special identification tools on the power train. On the 

other hand, they are mostly suitable to avoid data gaps 

in the discussion of different motor types. Modern 

converters, for example, can be used to identify the 

mechanical and electrical system behavior such as the 

electric equivalent circuit or the mass oscillator. 

5. Dealing with features that describe the system behavior 

but without a priori knowledge leads to feature 

learning. Here a NN trains features with a good 

representation outperforming statistical features (Mao, 

He, Tang, & Li, 2018). Typical for those artificially 

learned features is the usage of autoencoders to train the 

dataset and to exclude the inner state (Mao., He, & Zuo, 

2019), a technique, which is discussed in the next 

section of anomaly detection. Pretrained image 

processing NNs can be used to exclude likely better 

features when using time-frequency signals (Müller, 

Ritz, Illium, & Linnhoff-Popien, 2020).  

 

Depending on the type of feature, a signal transformation 

can be useful. Transformation in the frequency domain, like 

for example Fourier- or Hilbert transform, eliminate time-

shifts. Bearing and gear faults can be shown more clearly by 

using an envelope spectrum. If the test is done in a non-

stationary condition, it could be feasible to use signals in the 

time-frequency domain. Instead of an envelope spectrum, 

the Hilbert-Huang-transform can be used (Mao, Zhang, 

Tian, & Tang, 2020). For acoustic signals, Mel-frequency 

cepstral coefficients, known as MFCC are of rising interest 

to represent the behavior of signals in industrial 

environments (Benkedjouh, Chettibi, Saadouni, & Afroun, 

2018). These methods transform and filter one time slot at a 

time like a short-time Fourier transform does. It could be 

useful to discuss the time-frequency domain in the case of 

measurements with a length of several seconds, too. Since 

these signals have three dimensions, the features must be 

evaluated appropriately. 

3.3. One-Class-Classifier for Anomaly Detection 

A complete overview of anomaly detection methods is out 

of scope of this work but can be found in literature 

(Chandola, Banerjee, & Kumar, 2009). To reduce the 

complexity of fault diagnosis, this work focusses on one-

class classifiers and uses only one type of ML methods and 

one type of NNs. An ensemble of these one-class classifiers 

can be used for fault classification (Carino, et al., 2018), so 

that each type of fault will be classified by its model. Using 

one-class support vector machines (SVM) is common (Khan 

& Madden, 2014) and can be used with hand-crafted 

features in an end-of-line test (Leitner, Lagrange, & 

Endisch, 2016). But also a reduction of the raw data can be 

used as input (Fernández-Francos, Martı́nez-Rego, 

Fontenla-Romero, & Alonso-Betanzos, 2013). This method 

has the advantage of working with features that have already 

been calculated, so there is no need to store raw data for 

learning. Some literature shows, that neuronal networks can 

detect faults better than common ML algorithms like the 

SVM (Sun, Wyss, Steinecker, & Glocker, 2014). However, 

ML has advantages on small datasets (Esakimuthu 

Pandarakone, Mizuno, & Nakamura, 2019), which are often 

found on a highly variant production. 

For the case of using NNs, there are specific surveys 

(Chalapathy & Chawla, 2019). Often autoencoders are used 

to calculate a difference between the measured signal and a 

feasible good one. During training, the autoencoder learns 

its inner state to reconstruct the same data that is given as 

input to the output. The inner layer of the network between 

encoder and decoder is chosen very small, so that the 

autoencoder must learn, what the most necessary 

information to reconstruct the input is. The difference 

between the true signal at the input and the reconstruction at 

the output is used as a metric for anomaly detection. 

Statistical features of this error can be used for thresholds. 

Since it has not been determined which fault is present, the 

error signal and the original data can be used for the 

following classification. The architecture of the NN can be 

selected according to the input signal used. For three-

dimensional data in the time-frequency domain, 

convolutional layers are typical, while for time-domain 

signals long-short-term-memories named LSTM are used 

(Chalapathy & Chawla, 2019). Fully connected layers are 

not specified to an input type, but perform well, too 

(Principi, Rossetti, Squartini, & Piazza, 2019). In the end, 

time or frequency domain signals can be used as input 

vectors in all architectures (Huang, Chen, & Huang, 2019), 

(Zhang, Peng, Li, Chen, & Zhang, 2017). Additionally, deep 

architectures with more than one hidden layer can learn 

complex system behavior more correctly (Principi, Rossetti, 

Squartini, & Piazza, 2019).  

Table 1. Characteristic of Features. 

 

Area of Feature Characteristic 

Statistical features Generalization without a 

priori knowledge 

Fault associated features Description of exactly one 

type of faults 

Psychoacoustic features Generalization of the sound 

quality 

Model-based features Description of system 

behavior 

Artificially learned features Learns system behavior 
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Figure 2. Ensemble of one-class-classifier for fault classification. 

A high sampling rate results in a huge sample vector of raw 

data, which leads to complex computations of NNs (Sun, 

Wyss, Steinecker, & Glocker, 2014). Therefore, often only a 

short period of time is used (Shao, Jiang, Lin, & Li, 2018), 

(Huang, Chen, & Huang, 2019), but to be sure the data 

includes all possible faults, several of these periods need to 

be observed (Yang, et al., 2020). The use of a filter 

reduction in combination with a time-frequency 

transformation is also a viable way, for example in MFCC 

computation (Principi, Rossetti, Squartini, & Piazza, 2019). 

3.4. Ensemble of One-Class-Classifier 

The use of such an ensemble solves many of the issues 

mentioned above. While most literature discusses only one 

type of fault the concept shown in Figure 2 allows to 

identify multiple faults without explicit training of them. 

The features or even the raw data is sent to all classifiers, 

which estimate whether the data depends to its class or not. 

The results must be evaluated if only one fault was found or 

if many classifiers declare a fault and which fault is most 

likely. This result is given to the worker or if the class could 

not be classified he is asked to label it. A classifier can be 

trained and updated whenever enough data is historically 

stored without taking care of other classes. At least it is a 

good idea to include an additional classifier to detect 

acoustic disturbances from the environment, the acoustic 

measurement could not ignore. Another autoencoder could 

be trained for novelty detection, which solves the issue of 

unknown fault classes (Yang, et al., 2020). Choosing the 

right classifier for the ensemble is not easy, but it is guided 

(Krawczyk & Woźniak, 2014). As in the case of anomaly 

detection, the SVM and the autoencoders (Shao, Jiang, Lin, 

& Li, 2018) are common. A further advantage of this 

concept is, that for every class it is possible to choose the 

best method and there is no need to commit to one method 

that fits all faults. In the end, it would not be necessary to 

decide for one classifier at all, but using more than one 

classifier for the same type of fault makes an information 

fusion necessary to combine the results to a unique one. 

3.5. Diversity of Variants 

To augment the concept for production lines with a high 

diversity of variants, all steps must be adapted. As already 

mentioned, one instance of the fault diagnosis methods is 

needed for each product configuration. Once, all the labeled 

data is available to train the models, an enterprise resource 

planning system (ERP) can be used to hold and match 

configurations and models, as shown in green in Figure 3. 

To use the fault diagnosis methods discussed before, the 

models must be relearned or the existing model can be 

updated, which is referred to as transfer learning. To do so, 

all sensor-data during the test and its worker’s feedback 

must first be saved as historical data according to the 

configuration. And, if already calculated, the feedback of 

the fault diagnosis must additionally be stored. If one wants 

to reduce the storage space and does not need to use raw 

data in NNs, only the calculated features will be stored 

historically. Then the data that match the product 

configuration must be selected and the model must be 

trained. The steps for storing and using historical data are 

marked for cloud platform in yellow in Figure 3. If only one 

production line exists, those steps can be done on the tester 

itself. And if only one manufacturing location exists, those 

steps can be done in the local cloud.  
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Figure 3. Fault diagnosis in a highly variant production. 

Using data from all around the world in the cloud allows 

increasing the availability of examples. If data drifts over 

time or between assembly lines exists, they may be solved 

by using adaptation techniques, likewise (Lin, Deng, Kuo, 

& Chen, 2019). 

Up to this point, some products cannot be tested. Those 

products have not been produced often enough for model 

learning. Several approaches can be used to solve this 

problem. Data augmentation can help to increase the 

number of examples, if already some exist. If not, it would 

be helpful to identify configurations that are almost similar 

to the unknown one and can be used for training as well. 

This could be done model-based or data-based. If not 

enough a priori knowledge exists, clustering methods can 

help to identify groups of similar configurations. Often 

similar configurations do not exist to train robust fault 

diagnosis. Then artificial intelligence is needed, that can 

calculate how the raw data or the features will be on the new 

configuration. This intelligence could be a NN with the 

ability to generate data, which is referred to as generative 

nets. 

After data for model creation of a specific configuration is 

provided, two approaches can be used to get the new model 

for this specific configuration. Just train a new model from 

scratch or adapt the existing model to solve the same 

problem on another data domain. This is called domain 

adaptation, which is a transfer learning problem and has the 

advantages of faster learning and the need for fewer 

examples. 

3.6. Similarity Clustering 

Identifying groups of configurations with similar data 

behavior is referred to as clustering. Common ML methods 

use the features already discussed. Depending on the 

method it is required either to know the number of clusters, 

which is very difficult in this problem, or the required 

density in data representation. To be sure the fault diagnosis 

performs well on the combined data one will require a 

density in the cluster that is larger than the density in the 

original class of target configuration. To use those methods 

with raw data or its frequency representation several 

techniques can be compared with and without scaling to a 

lower-dimensional space (Hennig, Grafinger, Gerhard, 

Dumss, & Rosenberger, 2020). If one likes to use NNs for 

clustering, self-organizing maps, known as SOM can be 

used (Germen, Başaran, & Fidan, 2014). Clustering using a 

SOM can help to label not fully labeled datasets for 

classification. This occurs because the worker cannot 

always find proper labels for all detected anomalies (Oh, 

Jung, Jeon, & Youn, 2017). In the end, the topic of 
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clustering and its advantage in fault diagnosis is much more 

complex and needs to be considered more closely. 

3.7. Data Augmentation 

In ML it is common to use mechanisms to increase the 

number of examples, named data augmentation. A simple 

but useful method is to simply copy the existing data and 

add some noise. Another common technique is to calculate 

the distance between two similar examples and return 

something in between as a new sample. Both methods work 

well on features but are critical to use on raw data in case of 

time shift and other data behaviors. Different data 

augmentation techniques for time series lead to different 

performance losses in classification (Li, Zhang, Ding, & 

Sun, 2020). In the last years a new type of NN, the 

generative net was introduced to learn the data behavior and 

create new examples. 

Generative Nets 

In general, generative NNs have the target to generate 

continuously changing data but are always related to a 

specific real-world dataset. Another NN is used to evaluate 

if an example is original or generated, called a 

discriminator. If the discriminator cannot find it out, the 

generative net is well trained. This concept is known as a 

generative advertising network (GAN). In literature, GANs 

are often used to increase a dataset for classification (Shao, 

Wang, & Yan, 2019) or are part of transfer learning 

approaches as considered below (Schockaert & Hoyez, 

2020). In principle, GANs could be useful to be trained by 

various configurations and be able to provide signals or 

features for a specific and new configuration. As far as the 

authors are aware, this is not described in literature and it is 

necessary to discuss detailed architecture and requirements 

for the input dataset. First examples in artificially acoustic 

data generation are developed for realistic music generation 

(Dieleman, Oord, & Simonyan, 2018). 

3.8. Domain Adaptation 

Domain adaptation in general is an area of transfer learning. 

Here the method which can solve a specific task on a 

specific dataset called the source domain is retrained to 

solve the same task for another dataset, the target domain. 

Various types of domain adaptation for fault diagnosis 

methods can be found in the literature, including those 

described previously. Domain adaptation for fault diagnosis 

can be divided into categories for the motivation and 

settings for the data problem (Zheng, et al., 2019). This 

paper discusses the motivation of leveraging from different 

but related machines. But also the motivations of different 

fault degrees or incomplete information on a dataset like 

incomplete labels could be helpful in the case of an end-of-

line test. The domain adaptation approaches can influence 

the fault diagnosis at several instances, all used in 

machinery diagnosis. One possibility is to retrain the 

classifier itself (Jiao, Zhao, Lin, & Ding, 2019), another is 

to use statistical information of the target data to adapt 

parameters inside (Zhang, Peng, Li, Chen, & Zhang, 2017). 

In contrast, the features can also be transformed instead 

(Mao, Zhang, Tian, & Tang, 2020). 

Often there are no target domain examples available for 

anomaly detection, so for adaptation, a solution of data 

augmentation is necessary. Fault examples are rare, but the 

classification is only done after an anomaly is detected. It 

can be assumed that mostly enough examples without faults 

are historically stored or created by one of the above-

mentioned methods. So in this setting only samples labeled 

as normal are available. For the motivation of related 

machines, an autoencoder can be used. First, features for the 

given data are learned and then a generative net learns a 

transformation from data with normal behavior to data with 

fault behavior (Michau & Fink, 2019). This data is used to 

train the fault diagnosis as a one-class classification. For 

limited labeled datasets a NN trained on simulation data can 

be adapted by adding a transfer layer performing well on 

real-world data (Xu, Sun, Liu, & Zheng, 2019).  

For the motivation of leveraging from different but related 

machines in total nine papers are referred, but for the 

motivation of different working conditions there are 44 

references (Zheng, et al., 2019). This is to be expected, since 

such experimental data are much easier to obtain. One can 

assume, that different working conditions like higher torque 

and a motor configuration with higher related torque could 

be discussed by the same domain adaption methods. 

4. NEXT STEPS OF RESEARCH 

Many steps of the proposed concept are well described in 

literature but some open points exist. The robustness against 

environmental sounds is considered for a specific 

combination of sensors, optional features, and anomaly 

detection. Therefore, datasets with and without acoustic 

disturbances are recorded with typical sounds of an 

industrial environment. These include, but are not limited to, 

pneumatic and electric screwdrivers, hammer blows, 

ventilation systems, logistic vehicles, and speech. The target 

is then to find the most robust overall system. Additionally, 

methods aimed to detect these sounds can improve this 

system by suggesting whether or not the motor should be 

retested. 

In the next step it is considered, which features or methods 

are most variant-independent and can therefore be used on 

smaller configuration differences without domain 

adaptation. Therefore, datasets are collected with smaller 

and wider configuration differences. At the same time, it is 

observed, which configuration differences would cause the 

most trouble. Based on this expertise, clustering methods 

are trained with the target of finding configurations, which 

can be tested with the same models. Therefore, the question 
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to be answered is how to describe the similarity of 

configurations. Those experiments require extensive data 

collections, which can only be collected by a test system 

that is already included at the assembly line. 

The same methods are also used to find similar datasets, 

which can be a good starting point for transfer learning. 

Domain adaptation promises high advances in transferring 

from a well-known configuration to an unknown one. The 

literature describes several adaptation methods used in 

condition monitoring, but not transferring between variants. 

It must be considered, which domain adaptation approach is 

best for an automated test system. However, this may not be 

the approach that is best for two specific configurations. 

Further work will help to close this research gap. 

5. CONCLUSION 

End-of-line tests are a fundamental element of modern 

production lines, but common systems are not applicable for 

every use case. To set up such a system in a highly variant 

production with batch size one several steps need to be 

discussed. Acoustic arrays or microphones with directional 

efficiency fulfill both, the requirements of a flexible 

production and the data quality at the same time. For fault 

diagnosis different combinations of features and ML tools 

are possible. For a specific manufacturer, the best overall 

system need to be evaluated individually. For that purpose a 

guideline is given. Literature shows that ML techniques can 

benefit both, anomaly detection and fault classification. 

One-class SVMs and autoencoders are pointed out as 

fundamental techniques for fault diagnosis in an end-of-line 

test. 

This paper proposes a concept for handling high diversity of 

variants in end-of-line tests, which is rarely described in 

literature. An information and analysis infrastructure is 

necessary to bring the ERP System and the cloud solution 

together with the test rack. Given the configuration of the 

products, clustering techniques can help to find those 

configurations that can be tested with the same model. To 

train those models for small datasets, augmentation 

techniques can improve the solution. For all mentioned 

application scenarios, common and easily manageable 

features and ML methods can be used. In comparison using 

NNs can improve the results and open the door for transfer 

learning. 
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