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ABSTRACT

An important amount of data is provided every day in Safran
Aircraft Engines’ test benches. Produced by thousands of
sensors, test and flight data represent a big interest for en-
gineers but manual analysis of the information is too com-
plex, if not impossible. As specific data are extracted from
the database, it is not unusual to miss interesting information
when focusing on a given problem. Defining the data as a
succession of labels where each label appears as transient or
stabilized phases would be one way to solve the problem. The
start and stop points of the different phases will be computed
by an offline change-point detection algorithm. In order to
detect potential crucial changes of characteristic variables, it
is relevant to develop powerful algorithms. The Pruned Exact
Linear Time (PELT) method (Killick R. & Eckley, 2012) is
a parametric change-point detection which searches the opti-
mal partition of a monovariate signal (temporal series of one
variable) in our case (but can also be applied to a multivariate
signal) with a linear complexity. This algorithm meets our
expectations in many ways: robustness, fast computing and
accurate results. Then on a multivariate aspect, patterns are
built with parameters and initial conditions and, classified in
a specific category with a map/reduce scheme. This cluster-
ing will allow different analysis: the comparison of different
patterns with the definition of a distance and the research of a
specific pattern in a large database. For example if an engine
shows a specific engine temperature pattern after the test pi-
lot changes the shaft rotation speed from one level to another,
engineers may ask if this behavior is usual. If not, it should
be very interesting to see if such pattern happens in the past
on other engines or other tests and dig from the database the
old documents related to those rare events and eventually the
people concerned. The objective of this project is to progres-
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sively score and classify different patterns in an increasing
database of labels. The first step was to implement the PELT
algorithm. Then it is possible to identify the different tran-
sient phases extracted from small subsets of temporal mea-
surements and compute models for each patterns. These cod-
ification of transient phase will lead to a classification into
labels or topics. After defining enough patterns, each new
record of measurements will be automatically classified.

1. INTRODUCTION

Safran Aircraft Engines’ Datalab is an experimental team fo-
cused on evaluating new data technologies. The different so-
lutions are challenged by specific studies producing analytic
reports or effective prototypes. (Lacaille J., 2016). Three
domains are adressed by the Datalab beyond prognostic and
health monitoring (PHM) which are:

• Development: better understand the development pro-
cess and optimize our knowledge base.

• Industry: optimize the design of the engine and the fab-
rication process.

• Operationnal flights: identify the usage of the engine
during flights, link to wear, then maintenance and finally
the possession cost.

The present paper describes our road map to build a method-
ology and tools to help interpreting data generated by devel-
opment tests. Today's ground development tests are specified
by design offices according to each specific needs: dynamic
behavior, performance, acoustic, aerodynamic, etc. The bench
test is designed by each party to identify specific behaviors
but the number of sensors is so big that only part of the records
are analysed and some patterns that may not have been in the
present interest of engineers would not be observed. Spe-
cific data patterns are analyzed manually by experts of each
field. But this analyze could be improved by an automatic
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computation which would merge data of the different fields.
A challenge is to automatically identify known patterns and
detect unusual behaviors. Even if this goal may be reached,
another problem is to use efficiently the results. For this pur-
pose experts have asked to find a way to automatically send
messages to concerned people (see Figure 1).
The next section (2. Methodology) describes the methodol-
ogy and the tools we developed to solve this challenge in the
long term. Section 3. Current work and Research summarizes
our present work and results.
Safran Aircraft Engines is an engine manufacturer and def-
initely not a software editor and our power in data analy-
sis stays limited. However, we have just build new entities
in the Safran Group to address this specific domain of data
analysis. They are the research center Safran Tech [1] and a
new company named Safran Analytics. Safran Tech helps su-
pervising PhDs and interactions with academic laboratories
while Safran Analytics focuses more on business solutions.
We clearly seek for all good ideas in this new domain and
build a business environment able to mature them.

Figure 1. Our challenge: find a way to systematically scan
data, build statistics such that experts may automatically be
informed about patterns of their concern or about unusual be-
haviors.

2. METHODOLOGY

Problem summary
Development bench tests are specified in a document giving
for each design office the goal of the test, the execution pat-
tern, the awaited results and the demanding engineers. At the
end of the test, each numeric record corresponds to a speci-
fied demand and if a visual expertise concludes to a specific
behavior, the results are stored in logbook documents written
by experts and linked to the numeric records. However, as
previously described experts only seek for awaited patterns.
Most unusual behaviors may not be observed manually as no-
body is searching for them.
In summary, we need statistics on temporal patterns in a very
huge database of engine tests and flight data where each test
produces numerous high frequency records (from 1 Hz to
100 Hz to begin) of hundreds to thousands of measurements.
These measurements come from different sets of sensors that
differ from one test to another, from one engine to another;
they do not even share the same name, the same position or
the same unit. This may be seen as a problem similar to that
of searching images or documents after a general indexation
of patterns. The difference here resides in the diversity of di-

mensions and corresponding units per record but also in the
physical relations between those dimensions, which are spe-
cific to the aerodynamic process.

Coding transient phases
A lot of studies have been already done on stabilized phases,
only few of them are based on transient phases (Lacaille &
Gerez, 2011) and (Lacaille, 2014). The lack of informa-
tion about transient phases would be compensated with the
analysis of all measurements, the identification and the la-
bellization of the transient patterns. This leads to replace
the numeric records by sequences of parameterized labels.
Transforming multivariate numeric temporal records into se-
quences of labels will clearly help searching for apparition of
a given label in a record that belongs to a given test of a given
engine... The indexation of these records will be done by an
offline change-point algorithm.
We replace the task of coding systematically all unknown pat-
terns by an incremental solution. The expert defines a specific
pattern; inserts the pattern in an analytic tool that defines a
mathematical model whose parameters code the label. Then
he executes a corresponding matching algorithm and adds re-
sults in a new label base. This iterative mode builds sequences
of labels for each test record (Figure 2). This approach is not
exhaustive but it let us focus beforehand on physically inter-
esting patterns. Temporal unidentified behaviors may also be
detected as unknown and draw our attention in a general way
if recurrent. Moreover, if an expert creates a label it is easy
to register his name as a person of interest when the matching
algorithm detects the corresponding pattern.

Figure 2. Incrementation of the code of the record sequence
by adding new labels: Labels of temporal patterns may over-
lap, for example when looking at different sets of measure-
ments.

Storage of all patterns
The bench test history is very huge: many tests are executed
per day, each one corresponding to hundreds of records dur-
ing more than one hour. This history database is a hardware
and software solution adapted to high velocity storage and
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it is clearly not adapted to data analysis (except on the fly
computation during or just after storage). Using a distributed
hardware, the solution of the indexation process (building the
label sequences) and the search and statistics on the labels can
be implemented as described below (Figure 3):

• Historic data will be accessed periodically (at leisure time)
and temporarily transferred on a cluster.

• Matching algorithms automatically working in parallel
on stored records will detect registered patterns and com-
pute their characteristics. Detection results (labels) will
update the sequences corresponding to each record im-
proving the indexation of our history database.

• The last step is to build statistics on those sequences,
hence to be able to search for apparition of labels or suc-
cessive labels. The label sequences are also stored in a
distributed environment that allows parallel execution of
the search algorithms.

Figure 3. Illustration of the distributed process of indexation
and query.

Analysis of a new test
During a new bench test (Figure 4), the numeric records will
automatically passed as inputs to an algorithm searching for
transient patterns with parameters, then go through the match-
ing filters and lastly will produce a label sequence with la-
bels detected in agreement with a likelihood threshold cho-
sen by the experts. The search algorithm will check parts
of this sequence including the label singletons themselves,
hence producing a rank output among our data history. Thus,
new records will generate a set of reports associated to each
detected label. An alert is generated when the observation of
the label behaves like an outlier; otherwise, a statistic present-
ing the rank position as a quartile (or p-value) will be given
for information.
When the label base improves, it will be also possible to
check for successive patterns acting like a sequence of events
instead of just one pattern.

Figure 4. Matching algorithms indexes the database of
records. Search algorithm finds similar patterns in the in-
dexed database.

Identification of the experts
The ranking of a pattern identifies a list of similar obser-
vations that appear on past test records. Those records are
linked to specification documents and some patterns may be
linked to visual analysis and stored in the knowledge base
(Figure 5). The frequently referenced authors and related ser-
vices at the origin of those documents are automatically in-
formed by the system. Topic classification of documents is
also used to generate the report.

Figure 5. Meta data such as names and services at the ori-
gin of the test as well as specific analysis reports written by
experts are linked to each test and each pattern.

3. CURRENT WORK AND RESEARCH

The main goals are the indexation of the temporal series sat-
isfying the expert and the definition of a transient phase.

Indexation of temporal series

Detecting change-points in flight data may be seen as a first
step in the identification of transient phases. Hence, the aim is
to search for an efficient change-point detection method, with
low computational cost and high performance. The chosen
work is the off-line parametric change-point detection, with
an unknown number of change-points. Training a parametric
model that fits all available recorded features is not an easy
task, mainly because of the heterogeneity of the data. To be-
gin, we focused on data having a piecewise linear behavior.
Hence, the algorithm to be further introduced will search for
change-points in the slope.

Detecting change-points in the slope of a time-series can be
achieved, for instance, by minimizing the least-squared resid-
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uals contrast, as described in the seminal paper (Bai & Per-
ron, 1998). Since the number of change-points is unknown, a
penalty term is usually added to the contrast function, as pro-
posed in (Lavielle & Moulines, 2000). Then, the penalized
contrast function may be minimized using various approaches
based on dynamic programming.

Two of these algorithms are investigated here: optimal par-
titioning [OP] (see, for instance, (Jackson, 2005)) and the
pruned exact linear time method [PELT] (Killick R. & Eckley,
2012). OP and PELT algorithms are both searching for the
optimal partition minimizing the penalized contrast function,
but the interest of PELT is a reduced computational time: the
complexity of OP is quadratic, while the complexity of PELT
is linear. Both methods require the a priori choice of a penalty
term, usually the AIC or the BIC penalties. We will describe
the different steps of the algorithm. The PELT method is a
derivation of the OP method but with a better computational
cost.

Let Y = (Y1, . . . , YN ) be a sequence of random variables.
For t ∈ {1, . . . , N}, suppose that Yt is a function ofXt ∈ Rp,
where Xt is a random or deterministic vector. In our applica-
tion Y is a monovariate signal and for now Xt = (t, 1). Xt

could also be the shaft speed or the altitude during the flight.

Also, assume there exists K∗ (unknown) parametric changes
in the relationship between (Yt) and (Xt) : there exists

• An unknown vector (τ∗1 , . . . , τ
∗
K∗) ∈ NK∗

such that τ∗1 <
τ∗2 < · · · < τ∗K∗

• K∗ + 1 unknown vectors θ∗i ∈ Rp satisfying
Yt = gθ∗i (Xt, εt) when t ∈

{
τ∗i + 1, τ∗i + 2, . . . , τ∗i+1

}
,

where by convention τ∗0 = 0 and τ∗K∗+1 = N .

This method aims at estimatingK∗, (τ∗1 , . . . , τ
∗
K∗) and (θ∗i )i,

the parameters of the “true” model to be retrieved from an
observed sample. In this model, θ∗i = (θ

∗(1)
i , θ

∗(2)
i ) and

gθ(x, e) =< x, θ > +e, with < ·, · > the inner product. Let
θ̂u,v = argminθ∈Rp

∑v
t=u+1 C

(
Yt, Xt, θ

)
be the estimate of

θ computed in the time-interval {u+ 1, ..., v}.

The off-line change-point detection strategy chosen here con-
sists in minimizing in (K, (τi), (θi)) a penalized contrast de-
fined by :

(K̂, τ̂1, . . . , τ̂K̂) =

argmin
K;τ1<τ2<···<τK

{
K∑
i=0

τi+1∑
t=τi+1

C
(
Yt, Xt, θ̂τi,τi+1

)
+ β f(K)

}
(1)

where the cost function C to be minimized is the MDL (min-
imum description length), (Rissanen, 1978) and (Davis, Lee,
& Rodriguez-Yam, 2006) :

C(Yt, Xt, θ̂u,v) = 3 ln(v − u) + (v − u) log(2πσ̂2)

where σ̂2 =
1

v − u

v∑
t=u+1

(
Yt − θ̂(1)u,v t− θ̂(2)u,v

)2
The term βf(K) is the penalty which prevents from over-
fitting. The choice of the penalty term is usually linear (for
instance, AIC or BIC) in the number of break points.

The optimal partitioning [OP] algorithm used here for min-
imizing the penalized contrast in (1) was first described in
(Jackson, 2005). The idea is to use dynamical programming
in order to reduce the exponential complexity of an exhaus-
tive search to a quadratic one. With the previous notations,
a change-point occurs between the instants u and v if there
exists some instant u < l < v such that the cost computed
for the interval [u + 1, l] plus the cost computed for the in-
terval [l + 1, v] is less than the cost computed for the interval
[u+ 1, v]:

l∑
t=u+1

C(Yt, Xt, θ̂u,l) +

v∑
t=l+1

C(Yt, Xt, θ̂l,v) + β

<

v∑
t=u+1

C(Yt, Xt, θ̂u,v)

(2)

Using this criterion, the OP algorithm scans the data itera-
tively and associates the optimal value of the penalized con-
trast, F (Y1:u), to each subsample Y1:u = (Y1, ..., Yu). The
proof that F (Y1:u) contains the minimum of the penalized
contrast for each u = 1, ..., N , may be sketched by the fol-
lowing recursion :

F (Y1:N ) =

min
u=1,...,N

{
F (Y1:u) +

N∑
t=u+1

C(Yt, Xt, θ̂u,N ) + β

}

The incremental part starts here. One should see that for each
step u, the minimum cost is computed and this method re-
uses the previous computations to calculate the new one. One
may see immediately that the time instant τ which gives the
optimal F (Y1:N ) corresponds to the last change-point before
N . The algorithm computes iteratively{

F1:N = (F (Y1:1), ..., F (Y1:N ))
CP1:N = (CP (Y1:1), ..., CP (Y1:N ))

where F (Y1:u) is the minimum value of the penalized con-
trast and CP (Y1:u) represents the last change point before
u, for each subsample Y1:u = (Y1, ..., Yu), u = 1, ..., N .
The optimal partition may be retrieved by scanning back-
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wards CP1:N . The OP method has a quadratic complexity
although the PELT method previously introduced has a linear
complexity.

Introduced in (Killick R. & Eckley, 2012), the PELT algo-
rithm aims at reducing the computational complexity of the
OP algorithm, while still retrieving the optimal solution. This
is achieved by pruning the set of possible solutions when
minimizing F (Y1:u). Pruning is justified by the following
property of change-points, proven in (Killick R. & Eckley,
2012): if equation (2) holds for some u < l < v and if
F (Y1:u) +

∑l
t=u+1 C(Yt, Xt, θ̂u,l) + β ≥ F (Y1:l), then u

can never be the last change-point before v. Pruning the set
of possible change-points reduces the quadratic complexity of
OP to a linear one. The algorithm, which consists in adding
a supplementary step to the OP procedure, is summarized in
Procedure PELT.

Procedure PELT
• Initialize F (Y1:1) = −β, R = {1} and CP =

NULL

• For u = 1, ..., N , compute iteratively (forward)
F (Y1:u) and the corresponding break point : τ =
argminτ∈R F (Y1:u) , CP = CP ∪ τ .
Update the set of plausible change-points, R :
R ← {v ∈ R ∪ τ : F (Y1:v) +∑τ
t=v+1 C(Yt, Xt, θ̂v,τ ) + β ≤ F (Y1:τ )}

• Compute iteratively (backward) the optimal change
points :
τ̂K ← argmin1,...,N F (Y1:N ) , τ̂K−1 ←
argmin1,...,τ̂K F (Y1:τ̂K ) , ...

After a test session on simulated data with good results, an ap-
plication of the PELT method on flight data has been made(see
Figures 6 and 7):

Figure 6. Results for PELT on the shaft speed.

PELT achieves the best trade-off between accuracy of results
and computational time. Hence, this method was selected to
be trained and tested on large real data. For illustration, an
endogenous feature (the way the shaft speed changes) is rep-
resented in Figure 6. The behavior of this feature is mainly
piecewise linear, hence the PELT algorithm previously de-

scribed and used for simulations was used as such, but for
more complex time-series, it is sufficient to select a more
appropriate cost-function C and train exactly the same algo-
rithm described in Procedure PELT.

Figure 7. Results for PELT on binary commands.

In Figure 7, the results show two curves from the same flight
during the same time lapse. On these data, the detected change-
points are the expected one. In the analysis of this binary
commands, we observe a similarity in the evolution of both
curves with a certain delay. It suggests a relation of causal-
ity between the shaft speed and the temperature of the engine
although this delay is only of a few seconds. This causality
and this delay are interesting information that can benefit the
experts.

Globally, the change-points are well detected, even the small
ones. The meaning of each change-point is settled afterwards
with the help of experts. A change-point may be observed,
for instance, after an action of the pilot (pulling the lever).
Detecting these change-points allows to assume causal re-
lations between different features with some delay (a raise
of the lever implies a raise of the shaft speed). Eventually,
machine-learning techniques which will learn the “normal”
change-points and set alarms for “abnormal” change-points
may be applied afterwards in an operational context.

Recognition of transient patterns and classification

A transient phase is a temporal interval during which ”some-
thing is observed”. It is defined by the context that identifies a
temporal interval and the behavior of the observations in that
same interval.
For example, a transient interval may begin with the increase
of the thrust level and end when the engine shaft reaches a sta-
bilized speed and the engine temperatures stabilize also (Fig-
ure 8). In such specific event the pattern is defined by the
”increase of thrust”, it is parameterized by the amount of in-
crease, the lever and probably the initial values of the engine
shaft speed and temperatures.

Another example of pattern is still after an increase of thrust,
but then after stabilization of the shaft speed, the vibration
energy excited by this same shaft continues to change (Figure
9). In that case, the expert was positive that this problem
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Figure 8. The thrust level change at 20:17:35, then the shaft
speed reaches a new stabilized value with a concave pattern
and the compressor temperature increases in a different way
until it also reaches a new stabilized value.

already appear in old engine configurations but was not able
to retrieve information from the knowledge base.

Figure 9. A maneuver increases the speed of the engine, when
the speed stabilized, the vibration filtered around the speed
shaft frequency continue to change.

To code this specific pattern we identify the exogenous mea-
surements (shaft speed increase) and the endogenous obser-
vations (the way the filtered vibration energy changes). One
way to define a transient phase is to select all change points
detected by the PELT method in different variables of the
same flight and, connect them when break points appear in
the same lapse of time (see Figure 10). In this example, all
change-points detected are illustrated in Figure 7. The start
point of the transient phase happens to be the first detected
point in the shaft speed and the last point is the last detected
point in the temperature. The transient phase will be defined
this way. It is not excluded that the last point of a transient
phase would not be the start point of the next transient phase.

The indexation helps the detection of the start and end points

Figure 10. Representation of a transient phase on a bivariate
signal.

of a transient phase. This phase will represent a pattern which
will be coded with parameters and initial conditions. A lot
of transient phases could happen during one test and, also
among different tests it may be possible to observe the same
kind of pattern. Therefore after collecting enough patterns,
a classification is applied on these patterns and a sufficient
database of patterns is created. In this database, the recurrent
patterns and the unknown ones is stored and statistical studies
are now available. For the classification, the detected patterns
are compared through a matching algorithm.

We now have a tool that detects transient phases and clas-
sifies them into different topics. The main goal is to make
this method run automatically everytime a new bench test is
created. The detected signatures are stored in the existing
database and the unknown patterns are sent to experts to look
closely at them. If an expert has observed a specific pattern,
this information is translated into a coded signature and a re-
search of this type of pattern is done on the new database.
Such work would never be possible manually, especially in
high dimension. Some patterns may be easier to detect by
their relation of causality. For example, stall of the compres-
sor is observed by the opening of the TBV (Transfer Bleed
Valves) that releases some pressure but is the result of reg-
ulation by the engine computer. The real pattern begins be-
fore the TBV opens and should be estimated by detection of
a change in the compressor behavior, probably because of an-
other action, for example an increase of electric power need,
which is not a priori linked to this dramatic stall effect.

4. CONCLUSION

We are in the process of a wide indexation program of the
flight data records for engines. The first step was the detec-
tion of change points, then recognition of transient phases.
We implemented an algorithm that detect with a linear com-
plexity the start and end points of a transient phase. The PELT
method meets our expections in term of accuracy of results
and computational time. The method is very flexible thanks
to the cost function because depending the variable, it can
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change. The results on simulated and real data show that the
change points are globally well detected.

The next step is labelling these patterns and, once we get
some interesting number of labels and when we index a nice
set of records, we could implement the search algorithm. Then
we will produce label statistics and execute ranking compu-
tation by similarity on new records.

With the final result (data of all patterns), the possibility to
check the normal or strange behavior of a variable will be
available. In the mean time, we search to optimize our algo-
rithms.

NOMENCLATURE

Yt, Xt sequence of random variable
N size of sequence
t time
K number of change-points
τi instant of break point
θi parameter
gθ(x, e) function
C cost function
u < l < v any instants of the sequence
βf(K), β penalty term
F (Y1:u) optimal value for the subsample Y1:u
CP1:u last change point before u
< ., . > inner product
AIC Akaike Information Criterion
BIC Bayesian Information Criterion
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