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ABSTRACT while keeping an overall competitive weight (Pr&d00).

o ) ) However, due to reliability problems, they are Istil
One of the most significant research trends inai@nautic  stryggling to find application outside experimerddicraft
industry is currently the design and, possibly,lbuwf 5 Uavs like reported by (Jensen, Jenney & Dawson,
“more electric aircraft”. In this framework, one thfe more 2000), (Derrien, Tieys, Senegas & TodescBD11),
deeply investigated subj.e_cts has been, and stillthe (Roemer & Tang, 2015). They are instead more rapidl
replacement of the traditional hydraulic/electrataulic  aqvancing in non-safe critical applications suctilas/slats
technology for flight control systems with the éfee  onirol as described in (Christmann M., Seemanr&S.
mechanical ones. Although featuring many advantageganker, 2010) and (Recksieck, 2012). In order &rame
electro-mechanical actuators still suffer from selie ne afore-mentioned reliability issues, one of pussible
shortcomings, mainly those related to reliabilissues, gg|utions is to build an efficient PHM system atdeapidly
which are still difficult to overcome simply by dgs. The  getect the insurgence of dangerous fault conditiams to
development of an efficient PHM system could indtea prgvide a sufficiently accurate assessment of tedning
provide the needed increase in reliability withany major  ygefy| Life (RUL) of the degraded component(s). Sal
design variations. This paper addresses, in tisé fiart of  research efforts can be found in the literatureyessing the
the study, the design of a comprehensive PHM sys&m  g|actric motor (Nandi, Toliyat.& Li, 2005), (Browand
EMAs employed as primary flight control deviceseth gihers, 2009), and (Belmonte, Dalla Vedova & Maggjo
peculiarities of the application are presented disdussed, 2015), mechanical components (Balaban, Saxena, é5oeb
while a novel approach based on short pre-fliglatthetests Byington, Watson and others, 2009), (Balaban, Saxen
is proposed. The most common electric motor wingling Narasimhan, Roychoudhury & Gobel, 2010) and
degradation is addressed in the second part arattiele- (Lessmeier, Enge-Rosenblatt, Bayer & Zimmes, 2Giw)
filtering framework for anomaly detection and progis is  gjectronic power unit (EPU) (Brown, Abbas, Ginahj,
proposed featuring a self-tuning non-linear modet f Kalgren, Vachtsevanos, 2010), (L, Ye, Chen,
improved prognostic performance. Features, anoma'Vachtsevanos, 2014).
detection and the prognostic algorithm are hen@tueted The research presented in this work introduces the
through state-of-the art performance metrics andir th modelling framework and the enabling technologies &

results discussed. rigorous data mining, diagnostic and prognosticrageh to
the EMA problem and constitutes the first part ofvider
1. INTRODUCTION programme aiming to build, test and evaluate a det@p

) o PHM system for a primary flight control application
Following the last development of the aviation istly,  Research and experimental studies addressed aspects
electro-mechanical actuators (EMAs) are slowly aeplg  component = modelling,  feature  extraction  and

the traditional electro-hydraulic solution for fhy-wire  diagnostics/prognostics for EMA systems.
flight controls since they allow the elimination Igfaking

problems, simplification of installation and mainéce 2 EMA CONFIGURATION

First Author (Andrea De Martin) et al. This is apemaccess artic

distributed under the terms of the Creative Commattgbution 3.C The system configuration used for the analysisiated in
United States License, which permits unrestrictee, wistribution, ar Figure 1. Following the most frequent architectifos
reproduction in any medium, provided the originather and source & electro-mechanical flight control units, each attua

credited.
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features a brushless electric motor (EM) suppledugh its  (R). Each parameter has been ranked from 1 (wast c
own EPU and a mechanical transmission composed by stenario) to 4 (best case). In example, a freqfaart of
satellite gearbox (GB) and a roller screw. Contitbleach  high severity and little testability/replaceabilityill score
actuator is performed by three nested regulatiopdo (F) = 1, (S) = 1, (T) =1, (R) = 1, leading to avemall
working on the electric motor currents, driving slpeed  minimum of 4 points. Results of the FMECA study ar
and end-user linear position. Feedback signals coméescribed in table 1. Looking at the severity, thest

respectively from current sensors, a resolver post on
the motor shaft and a linear position sensor, lswale or
more LVDTSs, connected to the translating elementhef

critical failure modes for the system are thoseoinivng an
increase in the jamming probability, which is dihec
associated with the aircraft loss and critical danfpr the

power screw. The position command is provided by tw passengers’ life. The interested components arpaalt of

inter-communicating Flight Control Computers (FCCd)e
control is performed following the active/activerasegy,
which means that both devices are contemporaryatadun
position receiving the same command input. Thistrobn
strategy allows to obtain better dynamics respamgior to
decrease the intensity of the current requirechieynbotors,
but suffers from force fighting occurrence. Wheristh
happens, one of the actuators begins to provideree f
which sign is the opposite of what is expected umdemal
operations, hence requiring the other device topesoreate.

the mechanical transmission. The most frequenturiail
mode affects instead the electrical part of theuatain
system: the turn-to-turn short failure mode (EMTTS)n
fact the most common degradation for brushless raatnd
according to (Nandi and others, 2005) is oftenghimary
cause for the inception of other electrical fatiitat lead to
the motor loss as well. Contrary to mechanicaufas that
may cause the actuator(s) jamming, motor failurenas
directly related to flight control loss, even if ¢gauses a
significant degradation in the system performadd#ough

This phenomenon usually happens when the aerodgnamthere are some failure modes which total scoregisakeor

load acting on the system is a small percentagehef
nominal one and it's due to the inevitable deviafimm the
nominal value of some of the actuators feature$ ag
friction behaviour, backlashes, inertia and motmameters.
It may lead to windings overheating and generdigrtens
the motor operative life. Force fighting can be pemsated
by motor current equalization or, if possible, bgmitoring

the force applied to each actuator using the proper

transducers: their signal, properly filtered anthgked, can
then be employed by a dedicated PI controller wayki
either on the position or the speed loop (Wang, &yi&u,

2012). For thestudied system, force sensors are supposed to

be available.

contoL |

‘ FORCE FIGHTING COMPENSATION }-
2

POSITION
CONTROL
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Figure 1. EMA configuration

3. FMECA

Electro-mechanical actuators can be subjected tugh
number of possible failure modes, involving bothe th
hardware components, that is the focus of thisarebe and
the control software. In order to have a more peedlea of
which failure modes needs to be prioritized, a FMEC
study is recommended (Vachtsevanos, Lewis.,
Hess, Wu, 2006). The first step is to establishRMECA
rules set, that is to associate a score to eacBilp®s
operating occurrence regarding the fault freque(ie),
severity (S), testability (T) and failure relatexplaceability

inferior to the one associated with EMTTS case,hitgh
frequency and overall low score suggest to usesithe
starting point for the study of a PHM framework fibre
entire actuation system.

Table 1. FMECA results

SCORE

COMPONENT MAIN FAILURE MODES

TOT

EPU Power MOSFET thermal failure 10

Turn-to-turn short
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Turn-to-ground short

Scoring
Indentation
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Pitting

. 12
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Tracks crack
Crack
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Indentation

Roemer,

4. EMA DYNAMIC MODEL

A high-fidelity dynamic model built in Matlab Siniok has

been used to simulate the system under severahtipgr
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conditions in order to obtain realistic data foe tRHM
system.

4.1. EPU and brushless motor model

The dynamic model of the electric actuation is cosga by
several interconnected functional subsystems: fg,Ehe
motor windings and the torque evaluation modulee ERPU
subsystem is used to simulate the control currentd-q
axis, the PWM modulation of the voltage signal aed
functional model of the digital inverter.
subsystems describe the electric motor dynamicseémh
phase, compute the electromagnetic torque and xppate
the windings thermal behavior. The d-q axis confieatures
Pl regulators receiving as input the current cormanand
the filtered current feedback subjected to Par
transformation. The controllers’ output is themsformed

back to the three-phase system and used in a PWM

modulator based on a triangular bipolar wave catthat
generates the vector of the digital control signaleach of
the three commutation poles, namely [¢; 02 Gg]

Neglecting the power MOSFET dynamics and modellin
the EPU following the approach proposed in (Mol203)
and (Hanselman, 2006), we compute the three mdtasep
voltages. The motor dynamics under nominal conaltits
described by equation (1).

iy Lea Lap iy

i Lap  Lpp Lbc] [%D (9]
Lecllic

Va] g [*] [Ra O O

e A ]

Where the three phase voltages . are function ofg. R
andL; are the electric resistance and inductance foi-the
phase, while); is the concatenated flux.

Given the pair poles number, the electromagnetipui® can
be obtained. It is finally possible to estimate thiedings

thermal behavior:
T

d Lac

al

+ —
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Where 9y, = Tom — Toxe IS the temperature difference
between the motor windings and the external enwient,
while Hy, and Cy are the thermal conductivity and the
thermal capacity.

4.2. Mechanical transmission

The mechanical transmission has been modellecctoda a
non-linear friction law and a customizable elast@itash
following the approach proposed by (Nordin, Gallic
Gutman, 1997). Each mechanical element is describ
through its dynamic equilibrium equation. The fioct law
has been approximated through non-linear equatio
depending on temperature, speed and applied load.

4.3. Control surface model

The aerodynamic surface has been modelled accotding
the diagram shown in Figure 2. The dynamic equilitorof

The other

this component can then be expressed through equ@&):

ks(er —y) + ks(xz —¥) + ¢ (. — 9) + ¢ (2 — 9)

o (3)
— Fy =msy . .
Whereks andcs are the aerodynamic surface stiffness and
damping factor, respectively, FA is the aerodynafice
acting on the actuators ang the control surface equivalent
mass.

X2, X3 %

—
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k
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Figure 2. Control surface scheme

4.4. TTSfault mode

gAccording to (Brown and others, 2009), it is poksito
model the presence of a turn-to-turn short in ohahe
motor phases by inserting the fault ratio factgrin the
electrical dynamic equation thus modifying the moto
circuit. This parameter may range between 0 anchd a
represents the ratio between the number of heualihgings
over the total number of windings for the selegthdse.

The phase voltage equations may be written as:
T

Va Wf.a Wf.a lg d iq
Vp|——|Wrb|[A =|Wrp| R|ip +E<LF lib ) 4)
Ve Wr.c Wr.c i ic

WhereR is the resistance matrix for the healthy statés
the magnetic flux vector ard- is the inductance matrix for
degraded conditions defined in equation (5).

|:Wf,bLaa Wf,abLab Wf,acLac]

WrabLlap  WrpLloy  Wrpelpe
Wf,acLac Wf,bcLbc Wf,chc

Wherewy;; = ,/wy;wy ; and the variables follow standard

notation. The reciprocal inde¥; = 1-w; represents the

number of faulted windings over the total number of

windings for the phase under analysis.

The effects of the fault progression on the phasgeeats

can be seen in Figure 3. The faulted winding sigeradls to

increase leading to a current asymmetry and torque

'irregularity. Through Fourier analysis, it is algossible to
tice how the degraded phase current tends to dre m

distorted as the fault progresses, as depictedjuré4.

MPurn-to-turn degradation can be triggered and driby

several causes, such as mechanical stresses, @hemic

aggressive environment, water ingress or excessive

humidity (Nandi and others, 2005).

According to (Brown and others, 2009), the moshificant

and common origin is the insulant’s thermal degtiada

Le 5)
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the same authors report that it is possible taedtze fault

command, with rate equal to 20% of the motor maxmu

length L expressed in [mm] as a function of the operatingspeed, is given to the “monitored” actuator, inesrtb limit
time t, the windings’ temperaturé, and the experimental the influence of the back electromotive force ovbe
coefficientsa and B through an elaboration of the Arrhenius measured current. The second actuator is forceraite,

law (Gokdere, Bogdanov, Chiu, Keller & Vian, 2006):

10 15

o

Phase currents [A]
& o

Phase currents [A]
o

(==
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Simulation time [s]

052 054 056 058 086
Simulation time [s]

Figure 3. Effect of fault progression on phase enis:
healthy (left) severe degradation (right)

L == Loeyt (6)
{V = petw
Dividing the first equation of expression (6) byethritical
length of the defect, we obtain a similar relationthe fault
rate
Wf = Wf'oeyt (7)
y = Be“'v

taking advantage of the force sensors already présethe
force-fighting compensation. The adopted approdidwa

to reduce the influence of friction over the foeeerted by
the second actuator. The commanded force is a ramp
saturated at 40% of the nominal value that is leighugh to
enhance the current analysis while remaining fasugh
from saturation conditions. The last factor of uteiaty
coming from the external environment is the random
aerodynamic load that could affect the system utestrdue

to gusts at the airport track. In order to lim# ibfluence, a
simple proportional compensator operating on theeot
regulation of the force-controlled actuator is eoypd. As
shown in Figure 5, without compensation, the extkeload

is in an equilibrium state acted by the “monitoredtuator,
hence affecting the behavior of its currents; white
compensator is in use, the disturbance is address@ely

by the second EMA.

The pre-flight test is 1 second long, while datadsjuired
over the last 0.5 s. Once completed, the operaigon
repeated inverting the role of the two actuatddgerational

WhereWF = 1-wf andW;, are the instantaneous and initial scenario

fault rate in the degraded phase.

—Fault ratio 0%
Fault ratio 10%
—Fault ratio 20%
—Fault ratio 40%
— Fault ratio 60%
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Figure 4. Fourier analysis of the faulted phaseetur

5. PHM STRATEGY

The TTS fault rate is mainly dependent on the tewmtpee
of the windings, implying that it is dependent ohmet
ambient environmental temperature, as well as enldhd
profile faced by the actuator and on the thermaharge
conditions. Moreover, these conditions may varyeshe{ing
on the aircraft class, take-off/landing areas arshther
conditions. The aircraft class for this study haserb
identified as the regional transport one, desigh&be mid-
short range travel. Each mission segment conditivaasely
pre-flight, take-off, cruise, landing and post-fitg are
approximated as follows: starting and arrival point
temperatures are drawn from a uniform distributianging
between -40 and 40. The external temperature wasecr
regime is considered equal to -54°C; its variatduring
landing and take-off is approximated with a linéaw. For
each flight segment, external loads are estimatezligh a

A rigorous and reliable PHM system requires a slet orealistic variable percentage of the nominal foadtected

features or Condition Indicators (Cls) that chazdze the
fault mode and correlate maximally with the fauffrature
in a reduced dimensionality. For the turn-to-tunors fault
several possibilities are available in the literat(Nandi and
others, 2005). Some of them make use of currenysiaa

while others require the phase voltage measureceSin

by Gaussian noise

6. ANOMALY DETECTION

Fault diagnosis is the first step in the designadfealth-
based prognostics and health management stratelgy.

voltage measures are not available in the case rundivolves three main tasks: fault detection is thecpss

analysis, current-based features have to be engbloye

In order to overcome the effects of uncertaintie® do
environmental conditions, but also to simulate dlotuators
with a predefined set of commands optimized toaettthe
required features, we employ a preflight test adiogy to

through which the system recognizes any anomalous

occurrence, fault isolation, addressing the idgntif the
damaged component, and finally identification, tleaids to

the assessment of the fault's severity (Vachtsevasmd

others, 2006). Since this paper deals with a sifaglé

the approach proposed by (Jacazio, Maggiore, Dell§cenario, only the first task is described in tbguel. In the

Vedova, Sorli M., 2010). In this case, a ramp posit

proposed approach, fault diagnosis minimizes thsefa
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Figure 5. Effect of force compensator: no compeosdteft), compensation (right)

positive and false negative errors while providiegrly
defect detection. Anomaly detection is carried wviat the
application of two approaches: a purely data-drirethod
and a particle filter framework. The addressed uieat
candidates are described in section 6.1, where lizee
been analyzed and compared through proper metirics.
section 6.2 the data-driven approach for anomatgdtien
is discussed, while a particle filter solution i®wided in
section 6.3.

6.1. Feature selection

As assessed in section 3, the main effect of TIgBadkation

is the progressive worsening of currents unbalance.

Figure 6, it is noted that each feature candidatsents a
clear dependence on the degradation kfe Additional
simulations were run in the presence of external
disturbances, parameter variations while the eatelwad
was simulated as a step signal occurring in a nmando
moment during the pre-flight test.

Features performance are hence analysed through two
specific metrics. The first is the accuracy measdedined

as the linear correlation between the feature citels and
the fault ratio. The second one is the precisiorasuee,
defined as the relative mean error of the intetpmtalines

used for each feature candidate.
18 T T T T

Consequently, features for this failure mode shdddable s
to efficiently mirror this symptom. Three featuiesve been 8
preliminary selected by combining in different watfee “
RMS of the three currents signals: 12 8 i
©
510 o o N
g s ¢ o 5
(8) % o 4 o o
Y 6 @ ° a
o o
4 o a
=]
O oo
2
8 o
ZI 0.‘1 0{2 0.‘3 0f4 0{5 0.‘6 0.7
W[
9) Figure 6 — Feature candidates behaviour — no tiahae
The candidatef' has better performance, averaging an
IRMS, — RMS, | accuracy index equal to 0.932 and a precision neasiu
ARMS — |RM51 _ RMSZ| (10) 3.94%. For the other two candidates, the accuraegsare
|RM51 _ RMS3| is of 0.925 and 0.921, while the precision one.&% and
2 3

9.03% respectively.

The current samples numbemis while each of their values .

is designated as;. Each feature behavior has been®2- Data-drivenapproach

preliminary investigated by performing several diations A statistical deviation method is adopted for angma
at a constant environmental temperature of 0°Cowmitttany  detection. A baseline representing the feature \beha
external load applied. Observing the results regbrin  under healthy conditions is built upon the firsDisamples
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of data. An automatic, customizable threshold tsosethe  perform the anomaly detection, under general assang

feature value covering 95% of the baseline proligbil of non-Gaussian noise structures and nonlinearities

distribution. New data are then streaming in ané thprocess dynamic models, using a reduced particle

computed feature is compared to the initial baselwhen  population to represent the state pdf (Orchard 8072. A

the new distribution differs from the baseline with compromise between model-based and data-driven

specified confidence level equal to or superio®586, the techniques is accomplished by the use of a parfiltés-

fault is declared as having been detected. Aftpeated based module built upon the nonlinear dynamic steidel,

trials, featuref! gives a better mean detection time, while

providing more stable performance in response tarpater xa(t+ 1) = f,(xq(£),n(t))

variations and external disturbances, as shownigar€& 7. .

The average fault ratio at detection for the selkétature is xe(t+1) = ft(xd(t)‘xC(t)’w(t)) an

12.71%. fo () = he(x4(8), %(£),v())

An example of the anomaly detection algorithm otitpu

making use of the chosen feattifés provided in Figure 8. Wherefy, f andh; are non-linear mappings, is a collection

The Type | error is defined by the user and iixed at 5%; of Boolean states associated with the presence of a

the Type Il error under these conditions has aevaftb%. particular operating condition in the system (ndrma
operation, fault type #1, #2, etcx,is a set of continuous-

ot valued states that describe the evolution of tistesy given

those operating condition$, is a feature measuremerab,

and v are non-Gaussian distributions that charactetize t

process and feature noise signals, respectively.flinction

h; is a mapping between the feature vafp@), and the fault

state x(t). At any given instant of time, this framework

provides estimates of fault detection only whent@oner

specified confidence and false alarm metrics ard. me

Furthermore, pdf estimates for the system contiauou

valued states may be used as initial conditionsailure

prognosis resulting in a swift transition betwede two

modules (FDI and prognosis).

i i i i i i i i This approach has been employed only for the smlect

2 ¢ ® 8 Da}g setf oo feature f'. The f, expression is derived from theoretical

Figure 7. Fault detection for different featureadidates considerations while thl, mapping has been investigated

through symbolic regression, leading to the polyiam

expression (12).
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o
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=
T

”
T

1 fit = aw? + bwf +cw; +d (12)

For non-disturbed data, thé Rs 0.9983, the mean squared
error is 0.027 and the mean absolute error is 1.0%62
average fault ratio associated with the detectionet
computed over 20 data sets, is reduced to 10.48%e wh
using the same percentage thresholds applied taldte
driven case, indicating superior performance of the
algorithm used.

1%

i i i
o 500 1000 1500 200C 2500
time [h]

7. PROGNOSTIC FRAM EWORK

Figure 8. Fault detection framework output Once an incipient failure or fault is detected wéthecified
. . . confidence, the prognostic algorithm is initiatedpredict
6.3. Particlefilter for anomaly detection the fault’s time evolution. The final fault statets as the

initial condition for prognosis. We pursue a heditised
approach to prognosis in this paper. A usage-bagptbach
is useful in reliability studies with prognosticfanmation.
Figure 9 depicts the prognostic framework.

Particle filter is a powerful Bayesian estimataatthllows to
approximate non-linear processes affected by narsSan
noise and is recognized as the current state ofathéor
prognostics (Arulampalam, Maskell, Gordon, ClappQ2).
The particle-filter-based diagnosis framework airts
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7.1. Particlefilter for failure prognosis

The prognostic framework takes advantage of a neati
process (fault / degradation) model, a Bayesiamasibn
method using particle filtering and real-time measents
(Vachtsevanos and other, 2006). Prognosis is aetiidy
performing two sequential steps, prediction anterihg.
Prediction uses both the knowledge of the previstase
estimate and the process model to generate thiera giate
pdf estimate for the next time instant,

p(xo:¢ly1:e-1) = fp(xtlyt—l)p(xo:t—l|y1:t—1) dxo.t-1 (13)
Unfortunately, this expression does not have aryacal
solution in most cases. Instead, Sequential MoraeloC
(SMC) algorithms, or particle filters,
numerically solve this equation in real-time witffi@ent
sampling strategies. Particle filtering approxinsatiee state
pdf using samples or “particles” having associadetrete
probability masses (“weights”) as,

p(Xely1e) = Wt(x(g:t)S(xO:t - xé:t)de:t—l

where Xo. is the state trajectory andy,; are the

(14)

measurements up to tineThe simplest implementation of
this algorithm, the Sequential Importance Re-samgpli

(SIR) particle filter, updates the weights using litielihood
of y; as
we = w1 p(Ve|xe) (15)

Long-term predictions are used to estimate the aiibity
of failure in a system given a hazard zone thdeifined via
a probability density function with lower and uppmrunds
for the domain of the random variable, denotedHgsand
Hyp, respectively. The probability of failure at anytdre
time instant is estimated by combining both the glvts
w, of predicted trajectories and specifications fbe t
hazard zone through the application of the Law ofall
Probabilities. The resulting RUL pdf, whetg,_ refers to
RUL, provides the basis for the generation of abeiice
intervals and expectations for prognosis,

n

Bery, = Z p(Failure|X = 2 Hyy, H,,) (16)

i=1
These novel diagnostic and prognostic technolobiege
been applied to a variety of systems ranging fraougd

are used to

vehicles to rotorcraft, UAVs, and other industrailitary
application domains.

7.2. Model tuning

The parameters in the non-linear mappif@gnd h(x(t))
describe efficiently the system state whatever
environmental conditions or the external disturlesnare.
In this particular case, the function associatimg flault rate
to the operating time depends heavily on external
conditions, such as temperature or corrosive agehtg
may critically accelerate the degradation proctes@i and
others, 2005). In order to bring the model behavioser to
the real system, prediction is performed througlhiad
time-dependent tunable model, following an approach
similar to that described in (He, Li, Vachtsevan28l5).
Again making use of symbolic regression powered by
Eurega software, it is possible to obtain a mouhirg the
feature under analysis to operating time:

1) =594 +1.57-1078t2 4+ 6.47 - 107 10Dt 17
The model parameteD is then tuned as more data is
streaming in, following an iterative procedure teatg a
recursive least square algorithm. Results of thendi
performed via Eureqa software for a possible degjrand
feature R equal to 0.9964, mean squared error of 0.848A
and mean absolute error of 1.432A.

the

7.3. RUL

The prediction algorithm makes use of 5000 padided
each prediction step is equal to a 4 hours’ tinterial.
Prediction is terminated when all particles readte t
threshold, set at 24 A, that is almost four tintes average
value for healthy conditions.
Taking advantage of the estimated end of lifg, for the
electric motor, witht, the prediction time, i.e. the instant at
which the RUL prediction takes place, the RUL isnpaited
as:

RUL = tgo, — tp (18)
A result example featuring a slow degradation pored in
Figure 10; the particles starts from an initial famn
distribution between 0 and 1 A. The algorithm qljck
converges towards the real distribution, trackihg fault
progression and providing the RUL estimate. Theraye
RUL after fault detection for this case is equaltid flight
hours. The value corresponding to a safety margirakto
95% is 388 hours, while the required maintenance,
corresponding to 95% rate of failures, is estimaaedhe
latest in 509 hours.

7.4. Prognosis performance

The prognostic algorithm performance is evaluatedugh
the metrics proposed by (Saxena, Celaya, Balabaab&,
Sasha & Schwabacher M, 2008) that are frequentyizd
in the literature: the prognostic horizdd, the relative
accuracy RA and the cumulative relative accuracACR
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