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ABSTRACT

In this work we study the behaviour of aircraft integrated
air management system and internal pressure control system.
Our goal is to investigate the capabilities of novel data-driven
algorithms for system identification. Pressure control system
is critical for aircraft operations, because detected faults lead
to flight cancellation and maintenance, while in-flight faults
or improper pressure regulation can substantially worsen crew
or passenger flight conditions or even lead to a catastrophe.
The main algorithm studied is Sparse Identification of Non-
linear Dynamics, which identifies nonlinear dynamical sys-
tems from data promoting sparsity in the solution. We bench-
mark SINDy with other state of the art data-driven regression
techniques, such as feed-forward neural network and random
forest and show that in many cases SINDy performs better
despite high noises and insufficient data. In the end we for-
mulate further steps for improving the quality of the results in
order to use them in model predictive control framework and
for anomaly detection.

1. INTRODUCTION

With the advances of microelectronics and different methods
for data analysis, it becomes possible to collect, store, and
process a lot of operational data in a complex system. The re-
sult of this analysis could be used for maintenance planning
in order to prevent any system failures and to decrease main-
tenance costs, or to increase control precision for the most
critical operational parameters.

Thresholding technique is the simplest and the most widely
used method for health analysis. It can reliably define up and
down states of the system, but fail to detect prefault system
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states, that often have complex criteria, and by definition can-
not diagnose any latent faults. Model-based approaches in-
volve explicitly constructed model of system operation, which
is often hard or impossible to use due to the lack of model
flexibility and unknown exact operational conditions. Data-
driven health analysis on the other hand can infer model of the
system using operational data. It is an active research subject
in academic community and already finds many practical ap-
plications in aerospace (Basora, Olive, & Dubot, 2019). One
of the promising applications of data-driven health analysis
is the detection of pre-fault states. These states are difficult
to formalise, and do not require immediate actions. The lat-
ter can be used for establishing condition-based planning and
maintenance.

Because faults occur rarely on a real system, there is a lack
of prefault operation data, and thus it is often difficult to con-
struct a robust data-driven classifier. One of the approaches to
overcome this obstacle is to construct a model of nominally
operating system and detect any discrepancies between the
model and measured data. This approach is widely known
as anomaly detection or novelty detection. Many different
methods can be used to construct a model of studied system,
including simple autoregressive models, ARIMA, different
types of recursive neural networks, DMD, or others. How-
ever, these methods could be sensitive to noises and outliers
in the training data, or have issues with interpretability, as
in the case with neural networks. It also may be difficult to
detect latent faults with this approach, because they often pol-
lute the training data and thus may be included into nominal
model.

In order to use this problem statement in a realistic setting,
one needs to train the algorithm on all the nominal states
of the system that are available. In test phase the algorithm
marks all the states that are sufficiently different from seen
nominal states for the operator to consider whether they should
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be treated as nominal or not, after which the algorithm should
be retrained using either only new data or from the scratch,
depending on the algorithm used.

In case the model can predict system behaviour, this model
can also be used for model predictive control, which is a
control technique based on finite-horizon optimisation of pre-
dicted system behaviour with respect to control strategy. In
this approach, a finite window prediction is used to choose the
best next control input to the system (Agachi, Cristea, Csav-
dari, & Szilagyi, 2016).

Although the behaviour of natural or human-made systems
may be very complex, the structure of governing differential
equations is often quite simple. This observation in combi-
nation with sparse regression techniques inspired the devel-
opment of sparse identification of nonlinear dynamical sys-
tems (SINDy) method (Brunton, Proctor, & Kutz, 2016). This
method often requires less data than neural networks for fit-
ting the model (Kaiser, Kutz, & Brunton, 2018) and often
gives interpretable results in terms of parsimonious system of
governing differential equations. It was shown by Kaheman
in (Kaheman, Kutz, & Brunton, 2020) that the method is suf-
ficiently accurate for controlling double pendulum on a cart
and other systems with complex dynamics.

The main function of Integrated Air Management System (IAMS)
is the control of many environmental conditions for crew and
equipment operation on board of an aircraft, such as temper-
ature, pressure, and chemical composition. Additional func-
tions may include air preparation for wing ice-protection sys-
tem and rare gas subsystem of fuel system. Depressurisation
or overpressurisation IAMS failures may cause a catastrophe,
so there are strict requirements for redundancy and technical
diagnosis problems are considered relevant.

Traditionally, IAMS gets the pressurised air from aircraft en-
gine compressor, cools it to the necessary temperature, and
controls the pressure in the cabin. Main components of IAMS
include Bleed Air System, Environmental Control System,
Air Distribution System, and Cabin Pressure Control System.
Some modern systems may also use separate electrical com-
pressors instead of getting the air from the engine.

Typical technical diagnosis problems, such as fault detection
and identification, and remaining useful life estimation, are
relevant for IAMS. However, system states (up state, down
state, etc.) are defined using thresholding rules, and require
certain actions from control system or crew members. Many
fault localisation problems are also solved using direct meth-
ods, e.g. using a certain pre-flight or ground diagnostics test
procedure. For these types of faults many advanced tech-
niques are not needed. By leveraging operational data, data-
driven methods could potentially be used for faults that can-
not be easily identified and require dismantling or disassem-
bly of subsystems, or additional instruments for that. They

can be used for assessing fault probability thus decreasing the
time for unnecessary dismantling and installation of subsys-
tems.

Analysis shows that a significant number of flight accidents
occur due to the impact of flight hazards on the aircraft crew.
(Ho, 1975) shows that rapid change in cabin pressure might
lead to spontaneous pneumothorax. Typical symptoms in-
clude chest pain and shortness of breath. Its occurrence in avi-
ation may result in the abort of a mission, a serious accident,
or a major disaster. Another study (Hussein, Abdel Tawab,
Lotfi, Fayad, & Elsisy, 2019) indicates that because of expo-
sure of aircrew to rapidly changing ambient pressures baro-
trauma is considered to be the most frequent medical problem
related to aeroplane travel and has been mentioned as a causal
element in aviation accidents. In general the number of medi-
cal emergencies onboard aircraft is increasing as commercial
air traffic increases and the general population ages, becomes
more mobile, and includes individuals with serious medical
conditions (Hu, Cowl, Baqir, & Ryu, 2014). Rapid change
in cabin pressure during flying can cause ear-drum pain and
perforation, vertigo, and hearing loss. It has been estimated
that 10% of adults and 22% of children might have changes
to the ear drum after a flight (Wright, 2015). According to
the ”Federal Aviation Regulations Part 25 – Airworthiness
Standards: Transport Category Aircraft” pressurised cabins
must have a means by which the pressure differential (differ-
ence between external and internal pressure) can be rapidly
equalised. Moreover, modern trend towards the introduc-
tion of supermaneuvrability in combat aircraft leads to an in-
crease in the rate of change of pressure difference. In (Sukhov
& Timoffeev, 2019) the need to use new methods and ap-
proaches to the synthesis of pressure control algorithms is
indicated. It is an active research subject in academic com-
munity with multiple approaches being used to find the best
method. L1 adaptive controller which consists of three com-
ponents: state predictor, adaptive law and control law, was
successfully used in (Cooper, Cao, & Jiong, 2017) to miti-
gate the effect of nonlinearities in pressure control system. In
(Wang, Qian, & Ma, 2012) fuzzy PID controller was used to
obtain higher control accuracy for cabin pressure. Although
these works show good results both of them were conducted
in simulated environment without any use of hardware-in-the-
loop simulation.

The purpose of this project is to identify the behaviour of an
aircraft pressure control system in different conditions dur-
ing ground tests for the purposes of predictive control and
anomaly detection. We show the applicability of SINDy for
system identification and compare the results by different meth-
ods, and identify further steps to improve the results.

The rest of the paper has the following structure: in section
2 we will describe the main structure of pressure control sys-
tem, its operation, and conducted testing procedures; in sec-
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Figure 1. Test facility overview

α
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Figure 2. Schematic view of a cabin pressure control system

tion 3 we will briefly describe the operation of SINDy and
other methods we used for benchmarking; then, in section 4
the results of the work will be presented; finally, in section 5
we will formulate the conclusions and possible further steps
for this research.

2. EXPERIMENT SETUP

The test facility is built for testing of aircraft pressure control
system at different operational modes. The pressure control
system under consideration closely resembles that installed
on an operational aircraft. An overview of the facility is
shown in Fig. 1, and structure of conducted experiment is
shown in Fig. 2. Main components include pressurised cabin,
external atmosphere simulator, and two pressure control valves
operating under the same control law.

System operation can be formalised as follows:

Ṗ = a(G− f(P − Pe, α)) (1)

α̇ = g(P, Ptarget, Pe, Ṗ , α), (2)

where P – cabin pressure, Pe – external atmospheric pres-
sure, G – inflow into the cabin, f – flow through pressure
control valve, α – valve opening angle (same for both valves),
The former equation determines system dynamics, while the
latter one is the control algorithm.

During the tests different aircraft scenarios could be mod-
elled, such as ascent, descent, takeoff and landing, different
manual control modes. An example test profile is shown in
fig. 3. Inflow measurement noise can be attributed to its mea-
surement method, which relies on velocity estimation in the

Figure 3. Sample test profile.

Table 1. Tests used in this study

Scenario Number of runs
Ascent 4
Descent 2
Takeoff 5
Landing 11

air duct using Pitot tube, while oscillations of valve opening
angle are imposed by its control strategy.

The experimental data used in this study is shown in table 1.
All of the experiments were conducted in 2 month period in
the same test facility.

In this work we will build a regression model for the first
equation in 1 using different data driven methods for model
predictive control and anomaly detection, and benchmark the
quality of corresponding models.

Table 2. Correlation matrix of the measurements

α P ∆P G Ṗ

α 1.00 0.28 -0.63 0.09 -0.03
P 0.28 1.00 -0.70 -0.22 -0.04
∆P -0.63 -0.70 1.00 0.34 -0.14
G 0.09 -0.22 0.34 1.00 -0.08
Ṗ -0.03 -0.04 -0.13 -0.08 1.00

3

Proceedings of the 6th European Conference of the Prognostics and Health Management Society 2021 - ISBN – 978-1-936263-34-9

Page 256



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2021

Table 3. Statistical parameters of measured data

Parameter α P ∆P G Ṗ

Mean 39 830 0.22 640 0.01
Standard deviation 14 50 0.13 165 0.23

2.1. Data description

A well-known Darcy–Weisbach equation (Brown, 2002) for
a flow in a pipe is

∆P

L
= fD

ρv2

2D
, (3)

where ∆P
L is pressure gradient in a pipe, fD — Darcy friction

factor, ρ — air density, v — flow velocity, D — pipe diam-
eter, while air mass flow Q and thus rate of cabin pressure
change Ṗ is proportional to pipe flow velocity Ṗ ∝ Q = Fvρ
Assuming turbulent flow in outflow duct, and taking into ac-
count that fD is nearly constant in turbulent flow (Moody,
1944), equation (3) suggests to use

√
∆P as one of the fea-

tures.

To sum up equations (1) and (3), the following features are
used for model training:

√
∆P =

√
P − Pe — square root

of cabin excessive pressure, P — total cabin pressure, G —
cabin inflow rate, F = 1− cosα — fraction of opened cross-
sectional area in pressure control valve.

3. METHODS

In this section we will discuss several methods we used for
system identification from test data. As a baseline predictor
we used null hypothesis which predicts Ṗ = 0 with respect
to any argument.

Another simple algorithm for benchmark is random forest.
This model was trained with 50 estimators.

3.1. SINDy

Sparse Identification of Nonlinear Dynamics (Brunton et al.,
2016) is a novel method that leverages the observation that in
most systems only a few terms define system dynamics. The
method have shown very strong noise robustness and is well
suited for limited training data scenarios (Kaiser et al., 2018).
It was successfully used for learning model predictive control
for double pendulum balance (Kaheman et al., 2020) and for
condition monitoring of wind-induced vibration of a suspen-
sion bridge (Li et al., 2018) in combination with clustering in
order to distinguish different operational modes.

First, it is assumed that the RHS of governing differential
equations can be represented as a linear combination of a
number of functions from some dictionary:

ẋk = Θ(xT )ξk, k = 1 . . . n, (4)

where x = (x1 . . . xn)T is a vector of phase space variables,
Θ(x) = (θ1(x) . . . θm(x)) is a library of candidate terms, ξk
is a sparse vector of coefficients that control which functions
from the library are included into the model.

In order to calculate matrix of model coefficients Ξ = (ξ1 . . . ξn)
from experimental data, it is possible to construct the matrix
of derivatives

Ẋ =




ẋ1(t1) ẋ2(t1) . . . ẋn(t1)
ẋ1(t2) ẋ2(t2) . . . ẋn(t2)

...
...

. . .
...

ẋ1(tm) ẋ2(tm) . . . ẋn(tm)


 (5)

and the matrix of values of functions from the dictionary

Θ(X) =




1 θ1(x(t1)) . . . θk(x(t1))
1 θ1(x(t2)) . . . θk(x(t2))
...

...
. . .

...
1 θ1(x(tm)) . . . θk(x(tm))


 (6)

Then Eq. (4) can be rewritten in simple form

Ẋ = Θ(X)Ξ + ηZ, (7)

where Z is a matrix of i.i.d. Gaussian entries with zero mean,
and η is noise magnitudes, which is added because Eq. (4)
doesn’t hold exactly with measured data. Because library of
candidate functions Θ is usually large, this is fundamentally
an overdetermined regression problem with noise where we
seek a sparse matrix Ξ. This problem can be solved with
sparsity promoting regression techniques such as LASSO, or
sequential shrinkage as proposed in (Brunton et al., 2016).

In this work we used polinomial library of features for this
method, which means that family of functions Θ can be de-
scribed as Θ = xr11 x

r2
2 . . . xrnn , where xi are individual fea-

tures described in section 2.1.

3.2. Feed-forward Neural Network

We chose a feed-forward neural network as one of the meth-
ods for a benchmark due to their popularity and ability to fit to
very complex functions. In order to leverage the structure of
underlying differential equation (4), we used an architecture
shown in fig. 4. The data was normalized prior to training.
We used 100 neurons with sigmoid activation in hidden layer
to introduce nonlinearities and 0.5 dropout rate as a sample to
show its behaviour, however, it was found to be very similar
in a wide range of hyperparameters. Finally, the network was
trained using ADAM optimizer with learning rate of 0.002
and 10 epochs. Further training did not increase training and
validation scores.
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Figure 4. Employed neural network architecture.

Table 4. Metrics comparison of different system identifica-
tion methods

Method RMSE MAE R2 coef.

NULL 0.21 0.15 -0.32
RF 0.22 0.16 -0.4
SINDy 0.17 0.14 -1.7
FF NN 0.2 0.15 -5.2
LSTM RNN 0.23 0.16 -9.5

3.3. LSTM Recurrent Neural Network

Another popular and flexible model for sequence modeling
and prediction is long short term memory recurrent neural
network. We used one layered implementation with 50 hid-
den nodes with sigmoid activations and one linear neuron as
output. The model was trained with ADAM optimizer with
learning rate of 0.002.

In contrast to feed-forward NN, LSTM NN quickly overtrained
after 20 epochs of training.

4. RESULTS

The results are summarised in table 4. The metrics of the
algorithms were obtained using 5-fold cross-validation using
each time series as a sample.

We can see thatR2 coefficient is negative, which means that
original data variance is higer than prediction accuracy for all
the models we were able to infer from available experiments.

Some of the models are shown in figures 5, 6, 8.

We can see that SINDy can to a certain degree explain vari-
ance in Ṗ , which is connected to slight changes in valve angle
α, which is used for pressure control, whereas other models
dealt with that problem less successfully. Moreover, the iden-

Figure 5. SINDy model cross validation for Ṗ

Figure 6. Random forest model cross validation for Ṗ

Figure 7. Feed-forward neural network model cross valida-
tion for Ṗ
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Figure 8. Recurrent neural network with LSTM neurons
model cross validation for Ṗ

tified model can be easily written as

Ṗ =− 4.2961 + 0.006P + 0.002G+ 16.289F

+ 6.942
√

∆P +−0.020PF +−0.011P
√

∆P

+ 0.002G
√

∆P + 1.108F 2 +−24.006F
√

∆P

+ 1.452∆P,

where cabin excess pressure ∆P = Pe−P measured in atmo-
spheres, open area fraction in pressure control valve F = 1−
cosα, inflow rate G measured in kg/hour, and Ṗ measured in
hectopascals per second. Although the resulting model does
not correspond to physical reality and thus must be strictly
cross-validated to be used in a real case, it may be essential to
have an explicit model for usage in model predictive control
scenarios to ensure controller safe and predictable operation.

There are multiple possible reasons for poor models quality:
poor choice of functional family to represent the differential
equation (1), the absence of system temperature readings and
corresponding errors in measurement of G, or more complex
system behaviour, such as additional latent variables dynam-
ics. Because neural networks represent a very flexible func-
tional family, poor choice of functional family is unlikely.
The most straightforward way to improve the models is to re-
move possible biases and noises that are imposed by current
measurement techniques. We consider temperature reading
crucial for correct inflow rate calculation based on pitot tube
readings.

5. CONCLUSION

None of the models we built in this study was sufficiently bet-
ter than null hypothesis to be used in model predictive control
framework. Medium model quality can be explained by dif-
ferent ambient temperatures that were not measured in the
test facility during different tests. This can cause significant
difference between true and measured specific inflow rates,

because constant temperature was used in its calculations.

The development of a model even for a relatively simple sys-
tem using existing data proved to be a non-trivial task. We
believe that in order to further improve the results of system
identification test procedures have to be modified. In par-
ticular some other parameters should be monitored, such as
temperature in the cabin and temperature inside the inflow air
duct. Correspondingly, in order for the system to be usable
on board of the aircraft, similar instruments will have to be
installed. It is also desirable to decrease inflow measurement
noise.

Nevertheless, as a result of this study we have shown that
SINDy method gives better and more interpretable models
than other data-driven methods, such as random forest and
neural networks. This feature may be important for applica-
tions in model predictive control of critical aircraft compo-
nents. It allows to ensure necessary function properties, such
as smoothnes, which is difficult to do in case of neural net-
works.
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