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ABSTRACT 

Dynamic characterization of energy availability profiles is 

paramount for an adequate incorporation of Non-

Conventional Renewable Energies. This fact is particularly 

significant for sizing and design of eolic energy parks. The 

integration of eolic parks with interconnected systems 

requires accurate and precise knowledge on maximum and 

minimum power availability, as well as the moments in 

which you should expect the aforementioned conditions. 

Prognosis tools can help to determine the wind speed with a 

certain degree of reliability, in order to forecast energy 

availability. In this regard, this article aims at designing and 

implementing a methodology to generate a dynamic vector-

autoregressive-based models for wind speed prognosis. This 

methodology makes use of techniques such as data clustering, 

time series statistical analysis and its characterization through 

time-variant parametric models, for a medium term horizon. 

The proposed method is able to prognosticate wind speed for 

a complete day in just one step, instead of classic approaches 

that repeat several one-step ahead transitions to obtain similar 

results. The employed methodology facilitates the 

identification of periodical components of the wind, 

including daily and seasonal, facilitating the differentiation 

of data clusters with similar behaviors or tendencies. In order 

to perform the clustering, seasonal patterns are 

distinguishable through the use of similar probability 

distributions. Kullback-Leibler divergence is used as a 

measure of the difference between the probability 

distributions, while the K-means algorithm is used for 

clustering. Finally, for the validation of the design two 

common methods are implemented: Nielsen Reference 

Model and an ARMA-GARCH model. Our comparative 

analysis shows that the proposed method greatly improves 

the precision and accuracy of the resulting wind forecasting.  

1. INTRODUCTION 

During the last 20 years, the electric demand has increased in 

a steady manner in Chile, with an actual annual rate of 6.7%. 

This demand is covered mainly through traditional energy 

sources such as fossil fuels (63%), hydroelectric (34%), and 

Non-Conventional Renewable Energies (3%) (NCRE) 

(Chilean Energy Department, 2012). This situation generates 

a great vulnerability to the electric supply system, which is 

affected by climatic factors due to global warming, or 

restrictions to the natural gas supplies. 

In order to promote the use of clean energies, on April 1st 

2008, a new law dictated the obligation for electric generation 

companies to supply at least 10% of the energy from NCRE 

by the year 2024. 

For this reason, it is imperative to have tools that can predict 

the NCRE behavior with a certain degree of accuracy. 

Regarding wind generation, this need becomes more relevant 

since its random nature makes difficult to estimate the 

available energy at a determined instant.  

Some efforts have been developed in order to prognosticate 

the behavior of wind speed, in particular, the power that can 

be generated in a wind park. For example the project 

ANEMOS (Development of A NExt generation wind 

resource forecasting systeM for large-scale integration of 

Onshore and offshore wind farmS), developed by the 

European Union, was created in order to study prediction 

models and to elaborate new methodologies (Kariniotakis, 

Pinson, Siebert,  Giebel, & Barthelmie, 2004) (IDAE, 2007).  

One characteristic that should be considered is the existence 

of a dominant pattern in the wind speed magnitudes in 

determined periods of the year, not necessarily influenced by 

the four seasons. If this is considered, it will allow more 

precise adjustments on the implemented models. Aramis Perez et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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Furthermore a daily component is also present. This 

component is related to changes in temperature or pressure, 

and it manifests in similar wind speeds for determined hours 

of the day on relatively close days. 

2. TIME SERIES PREDICTION 

When dealing with wind speed data, the problem of time 

series prediction becomes a complex task due to its random 

nature. For this reason, several techniques have been 

developed using different approaches. On the one hand we 

have phenomenological approaches, where physical 

variables such as temperature, pressure or altitude are 

considered. On the other hand, we have empirical 

approaches. The latter type allows to learn relationships 

directly from data sets. Among them, statistical approaches 

use historic data associated with time series to characterize 

the frequency associated with the appearance of given 

characteristic patterns. This article focuses on the 

implementation of statistical approaches. 

To deal with the data sets, some type of clustering is required. 

In this approach the use of tools such as the Kullback-Leibler 

divergence (KLD) and the K-means algorithm.  

2.1. Data Clustering 

System models such as the auto-regressive types, or filtering 

methods, can be determined with complete or partial data 

sets. Typically, the user is the one who determines how much 

data will be utilized; sometimes without solid theoretical 

justification. This situation brings some disadvantages. For 

instance, if a long time series is used, there can be parameter 

overestimation, and the result may not be the globally 

optimal. To solve this issue, it becomes necessary the use of 

tools that can determine differences in the patterns, as well as 

algorithms capable of clustering the data according to their 

similarities. 

The combination of the KLD and the K-means algorithm 

allows to implement a proper clustering methodology. By 

using the KLD it is possible to determine the similarity 

between two variables, specifically by calculating the 

difference of their probability distributions. The use of the K-

means algorithm makes possible to create data clusters based 

on a certain distance function. 

2.1.1. Kullback-Leibler Divergence 

The Kullback-Leibler divergence (Kullback, 1968) (Hershey 

& Olsen, 2007), also known as the entropy between two 

probability density functions (pdf), is commonly used in 

statistical analysis, as a measure of distance. The equation 

that defines the divergence can be expressed as follows:  

 
𝐷(𝑓 ∥ 𝑔) = ∫𝑓(𝑥) log (

𝑓(𝑥)

𝑔(𝑥)
) (1) 

In the particular case when the distribution functions are 

multivariate Gaussian functions, that we will call 𝑓 and �̂�, 

the KLD has a closed and known shape, defined by: 

 𝑓 ∼ 𝑁(𝜇�̂� , Σ�̂�) (2) 

 �̂� ∼ 𝑁(𝜇�̂�, Σ�̂�) (3) 

 

𝐷(𝑓 ∥ 𝑔) =
1

2
[
𝑙𝑜𝑔

Σ�̂�

Σ�̂�

+ 𝑇𝑟[Σ�̂�
−1Σ�̂�] − 𝑑 + ⋯

…(𝜇�̂� − 𝜇�̂�)
𝑇
Σ�̂�

−1(𝜇�̂� − 𝜇�̂�)

] (4) 

The variables 𝜇�̂� and 𝜇�̂� correspond to the vectors of means 

of each distribution, Σ�̂�  and Σ�̂�are the covariance matrixes 

and 𝑑 is the vector dimension. 

2.1.2. K-means Algorithm 

This algorithm was proposed in (MacQueen, 1967), is one of 

the simplest and known clustering algorithms. It is based on 

a simple way to divide a given database in a predetermined K 

amount of groups. The main idea of the method is to define 

one centroid per each defined group. Then the data is 

distributed, through an iterative process that concludes when 

a required condition of distance is accomplished,   

3. METHODOLOGY AND IMPLEMENTATION OF THE V-

ARX MODEL  

In this section, the implementation of a vector model for the 

wind speed prognosis for a 24 hour time horizon is explained. 

This model considers characteristics such as periodicity and 

seasonality.  

The data used was obtained from Project EOLO, of the 

Geophysics Department of the University of Chile. They 

correspond to a series of wind speed measurements during 

1990 and 1991, in a town named Punta Lengua de Vaca, 

Coquimbo Region, in Chile. It consists of 8760 consecutive 

values with a sample rate of 1 hour, and measured at an 

altitude of 10 meters above sea level. 

The method presented in this paper has the characteristic of 

not using the observed data values as such. Instead, the 

original data series is transformed into the residual series. The 

use of the residual series allows the elimination of the 

periodical characteristics and obtains the seasonal properties 

required for auto-regressive models. 

In order to quantify the impact of this proposal, two 

comparative models are implemented: Nielsen Reference 

model (Madsen, Pinson, Kariniotakis, Nielsen & Nielsen, 

(2005), and the ARMA-GARCH model (Liu, Erdem & Shi, 

2011).  
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3.1. Daily periodicity analysis 

In order to validate the existence of periodic component on 

the daily wind speed profiles, the autocorrelation function is 

calculated. This way it is possible to confirm it there exists 

any relation between the hours of the day and the magnitude 

of the wind speed at that hour. 

 

 

Figure 1. Auto-correlation function of the complete wind 

speed series data set. 

Figure 1 shows that there is a strong correlation between the 

values of the time series. This correlation increases 

approximately every 24 samples; indicating the presence of a 

periodic component of this duration.  

Knowing this, the original data is transformed into a daily 

vector series, starting at 1:00 am and finishing at 0:00 hours 

of the next day. This transformation originates 365 vectors of 

24 components each. Figure 2 explains the division of the 

original data set while  

Figure 3 shows the new distribution of data for a particular 

week. 

 

Figure 2. Original wind speed data series. 

Finally each of this subseries is converted into a column 

vector of daily wind speeds, where each component stands 

for the wind speed of the specific hours for that day. 

 

 

Figure 3. Example of daily wind speed values. 

3.2. Seasonality analysis 

In order to verify the seasonality properties of the wind speed 

magnitude, a clustering of the vectors, each one with similar 

characteristics, such as mean and variance is intended. The 

first step, is to arrange the daily vectors in weekly groups (7 

vectors), and calculate the mean and variance of each group. 

This is done for all the weeks of the year. Figure 4 shows an 

example of the data for a particular week and how the mean 

and standard deviation are determined can be observed in 

Figure 5. 

 

 

Figure 4. Example of hourly wind speed values for a 

complete week. 

 

Figure 5. Wind speed mean and standard deviation. 
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Next step, applying the KLD to the weekly vectors of mean 

and variance, it is possible to determine the similarity among 

the different weeks of the year according to their statistical 

distributions. This generates a distance matrix, of dimensions 

52𝑥52, is and each of its components indicates the difference 

between the two weeks. For this methodology it is assumed 

that the vectors are composed by independent random 

variables, identically distributed through Gaussian 

probability.  

In order to cluster the data, the K-means algorithm is applied 

to the distance matrix obtained with the KLD. By this, all the 

weeks will be clustered according to the similarity of their 

distributions. 

At this point, also an empirical component is added at the 

time of creating the clusters. Considering the temporal 

continuity needed to originate the models, some weeks are 

moved to different clusters, regardless of the results of K-

means. In this paper, a segmentation of three clusters is 

obtained, and for each of them one third of the data will be 

used to obtain the model parameters and the remaining data 

is used for result validation. 

3.3. Residual Series 

To originate the residual data series, first it is necessary to 

obtain the residual vectors. They correspond to the obtained 

values from the transformation of each vector that contains 

the wind speed magnitude. These vectors are calculated by 

subtracting the hourly mean vector corresponding to each 

cluster, from the daily value vector. After this, the 

concatenation of these residual vectors generates the wind 

speed residual series. Figure 6 shows the original wind speed 

data and Figure 7 shows the result of this transformation.  

 

 

Figure 6. Original wind speed data set. 

 

Figure 7. Wind speed residual data series. 

 

This new time series has the characteristic of a zero mean 

value and also the elimination or reduction of the periodical 

component found in the original data set. This can be seen in 

Figure 8. 

 

 

Figure 8. Auto-correlation function of residual data. 

3.4. Vector Auto-Regressive Model with Exogenous 

Input Model 

This section explains how the proposed model is obtained. It 

is going employ the available information until day n, and 

this will give origin to the prognosis for day n+1. Equation 5 

defines how the prognosis is performed. 

 

 �̅�(𝑛 + 1) = 𝐴1𝑉�̅�(𝑛) + 𝐴2𝑉�̅�(𝑛 − 1) + ⋯ 

…+ 𝐴3𝑉�̅�(𝑛 − 2) + �̅�𝑒𝑥𝑡  
(5) 

 

The parameters are defined as follows: 

 Prognosis vector �̅�: gives the result for day n+1. Consists 

of a 24 element array, where each row corresponds to 

one hour of the day, starting at 1 a.m. and ending at 

12 a.m. of the next day. 
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 Residue vector 𝑉�̅� : it has the same structure as the 

prognosis vector. It contains the residual values of days 

n, n-1, and n-2.  

 Exogenous input �̅�𝑒𝑥𝑡 : the values of this array are the 

hourly mean values. It is calculated through the defined 

groups in the clustering step.  

 Auto-regressive matrices 𝐴𝑖 : these matrices are the 

corresponding auto-regressive matrices of the model, 

operating on the residual vectors. They are built as upper 

triangular matrices since a-priori it is known that the first 

row will originate the first prognostic result. From the 

auto-correlation function of the residue series, it is 

known that the first estimated value is the one that can 

capture most of the information, since it is more 

correlated with the nearest values. In this regard, the first 

row has 24 coefficients in order to use the majority of 

information contained on the residue vector, the second 

row has 23 coefficients, and so on, until the last row has 

only one coefficient. These coefficients must be 

calculated independently for each row, and using the 

Yule-Walker (Hershey & Olsen, 2007) equations, using 

the auto-covariance values of the residual series.  

3.4.1. Auto-regressive parameter estimation process 

1. Write the value to estimate in terms of the unknown 

model coefficients and the known observations that 

correspond. 

 𝑉𝑟,1
𝑛+1 = 𝛼24

1 𝑉𝑟,1
𝑛 + 𝛼23

1 𝑉𝑟,2
𝑛 + 𝛼22

1 𝑉𝑟,3
𝑛 + 

… +𝛼1
1𝑉𝑟,24

𝑛 + 𝛼24
2 𝑉𝑟,1

𝑛−1 + 𝛼23
2 𝑉𝑟,2

𝑛−1 + 𝛼22
2 𝑉𝑟,3

𝑛−1

+ ⋯+ 𝛼1
2𝑉𝑟,24

𝑛−1 + 𝛼24
3 𝑉𝑟,1

𝑛−2 + 𝛼23
3 𝑉𝑟,2

𝑛−2

+ 𝛼22
3 𝑉𝑟,3

𝑛−2 + ⋯ + 𝛼1
3𝑉𝑟,24

𝑛−2 

(6) 

Variable 𝑉𝑟,𝑡
𝑛+1 : value of the wind speed prognosis for the 

residue series at hour t of day n+1.  

Coefficient 𝛼𝑗
𝑘: represents the j-th coefficient of matrix 𝐴𝑘, 

considered from right to left.  

Variable 𝑉𝑟,𝑡
𝑛−𝑘(𝑘 = 0,1,2): value of the residual series on 

day n, n-1, n-2 at hour t. For any other hour that requires 

estimation, the expression that should be used is: 

 

𝑉𝑟,𝑡
𝑛+1 = ∑𝛼25−𝑖

1

24

𝑖=𝑡

𝑉𝑟,𝑡
𝑛 + ⋯ 

…+ ∑𝛼25−𝑖
2

24

𝑖=𝑡

𝑉𝑟,𝑡
𝑛−1 + ∑𝛼25−𝑖

3

24

𝑖=𝑡

𝑉𝑟,𝑡
𝑛−2 

(7) 

2. Both sides of the equation must me multiplied by each of 

the real values that are going to be used, originating a set 

of equations, with as many equations as parameters to be 

estimated. 

 

 𝑉𝑟,1
𝑛+1𝑉𝑟,1

𝑛 = 𝛼24
1 𝑉𝑟,1

𝑛 𝑉𝑟,1
𝑛 + 𝛼23

1 𝑉𝑟,2
𝑛 𝑉𝑟,1

𝑛 + 

… + 𝛼1
1𝑉𝑟,24

𝑛 𝑉𝑟,1
𝑛  

𝑉𝑟,1
𝑛+1𝑉𝑟,2

𝑛−1 = 𝛼24
2 𝑉𝑟,1

𝑛−1𝑉𝑟,2
𝑛 + 𝛼23

2 𝑉𝑟,2
𝑛−1𝑉𝑟,2

𝑛 + 

…+ 𝛼1
2𝑉𝑟,24

𝑛−1𝑉𝑟,2
𝑛  

⋮ 

𝑉𝑟,1
𝑛+1𝑉𝑟,24

𝑛−2 = 𝛼24
3 𝑉𝑟,1

𝑛−2𝑉𝑟,24
𝑛−2 + 𝛼23

3 𝑉𝑟,2
𝑛−2𝑉𝑟,24

𝑛−2 + 

…+ 𝛼1
3𝑉𝑟,24

𝑛−2𝑉𝑟,24
𝑛−2 

(8) 

3. Once the set of equations is determined, the expected 

value of each value is calculated and with them, the 

covariance values of the used series appear. 

 𝛾1 = 𝛼24
1 𝛾0 + 𝛼23

1 𝛾1 + 𝛼22
1 𝛾2 + ⋯+ 𝛼1

3𝛾0

𝛾2 = 𝛼24
1 𝛾1 + 𝛼23

1 𝛾0 + 𝛼22
1 𝛾1 + ⋯+ 𝛼1

3𝛾70

⋮
𝛾72 = 𝛼24

1 𝛾71 + 𝛼23
1 𝛾70 + 𝛼22

1 𝛾69 + ⋯+ 𝛼1
3𝛾0

 (9) 

4. Finally, the coefficient values are determined. 

 

[
 
 
 
 
𝛼24

1

𝛼23
1

𝛼22
1

⋮
𝛼1

3 ]
 
 
 
 

=

[
 
 
 
 
𝛾0 𝛾1

𝛾2 ⋯ 𝛾71

𝛾1 𝛾0
𝛾1 ⋯ 𝛾70

𝛾2

⋮
𝛾71

𝛾1

⋮
𝛾70

𝛾0 ⋯ 𝛾69

⋮ ⋱ ⋮
𝛾69 ⋯ 𝛾0]

 
 
 
 
−1

[
 
 
 
 
𝛾1

𝛾2
𝛾3

⋮
𝛾72]

 
 
 
 

 (10) 

With this procedure, all the rows are calculated taking into 

consideration that each time the estimation moves away an 

hour, one auto-regressive coefficient less is going to be used.  

3.5. Methodology step-by-step summary 

The proposed methodology, can be summarized following 

the next steps: 

1. From raw data, create the conventional wind speed time 

series. 

2. Divide the conventional time series into weekly groups. 

Each of these groups should consist on the hourly wind 

speed value of each day. 

3. Calculate the mean and variance for each of the groups 

created on step 2. 

4. Apply the KLD to the vector data created on Step 3, this 

will create a distance matrix. 

5. Using K-means algorithm, create clusters using the KLD 

results. 

6. Create the V-ARX model. 

7. Generate prognosis results for the V-ARX model and the 

other techniques. 

8. Measure the performance indicators. 
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9. Compare the proposed V-ARX model with the reference 

techniques: Nielsen Reference model and ARMA-

GARCH. 

4. RESULTS 

In this section, we present the obtained results with the 

proposed V-ARX model as well as the Nielsen Reference 

model and the ARMA-GARCH model that were intended for 

comparison purposes.  

4.1. Seasonal Groups Determination 

The intention is to distribute the weeks of the year into 

different groups that present similar wind speed daily 

patterns. As mentioned previously, this is done by using the 

KLD to obtain the matrix of distances. Then, the K-means 

algorithm is used to create the data clusters, independently of 

their temporal location during the year. For this reason, an 

empirical criteria is employed in order that these groups of 

data are formed by temporarily correlated data. Figure 9 

shows the results of the clustering process. 

 

 

Figure 9. K-means clustering results. 

 

In this case, three clusters were used to divide the available 

data, since a larger amount of groups will originate clusters 

with few weeks, opposing to the intention of the research, 

which is to minimize the amount of necessary models. The 

green crosses represent the data assigned to Cluster A, the 

blue circles to Cluster B and the red squares to Cluster C. All 

the weeks can be arranged as shown in Table 1. 

 

 

 

 

 

Table 1. Cluster Distribution of the Weeks using K-means 

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 

Cluster A A A A A A B A B B C B B 

Week 14 15 16 17 18 19 20 21 22 23 24 25 26 

Cluster C B B C B C C C B B C B C 

Week 27 28 29 30 31 32 33 34 35 36 37 38 39 

Cluster C B B C B B B B C B B B B 

Week 40 41 42 43 44 45 46 47 48 49 50 51 52 

Cluster B B A A B A B A B B A B B 

 

The results obtained with K-means are used as the base 

structure to create new groups and with the support of an 

empirical analysis they are defined as: 

 Group 1: weeks 1 to 13. 

 Group 2: weeks 14 to 30. 

 Group 3: weeks 31 to 52. 

 

The characteristic pattern of mean and deviation for the three 

groups are shown on figures 10 through 12. 

 

 

Figure 10. Mean and standard deviation value for Group 1. 

 

 

 

Figure 11. Mean and standard deviation value for Group 2. 
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Figure 12. Mean and standard deviation value for Group 3. 

 

The next figures show the autocorrelation function of the 

original and the residual series respectively, demonstrating 

that the foundation of the model are still present: a highly 

marked periodicity of the original series and in the residual 

series a small periodic component with low correlation 

values. 

 

 

Figure 13. Autocorrelation function of the original data set 

of Group 1. 

 

 

Figure 14. Autocorrelation function of the residual data set 

of Group 1 

 

 

Figure 15. Autocorrelation function of the original data set 

of Group 2. 

 

 

Figure 16.Autocorrelation function of the residual data set 

of Group 2. 

 

 

Figure 17.Autocorrelation function of the original data set of 

Group 3. 

 

 

Figure 18. Autocorrelation function of the residual data set 

of Group 3. 
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4.2. Prognosis Results 

Using the previously explained methodology, the V-ARX 

model is implemented. The parameters are estimated using 

one third of the available data, and the rest is used for 

validation purposes. Figures 19-21 show the actual data and 

the prognosis results for the first 7 days (168 hours), for the 

validation data set. It is important to keep in mind that the 

prognosis time horizon is 24 hours, and after this period of 

time elapses, the values that enter the model for the next 

prognosis correspond to the real values.  

The results show that the V-ARX model is capable of 

following the original series trend, mainly because the use of 

the mean speed pattern, represented in the exogenous input. 

However, due to the strong influence of this parameter on the 

estimated values, it is possible that if the real value varies too 

much with respect to the mean values, the prognosis error will 

increase since the auto-regressive part will not be able to 

estimate correctly such magnitude variation. This can be seen 

between hours 1 to 40 of Group 2 and 70 to 110 of Group 3, 

where the real values are smaller than the mean values of the 

data series.  

 

 

Figure 19. V-ARX model wind speed estimation of 

Group 1. 

 

 

Figure 20. V-ARX model wind speed estimation of 

Group 2. 

 

Figure 21. V-ARX model wind speed estimation of 

Group 3. 

For the Nielsen Reference model, a 24 hour prognosis time 

horizon is also employed. The training and validation data are 

also the same as before. Figures 22-24 show the results for 

the first 7 days of the validation data.  

The results are clear to show that the Nielsen Reference 

model does not provide a good performance. The reason is 

that the model equation requires a mean component, and in 

this case it uses the historic mean instead of the hourly mean. 

In this regard, the predictions made for a relatively far 

horizon will tend to emulate the mean value since it becomes 

more difficult to capture the changes of the auto-correlation 

values of the series. Contrary, if looking closely the first 3 

hours of each day, the results of the prognosis is really close 

to the actual data. This is caused by the strong correlation 

between hours that are near to the prior time instant when the 

real value is used to estimate. 

Finally, an ARMA(p, q)-GARCH(1,1) model is implemented 

in a similar manner as the previous models. In this case, the 

ARMA-GARCH model is applied over the residual series, so 

an external variable is present. It corresponds to the mean 

value of the hour at which the prognosis is being done. The 

parameters p and q used for each group is different and they 

are obtained by calculating the minimum mean square error 

when varying p and q between 1 and 6. Figures 25-27 show 

the results for the first seven days of the validation data set. 

 

 

Figure 22. Nielsen Reference model wind speed estimation 

of Group 1. 
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Figure 23. Nielsen Reference model wind speed estimation 

of Group 2. 

 

 

Figure 24. Nielsen Reference model wind speed estimation 

of Group 3. 

 

Since the ARMA-GARCH model is designed with the 

residual series and using the hourly mean values, it is able to 

estimate the trend of the series satisfactorily. Once again the 

component of mean values of the wind speed plays a key role 

when doing the prognosis. The results are very similar to the 

V-ARX model. The comparison of the models will allow to 

stablish which model is more accurate.  

In case the ARMA-GARCH model is developed using the 

observed data and not the residual series, the results will be 

very similar to the Nielsen Reference model case. 

 

 

Figure 25. ARMA-GARCH model wind speed estimation of 

Group 1. 

 

Figure 26. ARMA-GARCH model wind speed estimation of 

Group 2. 

 

 

Figure 27. ARMA-GARCH model wind speed estimation of 

Group 3. 

4.3. Performance Indicators 

In this approach the prediction error of the proposed method 

will be compared to the other techniques using the following 

indicators: mean square error (MSE), mean relative 

percentage error (MRPE), mean relative effective percentage 

error (MREPE) and the mean percentage energy error 

(MPEE). The prediction error can be defined as the difference 

between the real value of the series at certain time instant and 

the estimated value by the model at that time instant. So the 

prediction error for a given future time instant can be 

calculated as: 

 𝑒(𝑡 + 𝑘|𝑡) = 𝑉(𝑡 + 𝑘|𝑡) − �̂�(𝑡 + 𝑘|𝑡) (11) 

The MSE is the result of calculating the average of the 

squares of the prediction errors. In this case, the bigger errors 

are given more weight at the time they are averaged, since the 

values are squared. Next, the MRPE is the result of 

calculating the prediction error as a percentage of the real 

value. Then, the MREPE can be calculated as the percentage 

of the prediction error with respect to the average of the real 

value. Finally, the MPEE is obtained by averaging the energy 

between the prediction error and the energy of the real value. 

It is possible to define the previously mentioned performance 

metrics, using Eq. (11), as follows: 
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𝑀𝑆𝐸(𝑘) =
1

𝑘
∑𝑒(𝑡 + 𝑘|𝑡)2

𝑘

𝑖=1

 (12) 

 

𝑀𝑅𝑃𝐸(𝑘) =
1

𝑘
∑

|𝑒(𝑡 + 𝑘|𝑡)|

|𝑉(𝑡 + 𝑘|𝑡)|

𝑘

𝑖=1

∗ 100 (13) 

 

𝑀𝑅𝐸𝑃𝐸(𝑘) =
1

𝑘
∑

|𝑒(𝑡 + 𝑘|𝑡)|

|
1
𝑘

∑ 𝑉(𝑡 + 𝑘|𝑡)𝑘
𝑖=1 |

𝑘

𝑖=1

∗ 100 (14) 

 

𝑀𝑃𝐸𝐸(𝑘) =
1

𝑘
∑

𝑒(𝑡 + 𝑘|𝑡)2

𝑉(𝑡 + 𝑘|𝑡)2
∗ 100

𝑘

𝑖=1

 (15) 

 

The indicators are calculated after a 24 hour time horizon 

prognosis. The following tables show the obtained results of 

the different prognosis errors. 

 

Table 2. Prognosis errors using the proposed V-ARX model 

Group MSE MRPE MREPE MPEE 

1 3.86 68.1 42.9 13.25 

2 4.79 89.83 61.19 25.53 

3 5.23 83.94 50.49 18.15 

 

Table 3. Prognosis errors using the Nielsen Reference model 

Group MSE MRPE MREPE MPEE 

1 8.74 118.31 64.55 30 

2 6.08 96.31 68.95 32.42 

3 8.1 102.31 62.82 28.1 

 

Table 4. Prognosis errors using the ARMA-GARCH model. 

Group MSE MRPE MREPE MPEE 

1 4.22 73.91 44.85 14.48 

2 5.24 91.61 63.95 27.89 

3 5.6 87.82 52.24 19.43 

 

4.4. Model Comparison 

In order to compare the obtained results with each model and 

determine if there is an improvement on the prognosis, the 

following indicator is implemented. It is called IMP (from 

improvement) and it indicates the percentage of improvement 

of the obtained prognosis when compared to a reference 

model. 

 
𝐼𝑀𝑃 =

𝑒(𝑘)𝑟𝑒𝑓 − 𝑒(𝑘)

𝑒(𝑘)𝑟𝑒𝑓

∗ 100 (16) 

In this case, 𝑒(𝑘)𝑟𝑒𝑓  represents the error obtained with the 

reference model for a k-step prediction horizon, and 𝑒(𝑘) 

denotes the error of the model under study. In simple words 

if the value of IMP is positive the studied model has a better 

performance that the reference model. 

The following tables show the results of calculating the 

improvement rate when comparing the V-ARX model with 

the Nielsen Reference model and then with the ARMA-

GARCH model. 

From the IMP results it is clear that the V-ARX model has a 

better performance when compared to the other models, 

regardless of the type of error that is being considered.  

 

Table 5.Improvement percentage index of comparing V-

ARX model with the Nielsen Reference Model. 

Group MSE MRPE MREPE MPEE 

1 55.84 42.44 33.55 55.84 

2 21.25 6.72 11.26 21.25 

3 35.42 17.99 19.67 35.48 

 

Table 6.Improvement percentage index of comparing V-

ARX model with the ARMA-GARCH Model. 

Group MSE MRPE MREPE MPEE 

1 8.57 7.87 4.36 8.53 

2 8.46 1.94 4.36 8.46 

3 6.6 4.42 3.35 6.6 

 

The proposed V-ARX model is able to confront the 

variability of the hourly mean values of the wind speed, and 

for this reason it is more precise when doing the prognosis for 

Group 1 (which has a more variable pattern). Furthermore, 

when comparing the V-ARX model with the Nielsen 

Reference model there is a notorious improvement on the 

precision of the prognosis. This improvement is mainly due 

to the use of the hourly pattern present in the wind speed 

series making possible to use relevant information for 

faraway horizons where the uncertainty is larger. This issue 

cannot be accounted in an effective manner with the Nielsen, 

causing a poor prognosis performance for the 24 step horizon.  

Likewise, when comparing the V-ARX model with the 

ARMA-GARCH there is a slight improvement. This 
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improvement cannot be considered as a result of just using 

the mean speed pattern since both models use it. Therefore 

the difference is the result of how the auto-regressive part is 

solved, resulting that the proposed matrix structure has a 

better performance that the linear manner. One of the reasons 

of this improvement is that the V-ARX has all the 

information presented at once to obtain the prognosis vector 

without incurring in errors associated to the reincorporation 

of estimated values to the model, while the ARMA-GARCH 

model uses the prognosis values as feedback, increasing the 

existing level of uncertainty and the estimation error. 

5. CONCLUSIONS 

The presented research consists on the development of a 

dynamic vector model applied to wind speed prognosis for a 

24 hour time horizon. It was designed in such a way that is 

capable of capturing the periodic characteristics of the wind, 

daily and seasonal. This demonstrates that considering all the 

information when building a model the results are improved.  

Another fact to highlight is that with just one iteration a 24 

hour prognosis horizon is performed by using all the relevant 

information at once. If a linear model is employed to perform 

this type of prognosis, the calculation has to be done 24 times. 

In this case, the results have to go through a feedback process 

into the model equation, increasing the associated errors with 

each iteration. In this context, it is important to recognize the 

utility of using the residual series and the mean values of the 

speed patterns, allowing to perform a longer horizon 

prognosis and obtaining estimation results closer to the real 

values.  

The values obtained for the IMP indicator demonstrate that 

the presented vector model gives better results that the two 

models used for comparison. It is possible to conclude that 

the proposed design, has a great potential since it only uses 

an AR process to solve the auto-regressive part and is able to 

overcome two well-known processes. In this regard, if the 

vector technique is adapted to other algorithms that are more 

precise, the overall results can be improved, resulting into 

more accurate estimations. 

The way the groups are defined is not present on other 

researches, and the obtained results are promising. The fact 

of having used K-means clustering and Kullback-Leibler 

divergence allowed to perform a good and mathematically 

founded, identification of the different wind patterns 

throughout the year, making possible to create a more precise 

model for each of the groups. Having different models 

depending on the amount of groups allowed to have better 

results rather than having worked with just one model for the 

whole year. 
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