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ABSTRACT

In this work, a multi-fidelity framework for the simulation of
small satellites is investigated. Taking into account the con-
cept of digital twin, our work focuses on handling a constant
stream of live data. Towards this end, current multi-fidelity
modelling methods and low fidelity surrogate models for time
series were surveyed. A multi-fidelity approach is used to
combine a low fidelity surrogate model with a high fidelity
model. As a high fidelity model, a previously investigated
finite element model is assumed. As a low fidelity model,
auto-regressive and recurrent neural network-based models
are investigated. Through cokriging, the low fidelity data is
corrected by the high fidelity data through a comprehensive
correction, where the parameters are given through Gaussian
processes in order to perform uncertainty quantification. As
an application, the thermal simulation of a small satellite, and
the use of this framework in conjunction with sparse teleme-
try data is proposed. This online, statistical approach aims to
provide a tool for performing fault detection.

1. INTRODUCTION

Simulations are an indispensable tool for supporting the op-
eration of satellites during their life cycles. A dynamic sys-
tem simulation can enhance the operational phase of a satel-
lite. In space, where human intervention is not possible, faults
must be autonomously detected and dealt with by the health
management system. Inaccuracies, causing instrument fail-
ures during operations, can lead to significant costs. It is of
paramount importance to continuously monitor the state of
the satellite, in order to both react and notify the on-board
health management system. In addition, with a dynamic sim-
ulation, it is possible to test the spacecraft status in real time
with respect to the requirements, to ensure that the perfor-
mance will satisfy all needs. If estimated values surpass tol-
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erances, the health monitoring system can raise an alarm. Due
to the remote nature of space, space agencies recognized early
the benefits of simulation, which eventually led to the devel-
opment of the concept of digital twin. NASA coined the term
digital twin during the Apollo Program, referring to two iden-
tical space vehicles built so that the space vehicle on earth can
mirror, simulate, and predict the conditions of the other in
space. Since its introduction, multiple definitions have been
attached to the concept of the digital twin.

Initially, digital twin was treated as a high fidelity model or
multidisciplinary simulation, and the real-time component had
not yet been under consideration (Liu, Fang, Dong, & Xu,
2020). However, the definition has evolved to encompass dy-
namic modelling and bidirectional communication and map-
ping to the physical system. In essence, the digital twin is
based on the simple idea of linking a physical object with its
digital counterpart accurately and in real-time. However, a
fit-all concept architecture has not been developed (D. Jones,
Snider, Nassehi, Yon, & Hicks, 2020). In particular, Xu, Sun,
Liu and Zheng (2019) defined digital twin to be a dynamic
representation of physical entities with their functions, behav-
iors, and rules. Fig. 1 describes our conception for the digital
twin. The framework consists of three components; the dig-
ital model which describes the physical object, a knowledge
base which is used to build the framework and an analytics
component used to assess its performance. Utilizing real time
data, the system should be able to communicate accurately
predict its state and react. Through our proposed framework,
the dynamic digital twin will act as a living entity or a true
representation of the system.

The purpose of this research is to propose a multi-fidelity
framework for small satellites. To incorporate this in a dig-
ital twin architecture, there is a need to satisfy two usually
competing requirements, i.e., fast computation time and high
accuracy. To reconcile these requirements, a multi-fidelity
approach will be used, which will take advantage of the ac-
curacy of a computationally expensive high fidelity simulator
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Table 1. Extensions of the basic Cokriging model.

Year Application Novelty Reference
2006 Material Science The scalar ρ is replaced by linear regression and

GP to model the low fidelity data.
(Qian & Wu, 2008)

2011 Airfoil Optimiza-
tion

Employed cokriging to reduce the number of sim-
ulations in CFD.

(Toal & Keane, 2011)

2013 Hydrodynamics Used Markov Chain Monte Carlo to calculate the
posterior. Multiple simulators.

(Goh et al., 2013)

2015 Fluid Dynamics Enchanced computation using the recursive
method in Le Gratiet & Garnier(2014).

(Perdikaris, Venturi, Royset, &
Karniadakis, 2015)

2017 Fluid Dynamics Generalized the Kenedy and o’Hagan (2000)
scheme with non-linear autoregression.

(Perdikaris, Raissi, Damianou,
Lawrence, & Karniadakis,
2017)

2018 Various Datasets Different fidelity data were generated by proper
orthogonal decomposition model reduction with
varying number of basis vectors.

(Xiao, Zhang, Breitkopf, Vil-
lon, & Zhang, 2018)

2020 Various Datasets An extension of two-level cokriging for multiple
levels is developed.

(Ruan, Jiang, Zhou, Hu, & Shu,
2020)

Figure 1. Digital Twin

and the speed of a low fidelity surrogate model. In order to
narrow the scope of this study, a few assumptions were made.
The framework takes into account a small spinning satellite,
such as eATOMS(Akita, Takaki, & Shima, 2012), without
control capabilities. This eliminates the need to define a par-
ticular output required for control, e.g. the demand for linear
outputs in model prediction control. Additionally, the frame-
work should support satellite operation, but not necessarily
the design phase. The framework is not limited to any partic-
ular application. Potential applications include power simula-
tion, communications, attitude etc. However, to demonstrate
its effectiveness we intend to apply it on thermal simulation,
one of the most demanding simulations to be performed. In
the thermal simulation, discretizing the heat conduction equa-
tion, computation cost is generally high due to the small com-
putation time step. There is a need for the surrogate model to
reduce the computation cost.

The paper is organized as follows. In section 2, the literature
review on some necessary concepts is presented. In section 3,
the thermal environment of the satellite is discussed. Section
4 illustrates our proposed framework. Discussion and conclu-
sion are in sections 5 and 6.

2. LITERATURE REVIEW

2.1. Multi-Fidelity Modeling

Typically, data is either too expensive to obtain through ex-
periments or unavailable. For this reason, multiple models
must be developed to describe the same process or output
quantities. These models attempt to establish a relationship
between sets of input and output data. However, they often
differ in the quality of the approximation and computation
cost. These models can be distinguished into two categories.
High-fidelity models (HFMs) estimate the output with the
accuracy that is necessary for the current task (Peherstorfer,
Willcox, & Gunzburger, 2018). For our research, HFMs will
represent the true behavior of the system. On the other hand,
low-fidelity models (LFMs) are models that estimate the out-
put with a lower accuracy than the HFM typically in favor of
lower costs (Peherstorfer et al., 2018). Lower fidelities are
generally ranked in three categories by:

1. Simplifying the mathematical model, e.g., simplifying
the geometry / boundary conditions;

2. Varying the spatial and temporal resolution;

3. Using real-time data.
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While LFMs and HFMs can describe the same process, they
may not produce the same estimation, e.g., the LFM might
not capture some underlying processes successfully compared
to the HFM. However, if one attempts to analyze a complex
problem using only a HFM, the cost will quickly become
impractical. Multi-fidelity modelling attempts to construct
a multifdelity model (MFM) by combining the strengths of
both models, particularly the accuracy of the HFM and the
low computation cost of the LFM. The principal challenge
of multi-fidelity approaches in multidisciplinary problems, is
the mitigation of computation cost, which scales with the in-
crease in available models. Peherstorfer et al. (2018) cate-
gorize the approaches to combine fidelities in three, fusion,
filtering and adaptation which enhances the LFM with in-
formation from the HFM. Not all approaches can be strictly
placed into one of these categories. MFM approaches can ad-
ditionally be separated into two broad categories, determin-
istic (DAs) and non-deterministic approaches (NDAs), based
on the properties of the model used to make a prediction. In
DAs, the MFM is constructed by fitting the sampling points
using distance based metrics such as the minimum root mean
square error (RMSE) or the minimum cross-validation error
(CVE). NDAs are constructed using the maximum likelihood
criterion instead. DAs can be applied to any surrogate model.
NDAs require an uncertainty structure. In addition, NDAs
were found to be more accurate than DAs in Keane (2012)
and in Park, Haftka and Kim (2017).

In satellite development where uncertainty quantification(UQ)
is crucial, NDA methods, and in particular Bayesian theory,
are well suited for their ability to produce an estimation for
the quantity of interest and also estimate the uncertainty. The
difference between Bayesian methods and classical statistics
is that the former takes advantage of prior information. Both
approaches can be applied on the same model, e.g., a Krig-
ing surrogate can be constructed with both Bayesian and non-
Bayesian methods. Popular MFM approaches use Gaussian
processes (GP) to model each fidelity response. A GP is a
collection of random variables with the property that the joint
distribution of any finite subset is Gaussian.

2.2. Kriging

Even though our framework incorporates cokriging, the reader
must first be accustomed with the standard kriging method,
of which cokriging is an extension for models with multiple
fidelities. Kriging is a popular surrogate for multi-fidelity ap-
plications. This is due to the fact that it has an uncertainty
structure that easily facilitates a probabilistic MFM. The un-
certainty prediction in kriging surrogates can be constructed
using GPs. Kriging is based on the idea that if two points xi,
xj are close then the random variables Y (xi), Y (xj) will be

similar. This is expressed through their correlation,

R = Corr[Y (xi), Y (xj)]

= exp
(
−Σd

l=110
θl ||xil − xjl||pl

)
,

(1)

where θl and pl represent the hyperparameters of the lth vari-
able. These hyperparameters are chosen via a maximiza-
tion of the concentrated log likelihood function (D. R. Jones,
2001). If n is the number of data points, the log likelihood ϕ
is

ϕ =
n

2
ln(σ̂2)− 1

2
ln(|R|), (2)

where optimal variance σ2 and mean µ are:

σ̂2 =
1

n
(y − 1µ̂)TR−1(y − 1µ̂), (3)

µ̂ =
1TR−1y

1TR−11
. (4)

The concentrated likelihood function only depends on the
hyperparameters through the correlation matrix. The main
computation cost of this method arises from the optimization
problem of maximizing the likelihood. Attempts have been
made to improve computation, such as in Toal, Bressloff,
Keane and Holden (2011) and Giles (2008), in which the ad-
joint of the correlation matrix can reduce computation time.
A comprehensive guide on kriging is found in Jones (2001).

2.2.1. Cokriging

Kennedy and OHagan (2000) proposed a base methodology,
often used as the basis for further research using adaptation,
and in particular a comprehensive correction, for the MFM. A
comprehensive correction is a combination of a multiplicative
and additive correction or ŶH = ρYL+δ. To approximate the
HFM, a LFM is transformed by a comprehensive correction
with a constant scaling factor ρ and a GP Zd for δ. ZL is a
GP fitted on LFM data,

ZH(x) = ρZL(x) + Zd(x). (5)

An important assumption is that in points where high fidelity
estimation exists, a low fidelity estimation also exists. Its co-
variance matrix C can be given as

C =

(
C11 C12

C21 C22

)
, (6)

C11 = σ2
LRL (XL,XL),

C12 = ρσ2
LRL (XL,XH),

C21 = ρσ2
LRL (XH ,XL) and

C22 = ρ2σ2
LRL (XH ,XH) + σ2

dRd (XH ,XH) ,

where XH and XL are predicted high and low fidelity data
points, respectively. While the correlations are the same as in
the standard kriging, the number of hyperparameters doubles.
If more fidelities are used, the number increases even further.
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The hyperparameters of the LFM, assuming the LFM data
is independent of the HFM data, can be calculated as in the
standard kriging. However, to calculate the hyperparameters
corresponding to the HFM, the difference d between the ex-
pensive and cheap data at known points should be calculated
as

d = yH − ρyL (XH) . (7)

The concentrated log likelihood for the HFM data is

ϕd = −nH

2
ln

(
σ̂2
d

)
+

1

2
ln (|Rd (XH ,XH)|) . (8)

The variance and the mean are given by the same Eq. (4), (3),
however these parameters are replaced by their equivalents,
obtained through the difference model, Rd (XH ,XH), d
and nH . Methods from standard kriging, such as Giles (2008),
can again be used to reduce computation time. Toal (2015)
outlined the requirements for successful cokriging to be

1. The correlation between the low and high fidelity func-
tion should be reasonably high, R2 > 0.9.

2. No more than 80% of the total evaluation budget should
be converted to cheap evaluations, fr < 0.8, where fr is
the fraction of the expensive functions replaced by cheap
functions.

3. More than 10% of the total evaluation budget should be
converted to cheap evaluations, fr > 0.1.

4. There should always be slightly more cheap data points
than expensive, with fr > 1.75

1+1/Cr
giving a conservative

bound for this condition, where Cr is the ratio between
the cost of the cheap model over the cost of the expensive
model.

Many other popular MFM approaches use GPs to model each
fidelity response. In particular, Qian and Wu (2008) expanded
on the work by Kennedy and o’Hagan (2000). The main idea
was a two-step approach in which again 1) uses low fidelity
data to provide a base surrogate model, and 2) adjusts the
model accordingly by utilizing HFM data. The application
required two assumptions, a) the prediction of uncertainty of
one fidelity is independent to that of the other fidelity and b)
the HFM data is considered ground truth and therefore the er-
ror between them and the true process can be neglected. In
more detail, in the first step, the LFM was estimated through
a GP using LFM data. Subsequently, assuming both HFM
and LFM predictions for the same input x are available, the
discrepancy could be modeled as ŷHF = ρ · yLF + δ, where
both ρ and δ are constants. However, many applications re-
quire more information to estimate discrepancies. Qian and
Wu (2008) replaced the scalar ρ of Eq. (5) with a linear re-
gression.

This method offers a significant number of advantages. It
builds a surrogate model that is both more accurate than a
low fidelity surrogate model and at the same time computa-

tionally cheaper than its high fidelity counterpart. In addition,
it allows the surrogate to update using new HF data as they
become available for a minimum computation cost, since it
only requires refitting the model with the new data. Through
this process, the model can be improved to the level of desired
accuracy. Both works can be expanded for multiple models
with various levels of fidelity. However, they suffer from lim-
itations often encountered in kriging methods. Severe com-
putation costs are introduced when training a metamodel on
a set of known observations by repeatedly inverting large, ill-
conditioned covariance matrices.

Le Gratiet and Garnier (2014), suggested that emerging co-
kriging schemes with s-levels of fidelity can be decoupled and
formulated in a recursive fashion as s-independent kriging
problems. This eases computation by solving a sequence of
simpler kriging problems with covariance matrices of smaller
dimensions. In Table 1, a summary of some notable works
which employed the basic Kenedy and O’Hagan (2000) frame-
work are presented.

2.3. The Low Fidelity Surrogate Model

2.3.1. Multivariate Time Series

Time series are a set of observations xt, sampled at time t.
According to Brockwell, Davis and Fienberg (1991), many
time series Xt should be considered vector valued (multivari-
ate), having both serial dependence within each component
series Xti and interdependence between the different compo-
nent series Xti and Xtj , i ̸= j.

Satellites generate a large amount of data through a variety of
sensors, logging the values periodically. Our goal is to build
a reduced order model with these time series data, enabling
quick and computationally cheap calculation. Amongst a va-
riety of options, two data-fit models will be considered for
this study, Neural Networks (NN) and Vector Autoregression
(VAR). These methods are chosen as simple representatives
of classes of methods, are well understood and are included
in many comparison studies (Reikard, 2009), (Hamzaçebi,
Akay, & Kutay, 2009), (Deb, Zhang, Yang, Lee, & Shah,
2017).

2.3.2. Autoregression

Before employing more complicated machine learning tech-
niques, classical linear techniques for time series forecasting
need to be exhausted. Since these focus on linear relation-
ships, they are not expected to have the performance of more
advanced methods. However, if they are calibrated and pre-
processed, they can tackle a wide variety of problems. Their
main strength is easy implementation and fast computation.
Many methods have been developed but they are heavily de-
pendent on the type of data available. A crucial assump-
tion is the inclusion of some form of statistical equilibrium,
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expressed by the concept of stationarity1. Autoregression
methods work well on stationary data. If the series is non-
stationary, it can be transformed to stationary through proper
operations (Box, Jenkins, Reinsel, & Ljung, 2015).

Our data is multivariate since satellites have many relevant
features, including position, attitude etc. Auto-regressive In-
tegrated Moving Average with eXogenous input (ARIMAX)
is suitable for analyses where there are additional explana-
tory variables. ARIMAX can be viewed as a multiple regres-
sion model with one or more auto-regressive terms and one or
more moving average (MA) terms. This makes it suited for
multivariate, non-stationary data. It is described by adding
the exogenous X scaled by a parameter to the ARIMA model
as

Yt = ARIMA(p, d, q) + βXt. (9)

In ARIMA (p,d,q) model, the ’p’ lags of each variable are
used as regression predictors for each variable, ’q’ is the order
of the MA term, referring to the number of lagged forecast
errors that should go into the ARIMA Model and ’d’ is the
minimum number of differencing needed to remove the trend
and make the series stationary. The effect of parameter β is
not as straight forward as it looks at first glance. If Eq. (9)
is rewritten, assuming the data is already stationary, ignoring
integration and using the lag or backshift operator Bkzt =
zt−k, which expresses the value of a variable k time steps in
the past, it becomes

ϕ(B)Yt = βXt + θ(B)et ⇒

Yt =
β

ϕ(B)
Xt +

θ(B)

ϕ(B)
et,

(10)

where ϕ(B) = 1−ϕ1B−· · ·−ϕpB
p and θ(B) = 1−θ1B−

· · ·−θqB
q . An increase of Xt by 1 would not increase Yt by β

since it is conditional on the past values of Y . If integration is
to be considered, ϕ(B) can be replaced with ∇dϕ(B), where
∇ = (1 − B) denotes the differencing operator. Rewriting
the equation this way reduces the number of parameters to be
estimated and also makes use of data more efficiently.

The parameters can be estimated with two methods, one pro-
posed by Box and Jenkins(Box et al., 2015), which is diffi-
cult to implement when there are more than one exogenous
variable, and another called Linear Tranfer Function (LTF)
described in detail by Pankratz (2012). The reader is encour-
aged to refer to Pankratz (2012) for ARIMAX, which in the
book is indicated as dynamic regression. ARIMAX has been
applied to many problems such as epidemiology (Jing et al.,
2018), urban planning (Williams, 2001) and macroeconomics
(Anggraeni, Andri, Sumaryanto, & Mahananto, 2017). ARI-
MAX is often juxtaposed to neural networks.

1A stationary time series is one whose properties do not depend on the time
at which the series is observed. This implies the absence of a trend or sea-
sonality.

2.3.3. Recurrent Neural Networks

Neural networks are a prime candidate for time series fore-
casting. While their training is costly, their forward oper-
ations are fast and can handle multivariate inputs, and cap-
ture inter-dependencies between data and non-linear trends.
A popular choice for time-series forecasting are Long-Short
Term Memory (LSTM) networks.

LSTMs have been successfully applied to problems with sim-
ilar assumptions and goals, e.g., Zhao, Chen, Wu, Chen and
Liu (2017) applied LSTMs for short-term forecasting of traf-
fic conditions, taking advantage of spatial and temporal cor-
relations. Moreover, LSTM consistently shows strong perfor-
mance against other methods for non-linear spatial-temporal
data forecasting (Mettu & Sasikala, 2019), (Mussumeci &
Codeço Coelho, 2020). LSTMs constitute a strong alterna-
tive to auto-regressive methods. LSTMs can capture tempo-
ral inter-dependen- cies in addition to inter-dependencies be-
tween features and work well for short term forecasting and
non-linear data. A series of studies have compared LSTMs to
auto-regressive methods. Siami-Namini, Tavakoli, and Siami
Namin (2019) showed 85% improvement over ARIMA for
univariate, non-linear financial data. In Li, Pan, Liu, Song
and Wang (2020), LSTM and ARIMAX performance was di-
rectly compared in predicting tuberculosis incidents in east-
ern China with the inclusion of metereological factors as ad-
ditional variables. ARIMAX performed better than the neu-
ral network. In another example, Serafini, Yi, Zhang, Bram-
billa, Wang, Hu and Li (2020) applied both forecasting mod-
els to predict the behavior of the BITCOIN market through
financial and sentiment features extracted from economic and
crowdsourced data. ARIMAX again outperformed the LSTM.

ARIMAX seems to hold an edge over LSTM in the aforemen-
tioned applications. This is because tuning the hyperparam-
eters of a neural network is a difficult task. In contrast ARI-
MAX can achieve good results with minimum input from the
analyst. However, autoregression models are linear models
and there is always the risk of them not capturing important
information in a particular application. For this reason our
own comparison of the two methods will be performed on
satellite data with a trade off between computation time and
model accuracy. The accuracy will be evaluated with three
metrics, Root Mean Square Error (RMSE), Mean Absolute
Percentage Error (MAPE) and Mean Absolute Error (MAE).
The computation time will be evaluated as the input vector
arrives to the time a prediction is generated.

2.4. High Fidelity Model

An adaptive estimation method for spacecraft thermal sim-
ulation was presented by Akita, Takaki and Shima (2012).
They employ a finite element analysis of a spacecraft thermal
mathematical model, with the status of the central point, or
node, of each element representing its status. The heat bal-
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ance equation of each node is

Ci
dTi

dt
=Qi −

N∑

j=1

Cij (Ti − Tj)

−
N∑

j=1

Rijσ
(
T 4
i − T 4

j

)
,

(11)

where N is a total number of nodes, Ti and Ci are tempera-
ture and a capacitance of node i, respectively, Qi is an exter-
nal or internal thermal load to node i, Cij and Rij is a linear
conductor and a radiation factor between node i and j, respec-
tively, and σ is the Stephan-Boltzmann constant. Eq. (11) is
solved for all nodes simultaneously to calculate temperature
changes. The heat load Qi can be obtained through either the
orbital environment or instrument power level, while Cij and
Rij have to be identified through thermal-vacuum tests.

3. APPLICATION

3.1. Thermal Simulation

A small spinning satellite in orbit around the Earth is sub-
ject to multiple sources of thermal radiation. As a result, the
satellite’s behavior can be severely affected, especially in the
areas of orbital evolution, attitude and instrumentation. The
most relevant thermal loads for our study are in the low earth
environment. As illustrated in Fig. 2, a satellite in LEO is
subject to several radiation sources.

Figure 2. Sources of Radiation

The thermal forces acting on satellites are generated when
the incoming radiation from a thermal radiation source, e.g.
the Sun, heats in a larger degree the surface facing it, com-
pared to the dark side of the satellite. The uneven distribution
of incident radiation results in asymmetric temperature dis-
tribution on the surface of the satellite. Consequently, the
balance in photon re-emission is compromised, with the hot
side losing more momentum than the cool side. The effect
of this anisotropic behavior is observed as a total linear mo-
mentum, creating a recoil force on the satellite. This force

is time-variate, due to the varying amount of incidence radi-
ation from the source to the surface, which depends on coor-
dinates controlled by the orbital characteristics of the satellite
(spin axis, rotational motion, orbital motion). In the relative
system of the satellite the thermal distribution is described
by asymmetries along the spin axis (summer-winter effect)
and along the equatorial direction (day-night effect) (Duha &
Afonso, 1999). Furthermore, sudden heating and cooling on
the satellite’s surface may create temperature gradients and
thus bending moments due to thermal stresses. These defor-
mations in the structure affect the energy efficiency and the
reliability of the satellite. Over the last decades, instrument
failures are thought to have been caused by excessive ther-
mal deformation. In a study on a 3D CubeSat, it was shown
that the thermal deformation of the satellite structure, which
was in orbit of 450 km high and angle B = 90◦, caused a
deviation of about 0.03◦ from the normals to the opposite
small sides of the satellite (Gorev, Pelemeshko, Zadorozhny,
& Sidorchuk, 2018). Such a deviation is commensurate with
the required satellite pointing accuracy on the order of 0.1◦

necessary for laser communication. A spinning satellite, hav-

Figure 3. Thermal effects on satellite.

ing no control capabilities, cannot correct for external forces
influencing its behavior. In the context of thermal effects, as
illustrated in Fig. 3, a maneuver performed by the spacecraft
would inevitably change its attitude, changing the thermal en-
vironment. In turn, the temperature distribution also changes,
altering the structure through stresses and strains along the
surface. The additional Summer-Winter and Day-Night ef-
fects will further distort the satellite’s attitude and repeat the
vicious cycle.

3.2. eATOMS

Our research was motivated by the work of Kato, Ando and
Fukuzoe (2019). Kato et al. (2019) constructed an emula-
tor using GP regression and Least Absolute Shrinkage and
Selection Operator (LASSO) to estimate the thermal margin
based on given uncertainties. A sensitivity analysis was per-
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formed, based on multiple regression analysis, in order to re-
duce risk in the thermal design of the satellite. Kato et al.
(2019) applied the scheme on a pseudo-small satellite called
eATOMS and demonstrated that the emulator can reduce the
uncertainty quantification cost compared to an ordinary sim-
ulator and that the sensitivity analysis shows that only two
factors are dominant in pseudo-small satellite thermal design
uncertainty. Our intention is to use the same satellite for our
future research.

eATOMS was originally employed for educational purposes
(Shigehara & Toriyama, 2002). It is a 50-kg cubic satellite
with six outer panels, the side length of which is 500 mm, and
three inner panels. eATOMS is shown in Fig. 4. Each panel is
discretized by a single arithmetic node, and a boundary node
is set to the deep space, whose temperature is constant (3K).
The total number of nodes is 16 (Akita et al., 2012).

Figure 4. Exploded view of eATOMS.

4. METHODOLOGY

The requirements this framework needs to fulfill need to be
summarized. The framework should be able to:

1. Perform high accuracy simulation;

2. With short computation times to support an online stream
of data;

3. The requirements proposed by Toal (2015) and described
in Sec. 2.2.1 need to be considered;

4. To provide UQ for risk assessment.

Due to the limited computation capacity of small satellites to
generate high fidelity data, the simulation will be carried out
on the ground, using telemetry data, which for the scope of
this review is considered reliable, i.e. it is not corrupted with
noise and not too sparse.

4.1. Proposed Framework

In this subsection a framework for satellite simulation is pre-
sented. To satisfy the requirement described, a multi-fidelity
approach taking advantage of both the accuracy of - hard to
obtain - high fidelity data and the abundance of low fidelity

data, is proposed. A high fidelity model produces sparse high
fidelity data describing the satellite’s state. On the other hand,
abundant low fidelity data are taken advantage of to speed up
the process.

As illustrated in Fig. 5, the current state Xt is fed as input
to two separate systems. A distinction between XL and XH

is drawn because, since the LFM runs much faster than the
HFM, each input is fed with a sequence with different sam-
pling rates, with the rate of the LFM being much higher than
the HFM’s. Each system produces a set of predictions, par-
ticularly a high fidelity model and a low fidelity surrogate
model, as two predictions for the next thermal state Ŷ . Sub-
sequently, a meta predictor combines both predictions appro-
priately through a multi-fidelity scheme to produce a multi-
fidelity surrogate model for Xt+1, which will follow LFM’s
sampling rate. The produced estimated mean µ̂ and standard
deviation σ̂ are compared with a desired value for uncertainty
and fed back to the HFM.

5. DISCUSSION

The simulator proposed by Akita et al. (2012), and discussed
in section 2, is the HFM. On the other hand, the LFM is im-
plemented with both an LSTM and ARIMAX. To avoid com-
plicating the analysis and increasing the computational bur-
den, in the final stage, the one that describes the true behavior
of the satellite’s thermal state more accurately will be used
as LFM. For the multi-fidelity component, the basic cokrig-
ing framework proposed by Kennedy and O’Hagan (2000),
described in section 2, and Le Gratiet and Garnier’s (2014)
work, on decoupling the cokriging scheme into two paral-
lel kriging schemes for easy computation is used. A lim-
itation of this framework is that its individual constituents
have been demonstrated to work on Multiple Input Single
Output (MISO). However, a future expansion will focus on
implementing a system that can also handle multiple outputs.
When working with online data, low fidelity predictions will
be corrected to estimate the high fidelity prediction. When-
ever a true high fidelity prediction is generated, the model
will be updated for a minimum computational cost, since it
only requires refitting the model with the new data. In order
to optimize the process for computation time, the estimated
uncertainty will be constantly compared to a predetermined,
application dependent, value. If found undesirable, the model
can be updated with high fidelity information at a cost of com-
putation time.

Concerning our choice of surrogate models for the low fi-
delity prediction of time series, a multitude of methods in the
bibliography have been developed. However auto-regressive
methods and recurrent neural networks have been shown to
produce good results. While the main drawback of neural
networks is that that they are not explainable, it is not an is-
sue in this particular case since they do not need to produce
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Figure 5. Proposed Framework

an estimate for uncertainty. UQ will be carried out using the
MFM. As input features, the framework will accept attitude
parameters, orbital elements, the Earth’s radiation parameters
and previous thermal states. These data will also have to be
preprocessed in order to be in suitable format for the two sep-
arate models. Even though multiple applications of cokriging
have been presented , to our knowledge, there is limited work
that:

1. Discusses how multi-fidelity modelling can enable a satel-
lites digital twin architecture;

2. Addresses the shortcomings of telemetry data;

3. Investigates multiple features to improve the results from
solving the thermal equations.

When considering a physical application of the framework
and its incorporation in a digital twin architecture, onboard
measurements, received by telemetry, can replace the HFM.
The main drawback of telemetry is sparsely arriving data.
However, this is not an issue for the proposed framework
which reflects a ‘living’ digital twin as described in Section 1.
The MFM corresponds to the digital model. An established
knowledgebase is utilized to construct the low fidelity model.
Analytics are performed to decide whether or not to increase
the number of data points. This is achieved through contin-
uous communication with the physical satellite. Besides the
development of another framework for satellite simulation,
the main impact of our approach is to compliment efforts by
other researchers to tackle the unreliability of telemetry data.
This will enable fault detection systems on the ground to have
accurate information on the satellite. A recent paper applied a
cokriging scheme on all-electric geostationary orbit satellite
systems for optimization. Their research supports our work,
however our end goal is different (Shi, Liu, Long, Wu, &
Gary Wang, 2020). This research focuses on:

1. Handling real-time data within the digital twin frame-
work, instead of optimization;

2. The problem of processing telemetry data;

3. Testing various methods to construct the low fidelity sur-
rogate model.

Finally, the framework will be validated initially through syn-
thetic data, generated by the high fidelity simulator proposed
by Akita et al. (2012) and subsequently with real data pro-
vided by the Intelligent Space System’s laboratory of the Uni-
versity of Tokyo. In particular, accuracy, computation times
and memory usage will be benchmarked against purely low
fidelity and high fidelity simulations. However, the absolute
accuracy requirement to be achieved depends on the particu-
lar application and is to be determined at a later time.

6. CONCLUSION

This paper proposes an online multi-fidelity framework for
small satellites. After reviewing each individual component,
i.e., the low fidelity surrogate model, the high fidelity model
and the multi-fidelity methods; it is observed that individually
they can function effectively. Gaps in the body of work on the
digital twin for satellites have been identified. A method for
online data processing was investigated and is expected to be
appropriate for the thermal simulation of a small satellite. In
our future work, the feasibility of this digital twin enabled
framework is being implemented.
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