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ABSTRACT 

The system condition of valuable assets such as power 

plants is often monitored with thousands of sensors.  A full 

evaluation of all sensors is normally not done. Most of the 

important failures are captured by established algorithms 

that use a selection of parameters and compare this to 

defined limits or references.  

Due to the availability of massive amounts of data and many 

different feature extraction techniques, the application of 

feature learning within fault detection and subsequent 

prognostics have been increasing. They provide powerful 

results. However, in many cases, they are not able to isolate 

the signal or set of signals that caused a change in the 

system condition.  

Therefore, approaches are required to isolate the signals 

with a change in their behavior after a fault is detected and 

to provide this information to diagnostics and maintenance 

engineers to further evaluate the system state.  

In this paper, we propose the application of Maximal 

Information-based Nonparametric Exploration (MINE) 

statistics for fault isolation and detection in condition 

monitoring data.  

The MINE statistics provide normalized scores for the 

strength of the relationship, the departure from 

monotonicity, the closeness to being a function and the 

complexity. These characteristics make the MINE statistics 

a good tool for monitoring the pair-wise relationships in the 

condition monitoring signals and detect changes in the 

relationship over time.  

The application of MINE statistics in the context of 

condition monitoring is demonstrated on an artificial case 

study. The focus of the case study is particularly on two of 

the MINE indicators: the Maximal information coefficient 

(MIC) and the Maximum Asymmetry Score (MAS).  

MINE statistics prove to be particularly useful when the 

change of system condition is reflected in the relationship 

between two signals, which is usually difficult to be 

captured by other metrics.  

1. INTRODUCTION 

Monitoring the condition of complex systems is usually 

achieved by analyzing the signals collected by a number of 

sensors located in different parts of the system. The 

obtained condition monitoring data is typically high 

dimensional and single signals or extracted features are 

characterized by different degrees of correlation to other 

signals. For many impending faults, the first indication is 

changes in the relationship between the signals and can be 

evaluated with correlation analysis. Correlation analysis is, 

therefore, often applied to assess the relationship between 

the signals and also to detect a change in the relationship 

(Dai & Gao, 2013).  

Many of the applied correlation methods show several 

limitations and drawbacks. They are either limited to linear 

relationships, e.g. the Pearson correlation coefficient, or 

monotonic functions, e.g. the Spearman coefficient, or 

sensitive to outliers and noise in the data. Information 

theoretical approaches overcome some of the limitations of 

the previously mentioned approaches. They are not limited 

to linear relationships and are not sensitive to outliers (Ando 

& Suzuki, 2006; Wu & Wang, 2013). However, they are 

either difficult to interpret or highly dependent on the 

approach used to approximate the underlying distributions.  

Mutual information has been applied in fault detection in 

several applications (Jiang & Yan, 2014; Kappaganthu & 

Nataraj, 2011; Verron, Tiplica, & Kobi, 2008). Mutual 

information has been either applied for feature selection 
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such as in (Jiang & Yan, 2014) and (Kappaganthu & 

Nataraj, 2011) or plant-wide process monitoring as in 

(Verron et al., 2008). Recently, a new approach has been 

introduced to overcome some of the existing limitations: 

maximal information coefficient (MIC) and the pertinent 

maximal information-based nonparametric exploration that 

covers additional coefficients (Reshef et al., 2011). 

The approach is not sensitive to noise or outliers. It can be 

directly interpreted and compared since it is normalized to 

values in the interval [0,1]. Additionally, it is not limited to 

monotonic functions but is able to detect different types of 

functional relationships. While MIC captures the strength of 

the relationship, a further interesting parameter as part of the 

maximal information-based nonparametric exploration is the 

Maximum Asymmetry Score (MAS). MAS captures the 

departure from monotonicity and is able to detect non-linear 

relationship in the data.  

Particularly, these two metrics (MIC and MAS) are useful 

for applications of condition monitoring data. They can be 

applied to extract the relationships between different 

features and also detect the changes in the relationship that 

cannot be detected by commonly applied metrics.  

In this paper, the application of these two metrics is 

demonstrated on an artificial case study in which different 

types of relationships between signals are introduced. The 

metrics and their performance are compared to the Pearson 

correlation coefficient.  

The proposed approach proves to be a very useful tool for 

condition monitoring applications. It can be applied not only 

to detect relationships between two signals or features, but 

also to monitor the evolution of a feature over time and 

compare it to the previously observed patterns. The 

proposed approach can be particularly useful for fault 

detection of the complex industrial equipment, in which 

faults are characterized by changes in highly non-linear 

relationships of the high-dimensional condition monitoring 

data. 

2. THEORETICAL BACKGROUND ON MAXIMAL 

INFORMATION-BASED NONPARAMETRIC 

EXPLORATION   

Generally, mutual information of two random variables is an 

information theoretical measure and quantifies the mutual 

dependence of these two variables (Kraskov, Stögbauer, & 

Grassberger, 2004). It is based on the concept of entropy of 

a random variable. Mutual information quantifies the 

amount of information gained about one variable given that 

the other variable is known. Generally, if two variables are 

independent mutual information will be zero and if the 

dependence between two variables is large, mutual 

information will be large.  

Different approaches have been introduced to calculate the 

mutual information between the variables, such as by the 

histogram method (Fraser & Swinney, 1986) or by the 

kernel density estimators (Moon, Rajagopalan, & Lall, 

1995). One of the limitations is that different approaches 

provide different results and are therefore difficult to 

interpret. Additionally, mutual information is not 

normalized and may be difficult to compare between 

different types of relationships.  

The Maximal information criterion is based on the 

assumption that for any relationship, there exists a grid that 

can capture the relationship between the two variables. 

Therefore, the MIC algorithm examines different x-y-grid 

combinations and determines the grid with the largest 

possible mutual information that can be achieved by any x-

y-grid. To find the grid with the largest mutual information, 

all grids up to a maximal grid resolution are evaluated, 

dependent on the size of the sample, computing for every 

pair of integers (x,y) the largest possible mutual information 

achievable by any x-by-y grid applied to the data (Reshef et 

al., 2011). This is contrary to the other mutual information 

computations which only consider the mutual information in 

the given orthogonal x-y-grid and do not vary different 

number of rows and column combinations.  

Given the data D, *( , , )I D x y  is the maximum mutual 

information achieved by any grid with x columns and y 

rows on the data D: 

 
*( , , ) max ( )

G
I D x y I D   (1) 

The characteristic matrix M of the set of data D is given by 

the maximum mutual information achieved by any grid with 

x columns and y rows and normalized by the maximal 

possible mutual information  log min ,x y  : 

  

*

x,y

( , , )
( )

log min ,

I D x y
M D

x y


  (2) 

Thereby, the mutual information is normalized to be in the 

scale between 0 and 1 which enables a comparison between 

different types of relationships. The maximal information 

criterion is then defined as the maximum value in the 

characteristics matrix M:  

 

 x,y
( )

( ) max ( )
xy B n

MIC D M D




  (3) 

Where the bin size is determined by 
1(1) B(n) O(n )    for some 1o   . 

Maximum asymmetry score measures the deviation from 

monotonicity and is given by: 

x,y ,(D) max ( ) ( ) y x
xy B

MAS M D M D


    (4) 
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For more details of the calculation of MICA and MAS, 

interested reader can refer to (Reshef et al., 2011).  

3. CASE STUDY IN FAULT DETECTION 

3.1. Applied datasets 

To test the application of Maximal Information-based 

Nonparametric Exploration (MINE) statistics in condition 

monitoring applications, we apply them on datasets where 

we know the actual relationship between the signals, which 

will be referred as the “ground truth”. This provides us an 

opportunity to interpret the results correctly. We generate 

three different types of faults to evaluate the performance of 

the algorithm in different types of changes in the 

relationships between the signals.  

Each of the datasets comprises 2000 patterns. Whereby, the 

first 1000 patterns are in the normal state and the following 

1000 patterns are in a faulty state. The three different fault 

types are the following:  

1) A fault characterized by an abrupt change in the  

relationship between two signals 

2)  A fault characterized by a gradual drift in a single 

signal  

3) A fault in which one independent signal is not 

affected by the fault, but all the dependent signals 

are affected by a gradual drift.  

The equations for generating the normal state signals are 

shown in Table 1. 

Table 1. Equations for normal state signal generation 

 2( ,1) 0,0.5

1,2,..., 2000

S i N

i 

 ( ,2) ( ,1)S i aS i b   

 ( ,3) *cos ( ,1)S i c dS i  
3 2( ,4) ( ,1) ( ,1)

( ,1)

S i eS i fS i

gS i

 


 

 ( ,5) *exp ( ,1))S i l hS i  a=2, f=-1.006, b=5, g=0.36, c=2, 

h=0.2, d=10, l=0.06, e=0.6 

 

In Table 1, 𝑆(𝑖, 𝑗)  represents the i-th pattern of signal j. 

Signal 1 represents the independent signal based on 

Gaussian distribution. Signals 2 to 4 are generated based on 

signal 1. They have a linear, a cosine, a polynomial and 

exponential relationship to signal 1.  

The purpose of generating such signals is to simulate 

different types of relationships, which provide us an 

opportunity to analyze the sensitivity of MINE statistics on 

them. In addition, the dependent relationships between these 

five signals are designed based on a real application profile. 

Typically, for many industrial applications, only few 

working parameters are independent, and most of monitored 

signals are related to the independent parameters (the 

relationships are depend on the sensor measurement 

principle) The signals in the normal state will be used as a 

basis for injecting the different fault types on them to 

simulate different changes in relationships between 

dependent and independent parameters.  

For the first fault type (dataset 1), which represents the fault 

characterized by an abrupt change in the relationship 

between two signals, an abrupt change of the relationship 

between signal 1 and 3 is injected in the following way: 

1. Generate  ,  tempS i j based on the equations for  ,S i j  

in Table 1; 

2. Inject the abrupt change of relationship between signal 

1 and 3 from the 1001-th pattern: 

 

 

  
 

1

, ,  1 1000, 1,2,...,5

,  = *cos ,1  1001 2000, 3

, ,  1001 2000, 1,2,4,5

temp

F

temp

temp

S i j i j

S i j c d S i i j

S i j i j

   


   


  

 

3. Normalize  1 ,  FS i j to be in the interval  0,1 . 

The injected fault is characterized by changing the 

parameter d to 𝑑′ = 50. In Figure 1, signal 3 in normal state 

and in the faulty state is presented.  

 
Figure 1. Relationship of signal one before (top) and after 

the fault injection (bottom) 

 

The second fault type (dataset 2) represents a gradual drift 

that is injected in signal 3. The following steps are followed 

to generate the signals: 

1. Generate  ,  tempS i j based on the equations for  ,S i j  

in Table 1; 

2. Inject the gradual drift in signal 3, from the 1001-th 

pattern: 

 

 

 

 

  

2

1
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1
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3. Normalize  2 ,  FS i j  to be in the interval  0,1 . 

The parameter determining the gradual drift is set to 𝐶1 =
0.005. Figure 2 shows the fault in signal 3, starting from 

pattern 1001. The other signals are not affected by the fault. 

 

Figure 2. Dataset 2 with signal 3 being affected by gradual 

drift 

 

For dataset 3 that represents a fault affecting all dependent 

signals, the procedures are similar to dataset 2. In this case, 

the gradual drift is injected into signals 2 to 5, while signal 1 

remains unaffected by the fault. The following procedure is 

followed to generate the dataset.  

1. Generate  ,  tempS i j based on the equations for  ,S i j  

in Table 1; 

2. Inject the gradual drift in signal 2,3,4,5, from the 1001-

th pattern: 

 

 

 

 

3

1

, ,  1 1000, 1,2,...,5

,  = ,  * *  , 1001 2000, 2,3,4,5

, ,  1001 2000, 1

temp

F

temp

temp

S i j i j

S i j S i j C Q i i j

S i j i j

   


   
   

 

3. Normalize  3 ,  FS i j into interval  0,1 . 

Q and C1 are defined in the same way as for dataset 2.  

 
Figure 3. Dataset 3 with signal 2,3,4,5 being affected by 

gradual drift 

 

A Gaussian measurement noise is imposed on all of the 

signals of these three system states. The standard deviation 

of the noise is set as ten percent of the standard deviation of 

the original signal, as shown in equations (5). 
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  (5) 

where 𝑆𝐹1 , 𝑆𝐹2 , 𝑆𝐹3  are the original signals of the three 

datasets, and 𝑆𝑓
𝐹1 , 𝑆𝑓

𝐹2 , 𝑆𝑓
𝐹3 are the sets of final signals to 

which the MINE statistics are applied in the following 

sections. 

3.2. Fault detection with maximal information-based 

statistics 

In this section, the maximal information-based statistics are 

applied to detect the three different fault types described in 

the previous section. The performance of the statistics is 

compared to the Pearson Correlation Coefficient (PCC) that 

is a commonly applied correlation coefficient to quantify the 

relationship between two variables.   

The comparisons between PCC and the maximal 

information-based statistics are twofold. In the first step, the 

normal states in all of the three datasets are compared to the 

faulty states. In the second step, it is assumed that the 

condition monitoring data arrives in batches of 200 

measurements each and the relationship of the signals per 

batch is analyzed to compare the detection ability of the two 

approaches.  

Two different statistics of the maximal information-based 

statistics are selected: MIC capturing the strength of the 

relationship, and the MAS capturing the departure from 

monotonicity. Generally, MAS is always smaller than MIC. 

Figures 4 to 6 present the heatmaps of MIC, MAS and PCC 
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for the first dataset. Since MIC and MAS are scaled to be in 

the interval [0,1], they can be easily compared. PCC can 

generally take values in the interval [-1,1]. However, for the 

datasets applied, only values in the interval [0,1] were 

observed. Therefore, the same scale for all the values is used 

to compare the relationship between the signals. For dataset 

2 and 3, a similar behavior of the three indicators is 

observed. However, due to space limitation in this paper, the 

plots are not displayed.  

 

Figure 4. MIC for healthy and faulty signals Dataset 1 

 
Figure 5. MAS for healthy and faulty signals Dataset 1 

 

Figure 6. PCC for healthy and faulty signals Dataset 1 

 

To analyze the ability of MIC and MAS to timely detect the 

changes in the relationship between two signals, a more 

detailed analysis is performed. The three indicators are 

computed for every 200 patterns. Additionally, the sum of 

the indicators of each signal is displayed in Figures 7 to 9. If 

the relationships of the signal to all other signals are strong, 

the maximum value of 5 will be achieved (including the 

relationship of the signal to itself).  

 

Figure 7. Sum of MIC, MAS and PCC of all signals 

(Dataset 1) 
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Figure 8. Sum of MIC, MAS and PCC of all signals 

(Dataset 2) 

 

 

Figure 9. Sum of MIC, MAS and PCC of all signals 

(Dataset 3) 

 

4. RESULT INTERPRETATION AND DISCUSSION  

MIC and MAS show a good ability to detect non-linear 

relationship in the data and also to capture the change in the 

relationship. These characteristics make them suitable for 

the application of fault isolation, particularly in the scenario 

of unsupervised deep feature learning.   

For the dataset 1, PCC is not able to detect the relationship 

between signal 3 and other signals in the normal state. It is 

therefore also not able to detect the change in the 

relationship in the faulty state. On the other hand, both MIC 

and MAS show a strong difference of the relationship 

among signal 3 and other 4 signals in normal and faulty 

states.  

In dataset 2, the performance of MIC, MAS is similar to that 

on dataset 1. The PCC also shows a small distinguishable 

difference of the relationship between signal 3 and the other 

signals. The main reason that the this change in the 

relationships is detected by PCC but the one in dataset 1 not 

is that a linear relationship plays a dominant role in the 

injected fault type in signal 3. Linear relationships are  

easier for PCC to detect. 

In dataset 3, the relationships between the four dependent 

signals are not changed. However, the relationships of the 

dependent signals to the independent signal 1 change. This 

change in the relationship can be clearly interpreted based 

on the MIC values in Figure 9. The strength of the 

relationship of signal 1 to the other four signals decreases to 

approximately 0.2 in the faulty state from being in the 

interval of [0.85,1] in the normal state. For the sum over all 

the signals in the faulty state, 1.8 is achieved. In the 

dependent signals, only the relationship to signal 1 is lost, 

the strength of the relationship to the other signals remains 

at the same level. Therefore, the sum of the MIC values of 

the other signals is around 4.0.  

For dataset 3, PCC shows a change in the relationships. 

However, the results cannot be interpreted.  

The results obtained on the three different types of faults 

demonstrate that the indicators based on the maximal 

information criterion, particularly MIS and MAS, are not 

only able to indicate the change in the relationship between 

two signals but also enable an interpretation of the obtained 

detection results and enable to distinguish different fault 

types based on the combination of the relationships between 

the signals.   

5. CONCLUSIONS 

Fault detection and prognostics based on unsupervised deep 

feature learning approaches requires fast and robust fault 

isolation approaches.  

The two maximal information-based nonparametric 

exploration indicators: maximal information criterion and 

the maximal asymmetry score provide a good approach to 

detect changes in the relationship between dependent and 

independent signals. The main advantage of applying MIC 

and MAS is to extract non-linear relationships and the 

change of these relationships when the state condition 

changes.  

In the described case study, we have applied the MIC and 

MAS to extract the pairwise relationships between the 

different condition monitoring signals. For the 3 simulated 

datasets, the proposed approach was shown to be useful. 

The application is particularly suitable for condition 

monitoring applications where the monitoring data is 

analyzed batch-wise. This is for example the case, when the 

data is uploaded once a day from the plant and is then 

analyzed by the diagnostics engineers. It provides a good 

tool for accurate detections. In addition, the maximal 
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information-based nonparametric exploration of condition 

monitoring data can also be applied on online monitored 

data in a moving window. 

An interesting characteristic of the two applied maximal 

information-based features is that they are not only 

considering the behavior of one signal, but the relationship 

between two signals. In this case study, the MIC and MAS 

were applied as the only features for detection the faults in 

the condition monitoring data and detecting the changes in 

the relationships. However, they can also be applied in 

combination with other features to complement the 

extracted information. This is subject for further research.  

A limitation of the maximal information-based criteria is 

that they are only considering pairwise-relationship between 

two signals. They are not able to integrate relationships 

between more than two signals which is often required for 

condition monitoring tasks of complex systems. 

Additionally, MIC can also be sensitive the size of the 

signal windows that used to extract the relationships and 

compare the distributions.  
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