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ABSTRACT 

Aerospace industries have become increasingly concerned 

about system availability and reliability.  Data driven based 

prognosis is an emerging application aimed at building 

predictive models from readily available maintenance and 

operational databases. After validation, these models can be 

integrated into PHM systems to monitor equipment health 

and predict component failures before such events disrupt 

operations. 

For this project legacy data collected from two databases 

associated to a fleet of civil aircrafts during a period 

spanning 5 years have been used. The first database contains 

Central Management System (CMS) data (BIT messages 

and Flight Deck Effects), the second logs of maintenance 

activities.  Part of the data collected from 2012 to mid 2015 

have been used for the learning phase the rest spanning 

2012-2016 period have been used for validation 

The goal is to predict failure events within an interval 

ranging from two to ten flights in advance to avoid 

unscheduled maintenance activities and operational 

disruptions. Hence two flights represent the minimal notice 

period/prognostics horizon whilst 10 flights is the maximal 

acceptable wasted life. Data-driven based prognostic uses 

pattern recognition and machine learning techniques to train 

historic data. In the proposed approach both techniques have 

been used. Through Support Vector Machine a prognostics 

anomaly detection step is initially performed to select the 

flight legs candidate for a prognostics alert. In a further step 

a subspace technique, borrowed from image processing 

domain and named Eigenface, allows to produce the 

signatures of the different types of maintenance actions and 

a template matching algorithm determines among the 

prognostics alert candidates the component to be replaced. 

Several tests have been conducted for different types of 

replacements and results will be presented using Receiver 

Operating Characteristic (ROC) curves and precision/recall 

metrics. Information contained in ROC allows the airliner to 

identify, according to its economic criteria, the optimal 

prognostics operating points. 

 

1. INTRODUCTION 

Prognostics functions have become more and more 

appealing in aviation business allowing business growth, 

maximizing availability, optimizing the logistics, improving 

productivity and especially reducing maintenance costs 

(Roemer, et al., 2005), (Jardine, et al., 2006).  

(Ashby & Byer, 2002) highlights the positive impacts of 

prognostics on scheduled and unscheduled maintenance and 

benefits deriving on operations. Prognostics information can 

facilitate tasks of line maintenance and reduce unscheduled 

maintenance then lowering the probability of delays which 

are a critical aspect for civil airliners. However prognostics 

systems incurs development, installation and life cycle 

costs. These costs need to be reduced and/or balanced by 

expected savings gained over the life of the aircraft. 

Obviously maintenance cost reduction deriving from 

prognostics depends on the performance of prognostics 

system itself, and (Feldman, et al., 2009) quantify the cost 

associated to missed detections and false alarms.  

The vast majority of cases of predictive maintenance 

deployed in the aeronautical industry today are trend 

modelling of specific data and data features (exhaust gas 

temperature, oil temperature, vibration at specific 

frequencies, filter clogging, etc) mostly concentrated in 

main engines and Auxiliary Power Units (Austin, et al., 

2003 ), (Brotherton, et al., 2000), (Eker, et al., 2014), 

(Daigle & Goebe, 2010), (Orsagh, et al., 2005). 

The latest generations of airplanes incorporate systems able 

to collect data circulating in different types of data 

communication buses (CAN, A429, AFDX). These systems 

are composed of functions such as data recording (FDR, 

QAR, DAR, DVDR, SARs) of time series, data reports 

(Aircraft Condition Monitoring System – ACMS Reports) 

composed of one or more snapshots of sets of predefined 
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parameters and maintenance reports composed of 

declarations collected from different systems, representing 

failures or faults detected during last operation(s). 

The cost of computational power has drastically dropped in 

recent years allowing exploration of new predictive models 

exploiting massive volume of data.  

The increasing availability of operational records and 

processing power made data-driven approaches an 

appealing strategy to produce prognostics with no need of 

retrofit, hence reducing development and installation costs. 

Data-driven prognostics (Schwabacher, 2005) 

(Vachtsevanos, et al., 2007) uses machine learning 

techniques to build predictive models from readily available 

operational and maintenance databases. Data-driven models 

rely on learning systems behavior directly from already 

collected operational data in order to predict the future of a 

system’s state or to match similar patterns in the history and 

infer Remaining Useful Life. 

This project, developed in the framework of the Horizon 

2020 Clean Sky 2 program, aims at identifying new cost-

effective prognostics strategies. A predictive solution has 

been built with data collected from operational fleet with 

already existing acquisition capabilities. The cost constraints 

imply that no data collection customization is planned. As a 

consequence the only data available for this project are 

aircraft CMS messages. Such messages are essentially 

Boolean data representing BIT and Flight Deck Effect 

(FDE) reports recorded during flight. In literature very few 

example of prognostics based on log messages are reported 

(Sipos, et al., 2014) 

To base prognostics only on the analysis of BIT ad FDE 

data in complete absence of sensor data represents a very 

challenging task. To tackle this problem a 2 steps approach 

has been designed where both pattern recognition and 

machine learning techniques have been used. The details of 

the problem and its overall algorithmic strategy will be 

presented in section 2. Parts 3 and 4 will describe 

respectively the first step consisting in SVM prognostic 

anomaly detection and the second stage, based on a 

subspace method, prognostic anomaly identification. 

Results will be presented and discussed in section 5 which 

precedes the conclusions. 

2. PROBLEM  DESCRIPTION 

The aim of the research is to trig the execution of cost-

effective maintenance actions protecting aircraft operational 

capability by avoiding the occurrence of failures impacting 

aircraft dispatch. 

For our project legacy data collected from two databases 

associated to a fleet of civil aircrafts during a period 

spanning 5 years have been used. The first database contains 

Central Management System (CMS) data (BIT messages 

and Flight Deck Effects), the second logs of maintenance 

activities.  Part of the data collected from 2012 to mid 2015 

have been used for the learning phase the rest represented 

the validation set. 

Nowadays the use of CMS data to anticipate new in-service 

failures is in practice largely empirical, such analyses don’t 

go further than building correlations between parameters or 

data visualization dashboards and a common data analysis 

and evaluation framework has not yet emerged. 

The project objective is to provide actionable prognostics 

information, by constructing data driven baseline models 

representing regular A/C operation which enable the 

detection of future abnormal behaviors. More precisely the 

objective is to anticipate unscheduled maintenance activities 

consisting in replacements of Functional Items (FI) by 

identifying predictive signatures in the CMS messages. 

Among the several possible functional items, the project 

focused on the ones having the higher economic impact in 

operations according to the airliner (9 components).  A 

coarse analysis showed that the occurrence of unscheduled 

replacements for such components occurs, on average, twice 

every thousand flights. For each selected component in the 

period covered by the training CMS data, only 20-50 

unscheduled replacement events occur. 

In the majority of cases no prognostics alert has to be raised 

after a flight and such uneven distribution of the events has 

two major consequences on algorithm design: 

1. A very low false positive rate has to be provided, to 

avoid that most of prognostics alerts represent false 

alarms 

2. As very few examples are available for each individual 

FI, it is almost impossible to properly train a classifier 

identifying a single specific replacement of a selected 

component.  

These aspects lead the development of the proposed two 

steps strategy.  

2.1. Prognostics Requirements 

In order to provide actionable information and allow enough 

time to prepare replacement operation, the prognostic alert 

needs to be raised at least Notice Period (NP) time in 

advance of the fault occurrence. The time scale for 

maintenance activity is defined in terms of flight legs and 

the minimal NP is set to 2 flights. 

Nevertheless the prognostics alert should not come too early 

to reduce the useful equipment lifetime wasted due to a 

removal before failure. A maximal Wasted Life (WL), 

identifying the greatest amount of time a failure can be 

anticipated in a cost effective manner, has to be defined. In 

our project maximal WL is set to 12 flights. 
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2.2. Prognostics Metrics 

The definition of True Positive, false alarm (False Positive) 

and missed detection (False Negative) in terms of NP and 

WL results as below: 

 True Positive (TP): when a prognostics alert is raised 

before failure occurrence by a time greater than 

minimal NP and smaller than the WL (top of Figure 1) 

 False Positive (FP): when a prognostics alert is raised 

before failure occurrence by a time greater than the 

maximal WL  (center of Figure 1) 

 False negative (FN):  when a prognostics alert is not 

raised  or it is raised before failure occurrence by a time 

smaller than the minimal NP (bottom of Figure 1) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. From top to bottom a case of True Positive a case 

of False Positive  and a case of False Negative 

As mentioned, FI replacement events occur, luckily, very 

few times every thousand flight legs, hence providing 

algorithmic results in terms of true positive and false 

positive rates does not characterize correctly the prognostics 

performances for our target application. In our application 

about 0.1% of flight legs requires a specific FI replacement 

alert to be triggered. With such an uneven distribution, an 

algorithm providing, for instance, 100% TP rate and 1% FP 

rate, will end up to trigger 110 prognostics alerts every 

10000 flights but only 10 of these alerts will correspond to a 

real problem. However for the prognostic solution to be 

accepted by maintainers, the end user estimates that correct 

prognostic alerts should represent more than 70% of the 

total number of alerts (precision). For this reason a very low 

level of FP is required to gain confidence on the predictive 

solution. This requirement represents a strong constraint for 

algorithm performances in terms of FP rate which can only 

be achieved by accepting to reduce the TP rate (Recall) 

performances. Nevertheless the solution reuses the existing 

database, can be easily “retrofitted” and does not require 

any further installation, hence even a weak performance in 

terms of Recall <50% could be acceptable for the airliner 

(see Appendix). In conclusion Precision (P) and Recall (R) 

defined as  

P = TP/(TP+FP)   (1) 

R = TP/(TP+FN)   (2) 

appear the most appropriate metrics for our prognostics 

application and they will be used in the following to 

characterize the performance of the proposed solution. 

2.3. Prognostics Architecture 

During each flight several types of different CMS messages 

are recorded and then transferred to ground database. As a 

consequence, to each flight leg can be associated a vector of 

data whose elements represent the number of occurrences of 

every message type during the flight. Hence the cardinality 

of the vector is the number of different message types (IDs), 

which depending on the aircraft type can be either 320 

(single aisle) or 550 (wide body). Defining                          the 

CMS message vector of leg  , autocorrelation: 

                                                (3) 

has been computed. It has been observed that     is 0 for   

greater than 20. This value can be then considered the 

memory of the CMS fault recording process. For this reason 

it has been decided to analyze groups of no more than 20 

consecutive legs. This means that 20 past flights are 

considered to identify predictive patterns and prognose. 

Thus data associated to each flight leg can be represented by 

a matrix 20x320 for single aisle and 20x550 for wide body 

planes the CMS message prognostics matrix an example of 

which is shown in Figure 2 . 

 

Figure 2 CMS message prognostics matrix for a wide body 

plane 

As already observed, in the learning set, the number of 

examples of replacements of an individual functional item 

(FI) is about 50 and this does not allow to satisfactorily train 

a classifier able to prognose a replacement of a specific 

component in a single step. Moreover it is required to set up 

an approach able to deliver a very low false alarm rate 
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(Bock, et al., 2006), hence the idea of cascading two stages 

each of them having the capability of reducing the number 

of alerts. 

As the total number of unscheduled replacement event (all 

FIs together) provides in total more than 1000 cases, it is, at 

least in principle, possible to train a classifier able to detect 

the future need for a replacement without determining 

which component has to be replaced. This step essentially 

prognose the anomaly and is equivalent to a fault detection 

step in diagnostics. The requirement of determining which 

component will need to be replaced is then accomplished in 

a second stage which can be considered as the equivalent of 

a fault identification, with rejection capability, in 

diagnostics. The overall approach is sketched in 

Prognostics 

Replacement 

Detection

Prognostics

FI

Identification

Alert FIN 1

Alert FIN 2

Alert FIN n

NO ALERT

CMS Message 

Prognostics Matrix

Candidate 

Anomalies

 Figure 3 . 
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 Figure 3 Two steps prognostics strategy 

Considering the whole data set of flight legs, the task of 

detection step, based on SVM (Cortes & Vapnik, 1995), is 

to find the candidate legs for a generic prognostic alert as 

shown on top of Figure 4. The classification stage, based on 

eigenfaces (Pentland & Turk, 1991), identifies among the 

candidate anomalies, the ones associated to the FI#1 

replacements: bottom of Figure 4.  

3. SVM  PROGNOSTIC  DETECTION 

Support Vector Machine (SVM) (Cortes & Vapnik, 1995) 

(Drucker, et al., 1997), is a state-of-the-art method, 

frequently used as nonlinear classifier or learning algorithm 

which is able to evaluate automatically dependency between 

data and defined as a regression problem. SVM estimate the 

connection between predictive variables and explanatory 

variables and can be trained with a learning algorithm from 

optimization theory. During the last decade (Zhong, et al., 

2010), (Kang, et al., 2012) much attention on data-driven 

based prediction methods has been paid to the use of 

support SVM, which has a better generalization ability 

compared with conventional machine learning methods, 

such as artificial neural networks. 

Figure 4 Leg selection function: top highlights the 

replacement detection, bottom FI identification 

Using the data of maintenance database, flights occurring 2 

legs before any unscheduled replacement events have been 

identified for the different aircrafts. It has to be remembered 

that 2 represents the required notice period (NP).A balanced 

training set has been built with 2000 CMS message 

prognostics matrices: half of which randomly selected from 

data recorded from 2 to 22 flights before an unscheduled 

replacement event and half of them related to non 

replacement situations. These data have been fed to a SVM 

classifier. As this classification problem is not linear, a 

Gaussian kernel has been used to learn the nonlinear 

decision boundary. 

 
Figure 5: ROC curve for prognostics anomaly detection 
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The results on 20000 flights, shown in Figure 5, are based 

on SVM scores and do not take into consideration a priori 

probabilities of the replacement events. Already from the 

ROC appear clear (labeled point 0.006, 0.508) that the price 

to pay to achieve a FP rate below 1% is to accept that recall 

drops to 50%. 

To take into account the uneven distribution of the data in 

the operation case, the SVM scores have been transformed 

with a step function which introduces the information of the 

probability of the replacement events. 

The step function P(sj) maps the SVM 

score sj corresponding to observation  j  into a non-

replacement class posterior probability  

      

 
 
 

 
 

                

                            

                 

            (4) 

where: 

 sj the score of observation  j. 

 nrep and rep denote the non replacement and 

replacement classes, respectively. 

 π is the prior probability that an observation is in 

the non replacement class 

Table 1 presents the results obtained using the non 

replacement class posterior probability mapping, on a test 

set of 20000 flight legs with 5% of replacements.  

It is important to remind that in SVM stage, all type of 

component replacements belong to the same ‘replacement’ 

class, but the final goal is to prognose the exact type of 

replacement. As a consequence the fault identification step 

needs to be able to reject not only the FP resulting from the 

SVM step, but also the TP associated to replacements 

different from the required one.  This process is illustrated 

in Figure 4. Of course such rejection process will determine 

a further reduction of recall in the attempt of keeping 

precision above 50%. 

 

4. EIGENFACES PROGNOSTICS CLASSIFICATION 

The prognostic identification step has the task to recognize 

among the candidate flight legs selected during SVM 

detection step the ones referring to maintenance activity 

associated to a specific component replacement. 

CMS prognostics matrices represent the input and a 

classification procedure, with rejection capability has to be 

provided. The problem can be solved through a pattern 

recognition (Webb, 2002)  approach where signatures of the 

events to be prognosed are first built in a supervised 

learning phase and then used as a template for the 

classification of the new samples. From the analysis of 

maintenance database unscheduled replacement events for 

the FIs of interest have been selected and the associated 

CMS prognostics matrix extracted. In the learning phase 

such matrices have to be used to produce the templates of 

different types of unscheduled replacements. The aim is to 

select the most discriminatory information for classification 

reducing redundancy 

Principal components analysis (PCA) originated in work by 

(Pearson, 1901). It is the purpose of PCA to derive new 

variables (in decreasing order of importance) that are linear 

combinations of the original variables and are uncorrelated. 

Geometrically, PCA can be thought of as a rotation of the 

axes of the original coordinate system to a new set of 

orthogonal axes that are ordered in terms of the amount of 

variation of the original data they account for. A method 

relying on PCA and developed for 2D pattern recognition is 

Eigenfaces (Sirovich & Kirby, 1987),(Pentland & Turk, 

1991). Eigenfaces is a face recognition approach that seeks 

to capture the variation in a collection of face images and 

use this information to encode and compare images of 

individual faces. Explicitly, the eigenfaces are the principal 

components of a distribution of faces, or, equivalently, the 

eigenvectors of the covariance matrix of the set of face 

images, where an image with N pixels is considered a point 

(or vector) in N-dimensional space.  The eigenfaces may be 

considered as a set of features which characterize the global 

variation among face images. Then each face image is 

approximated using a subset of the eigenfaces, those 

associated with the largest eigenvalues. These features 

account for the most variance in the training set. 

Intersecting prognostics and face recognition fields, CMS 

prognostics matrices correspond to faces. 

A set               of M CMS prognostics matrices is 

collected using the flight period 2012-2015. This set 

includes a number of CMS prognostics matrices for 

replacement of each FI of interest. 

Eigenfaces are extracted from the set Π by means of 

principal component analysis (PCA) with the following 

procedure. Initially the average matrix 

  
 

 
   

 
        (5) 

is computed, then the differences from the average 

          i= 1…M  (6) 

are considered. From difference matrices the covariance 

matrix  

  
 

 
     

  
     (7) 

Table 1. SVM classification performance 

 

Precision %  Recall%  FP Rate % 

81.1 49.2 0.6 

 

 

http://www.scholarpedia.org/article/Covariance
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is computed and its  eigenvalues Λ and eigenvector matrices 

U calculated. Finally the subset of eigenvectors    

           associated with the m  < M largest eigenvalues 

are selected. 

Such eigenvectors span an m-dimensional subspace of the 

original CMS prognostics matrices space, the FI 

replacement space, whose origin is the average matrix Ψ, 

and whose axes are the eigenvectors as shown in Figure 6. 

The template Ωk for k
th 

FIN replacement is then calculated 

by averaging the eigenface representation over a number of  

CMS prognostics matrices associated to the replacement of 

FI k. 

To perform FI replacement detection or recognition, one 

may compute the distance within or from the FI replacement 

space. Thus there are 3 possibilities for a CMS prognostics 

matrix Γ and the template vector Ωk 

 Γ  is near FI space and near the template Ωk 

 Γ  is near FI space and far from template Ωk 

 Γ  is far from FI space 

 

u1

u2

Ω1

Ω2

Γ 

Γp

δ 

 

Figure 6: The FI replacement space. Γp is the projection of 

CMS matrix Γ in FI space Ω1 Ω2 replacement templates. 

4.1. Replacement detection 

Because the FI space (the subspace spanned by the 

eigenfaces) defines the space of FI replacements, 

replacement detection can be considered as detecting CMS 

matrices that lie close to the FI space. In other words, the 

projection distance δ of Γ should be smaller than some 

threshold Δ. The distance can be computed as: 

 

                       (8) 

 

where I is the identity matrix and    is the set of significant 

eigenvectors. If δ is greater than Δ, the CMS matrix is not 

considered as a replacement hence rejected. 

4.2. Replacement identification 

A new CMS matrix Γ is projected into the FI space by 

 

             (9) 

 

where    is the set of significant eigenvectors and   the 

projection result. One simple way to determine which FI 

replacement class Γ belongs to, is minimizing the Euclidean 

distance: 

            (10) 

 

where  Ωk is the template for k
th  

FI replacement. 

The CMS matrix Γ is considered as belonging to class k if 

the minimum    is smaller than some predefined 

threshold Θ; otherwise, it is classified as unknown. Figure 

6 illustrates the projection and recognition by visualizing FI 

space as a plane. 

5. RESULTS 

Tests have been conducted on the complete data set 2012-

2016 of  single aisle and long range aircrafts Only legs, 

about 5000, used to train SVM classifier, for long range 

airplanes, (LR) and the to produce the Eigenface templates 

have been excluded. The test data set includes about 285000 

flights: 232000 of them refer to 42 single aisle aircraft the 

rest to 16 long range planes. On the overall 72 FI: 9 FIs  

have been selected 6 for LR and 3 for SA. The choice has 

been based on both number of replacements available to 

generate templates and the operational criteria selected by 

end user.  

ROCs have been obtained by varying thresholds Δ and Θ 

during the eigenface step.  Some of the computed ROCs are 

presented in figures 7 to 10. In most cases Area Under 

Curve (AUC) is above 0.9 indicating the good overall 

performances of the method.  Note how, in these cases, TP 

rate never reaches 1. This is because some replacements 

events have already been rejected in the SVM replacement 

identification step and they cannot be recovered in the 

classification. In all cases a very steep curve is obtained as 

requested by our low FP rate requirement. 
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Figure 7: FI SA2 AUC= 0.937 

 

 

Figure 8: FI 8HB, AUC= 0.811 

 

 

Figure 9: FI4000HA, AUC= 0.945 

 

 

Figure 10: FI4000KS, AUC= 0.926 

 

Precision and recall performances for the 9 FI selected are 

presented in Table 2. It is important to remark that there are 

only 123 unscheduled replacement events to detect over 

232000 flights for SA (0.05%) and 128 over 53200 flights 

for LR (0.24%). From Table 2 it can be observed that in 

general we got better results on LR than SA  This can be 

explained by  greater percentage of replacement events to be 

detected in LR and by the fact that CMS in LR planes have 

more message types (550 vs. 320) allowing a better 

discrimination of the  precursors of failure events.   

The objective of keeping a precision above 50% has been 

achieved in all cases except FI 11HB. This determines a 

very low FP rate <10
-2

 % but also recall performances 

ranging from 10% to 40%. The average notice period (NP) 

spans from 2 to 5 flights Best results have been obtained for 

FI 15HQ in SA planes and 516KB, 4506KS, for LR planes. 

The results using only the eigenface step are presented in 

Table3. 

Table 2.  2-steps FI replacement prognostics 

performance. 

A/C 

Type 
FI ID 

Precision 

% 

Recall 

% 

Average 

NP 

(flights) 

FP 

Rate 

% 

SA 11HB 26 10 2.6 5*10-3 

SA 8HB 54 10 3.7 2*10-3 

SA 15HQ 60 15 2.9 8*10-4 

LR 4000KS 100 13 5.1 0 

LR 4506KS 75 21 3.6 2*10-3 

LR 516KB 80 40 4.1 2*10-3 

LR 4511KB 71 21 2.4 4*10-3 

LR 1SA2 50 20 2.9 9*10-3 

LR 4000HA 62 16 3.3 1*10-2 
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It is evident how the adoption of a 2-step strategy has 

improved the performances. In most cases precision above 

50% cannot be reached and whenever, it is reached, recall 

result is lower. The improvement obtained by adopting a 

two steps procedure can easily seen also by comparing ROC 

obtained with (Figure 11) and without (Figure 12) SVM 

selection step.  SVM stage allows getting a steeper curve i.e. 

higher TP rate for the same FP rate. 

 

Figure 11: ROC for FI 4506KS obtained with SVM 

detection and eigenfaces AUC 0.995. 

 

Figure 12: ROC for FI 4506KS obtained only with 

eigenfaces. AUC 0.929  

6. FUTURE WORK AND CONCLUSIONS 

Prognostics is considered to be one of the most challenging 

and key enabling technologies among the CBM steps 

(Wheeler, et al., 2010). Maintenance preparation with 

prognostics solution could be performed when the system is 

running, since the time to failure is known early enough.  

Thus, only the actual maintenance duration becomes the 

major contributor of the downtime which is way less than 

the fault diagnostic approach. This paper presented a novel 

approach to prognose component replacements at least two 

flights in advance with the aim of avoiding unscheduled 

maintenance. The approach is cost efficient as it reuses 

existing infrastructure and datasets and it relies only onto 

fault messages, represented by Boolean data.   

It presents two main novelty aspects: the design of a 2-step 

data driven prognostics strategy and in the adoption of an 

image processing derived methodology (eigenface) in the 

classification stage. In a sort of Medici effect(Johansson, 

2006), prognostics and image processing concepts, have 

been combined to identify FI replacements into CMS 

matrices. 

Eigenface produced overall good results, however, due to 

the need of an extremely low FP rate, a ‘detection’ step 

based on Support Vector Machines (SVM) has been 

successfully added. The 2-step architecture represent an 

approach which not only can be reused to prognose other 

component replacements of the same fleet but it can be  also 

adopted in situations where the limited number of ‘ground 

truth’ examples and uneven data distribution does not allow 

to detect and classify in a single shot. 

Test results over 4 years of flights of a fleet of commercial 

airplanes have been presented and in 8 cases over 9 selected 

a precision above 50% has been achieved. In order to further 

improve the performances in terms of recall, time analysis 

of the alert sequences (Tschirpke & Salfner, 2008) is under 

investigation. 
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NOMENCLATURE 

TP True Positive 

FP False Positive 

SA Single Aisle 

LR Long Range 

FI Functional Item  

AUC Area Under Curve 

ROC Receiver Operating Characteristic 

CMS Central Management System 

SVM Support Vector Machine 

Table 3. FI replacement prognostics performance using 

Eigenface only 

A/C Type FI ID Precision % Recall% 

SA 11HB 8 11 

SA 8HB 4 9 

SA 15HQ 16 5 

LR 4000KS 100 6 

LR 4506KS 33 7 

LR 516KB 40 7 

LR 4511KB 8 16 

LR 1SA2 4 5 

LR 4000HA 37 5 
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NP Notice Period 

WL Wasted Life 
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APPENDIX 

Cost-Benefit Analysis 

The use of a simple cost-benefit model can show the 

importance of precision indicator to determine the 

economical impact of a prognostics solution. For the 

prognostics solution to be cost effective the following 

inequality shall hold: 

                       (A.1) 

Where S represents the average money saved for a true 

positive event, TPE is the number of TP, L average lost for 

a false positive event, FPE is the number of FP events. As 
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neither installation costs nor data acquisition customization 

is required in the proposed solution, in first approximation, 

Non-Recurring Costs (NRC) can be considered negligible 

and equation (A.1) in terms of Precision (P) becomes: 

              (A.2) 

As expected, if a true positive event determines relevant 

money save the requirement a lower performance in terms 

can be accepted. In case L and S have the same value, 

precision has to be greater than 50%.  Recall role emerges 

when NRC are considered. 

 


