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ABSTRACT 

A web-based data management system for use by researchers 

and industry around the world to access suitable datasets for 

testing prognostic models is developed.  The value of the 

project is in the provision of, and access to, real-world data 

for asset failure prediction work.  In practice, it is difficult for 

researchers to obtain data from industrial equipment.  

Industry datasets are rarely shared and hardly ever published. 

When such data is made available, very little meta-data about 

the underlying asset is provided. This restricts the number 

and type of models that can be applied. 

 

The solution is a data management system for three groups: 

researchers needing datasets, industry and academics with 

datasets. This paper identifies the data being sought, the 

system requirements and architecture, and discusses how the 

design is being implemented using an Agile development 

approach. Crucially, meta-data is stored in the database and 

accessed using a secure web-based front-end so as to 

maximize the available information, whilst obfuscating any 

corporate-sensitive material. The success of this prognostics 

data library depends on the support of the prognostic 

community to contribute and use the data; similar projects 

have been successful in the Machine Learning and Big Data 

communities. 

1. INTRODUCTION 

It is crucial for industry to manage the business risks 

associated with failures of its operational assets.   Current 

practice is able to identify when many assets are starting to 

degrade and often, can even identify the way that the asset is 

failing.  However, determining how long these assets can 

remain in service is still largely guesswork and based on the 

experience of personnel familiar with the equipment.  

Unfortunately, as equipment reliability increases (resulting in 

less frequent failures) this experience is becoming 

increasingly harder to acquire.   

Prior work (Heng, Zhang, Tan, & Mathew, 2009; Jardine, 

Lin, & Banjevic, 2006; Sikorska, Hodkiewicz, & Ma, 2011; 

Vachtsevanos, Lewis, Roemer, Hess, & Wu, 2006) 

concluded that the ongoing implementation of most types of 

prognostic models is hampered by insufficient data for testing 

the proposed models.  Even when some data has been 

collected to test a particular model, it is often inadequate to 

truly test the models’ reliability and robustness in a real world 

context.   Collected data usually relates to the following: (a) 

a single asset type operating under a limited set of operating 

conditions, (b) special laboratory rigs that can ensure a 

particular failure model, (c) simulations, or (d) diagnostic 

data.  In the last case, the diagnostic data that is utilized for 

prognostics is rarely evaluated to determine whether the 

measured parameters are the most appropriate for predicting 

asset failure.   
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Further hampering the advancement of engineering 

prognostics, is that most research has been done on a very 

limited number of datasets that have been used repeatedly.   

This may seem advantageous because it allows new models 

to be compared easily with predecessors, however it also 

means that models have had very limited exposure to the 

variety of conditions and faults that occur in the real world.  

In order to be robust and useful predictors of failure, new 

models should be tested against a wider range of datasets that 

reflect the range of conditions they will be ultimately exposed 

to.   

Unfortunately, getting new datasets is difficult.  Although 

much cheaper that in decades past, data acquisition is still 

costly and time consuming.  Opportunities for academics to 

gain access to real world plants for the purposes of collecting 

meaningful prognostic data are rare.  Ironically, industry 

often has more data than it knows what to do with (albeit 

often imperfect) (Hodkiewicz, Kelly, Sikorska, & Gouws, 

2006; Lee & Strong, 2004); data that is seldom shared and 

hardly ever published.  Concerns about commercial 

confidentiality often prevent collaboration with outside 

parties.   

Thus, for the field of engineering prognostics to progress 

more real-world data or realistic laboratory data, must be 

obtained.  The data should be managed in such a way so as to 

maximize its utilization, whilst simultaneously maintaining 

any required privacy and commercial secrecy interests of its 

providers. 

Our research is developing a data management system to pool 

and maximize the utilization of, suitable data for testing 

prognostic models.   Data repositories to enhance 

collaboration exist already in the machine learning and big 

data communities but there are few asset health prognostics 

data sets. Individual prognostic research groups have also 

made prognostics data available but the number of data sets 

is small and they are mostly derived from simulations or 

experimental test rigs.   Ultimately, the aim of this 

Prognostics Data Library (PDL) is to collate and enable 

sharing of high quality datasets across the entire prognostics 

community.   

At the time of writing, development of the PDL is still 

underway.  The project is using an Agile Development 

approach that requires ongoing involvement from 

stakeholders.  Thus, we present our work to date in order to 

seek engagement with the wider prognostics community and 

ensure that the final outcome will best meet the needs of all 

potential users.   

2. BACKGROUND AND JUSTIFICATION 

2.1. Review of existing data sets and their availability 

A number of sites have been created for sharing datasets and 

making them available to third party researchers.  Two of the 

best known are the MIT Big Data Initiative (MIT, 2016) and 

the UC Irvine Machine Learning Repository (UCI) 

(Lichman, 2013). The UCI Repository contains more than 

300 data sets mainly as .csv files. It is widely used by the 

machine learning and statistical communities to test new 

models. The most popular data set on this site, the Iris data 

set, has received almost a million hits and is cited by over 100 

publications.  We have found only one data set on this site 

that is the relevant to prognostics. It contains simulated data 

relating to gas turbine engines. Within the prognostic 

community NASA has been a leader in generating and 

sharing prognostics data through the Prognostics Data 

Repository (Goebel, 2015) and NASA DASHlink (NASA, 

2016). There are 11 data sets in the repository and these have 

been used extensively by researchers around the world. The 

data sets are a mix of simulation, laboratory and field data, 

mainly in the form of time series. There are also a smaller 

number of data sets available, three on test rig data on turbine, 

pumps and bearings in the Acoustics and Vibration Database 

(Acoustics and Vibration Database, 2013), one data set from 

MFPT for a bearing test rig (Bechhoefer, 2013), and one from 

MaHeMM on a rail turnout system (MaHeMM, 2009). The 

CALCE laboratory is also a generator of battery and 

electronics failure data sets (CALCE, 2012).  There is also a 

facility to upload data on the ResearchGate site but it is not 

widely used for engineering publications. In all cases it is a 

requirement that when datasets are used that a specific 

citation to acknowledge the original author is made.  

Data challenges have also been a useful way of developing 

data sets. Every year at the Prognostics Health Management 

conference a new dataset is presented and participants must 

estimate the remaining useful life of the item. This data is 

available via various websites and is usually posted by the 

institution that developed the dataset. It includes the 

following: jet engine degradation simulation (NASA, 2008), 

gearbox health assessment (test rig data) (PHM Society, 

2009), milling machine cutters RUL estimation(PHM 

Society, 2010), anemometer fault detection (PHM Society, 

2011). In addition to these competitions the IEEE PHM Data 

Challenge has produced two data sets (IEEE, 2012, 2014). 

As expected, there is no consistency in the format of currently 

available datasets.  Some datasets separate the available data 

into modelling and testing files, others split different failure 

events into individual files, whilst others aggregate all data 

into one file.  In most cases, datasets are provided in CSV 

format or as Matlab ‘.mat’ files.  (‘Mat’ files use a binary file 

format that requires to be parsed using a mathematics or 

programming language such as Matlab, R, Python, or 

Labview.)  The amount and quality of meta-data about the 

underlying asset to which the failure relates differs greatly 

between datasets.   In some cases commercial confidentiality 

is quoted as the reason not to provide any asset data. When 

provided, asset or file meta-data is usually presented as a 

separate text or pdf file that is not be easily decoded by a 

computer program building a model.    Consequently, trialling 
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a new model on more than one dataset (even if sourced from 

the same website) requires computer programs to be partly 

re-coded for each trial (namely the lines associated with 

accessing, pre-processing and parsing data).   

Despite these challenges there is widespread enthusiasm and 

support from stakeholders, both data providers and data 

users, for more work in this area. Stakeholders recognize the 

need to advance the development and use of algorithms and 

modelling through a collaborative, sharing approach. 

2.2. Classes of Data Used in Prognostic Modelling 

For robust prognostic modeling, data is required to 

adequately describe how an asset ‘behaves’ on its path from 

an incipient fault to final, catastrophic failure.  Increasingly 

we are finding that failure behavior cannot be adequately 

modelled by physics of failure models or even by models 

based on internal covariates (such as sensor data) alone.  In 

industry failure behavior is often affected by mission profile, 

operating conditions, the external environment and 

maintenance interventions (Jouin, Gouriveau, Hissel, Pera, & 

Zerhouni, 2016).  Although in theory, physics-of-failure 

models should be able to take into account all of these input 

types, in practice either failure mechanisms are not perfectly 

understood under the range of actual input conditions, or 

there is insufficient accurate and multivariate data to verify 

and validate these models.  Consequently, physical models 

tend to be limited to applications for well-understood faults 

in simple systems and/or by users with established diagnostic 

systems and predictive maintenance programs  (Sikorska et 

al., 2011). 

There is a growing body of work examining the issue of 

quantification and uncertainty in prognostics. There is a 

recent review of developments by Sankararaman (2015). 

While much of the work on uncertainty is currently focused 

on theoretical developments eventually these ideas will need 

to be tested on real examples. Data sets that include factors 

such as changes to mission profile, which may affect 

estimates of uncertainty, will be needed.  

We have identified a number of categories of data that are 

useful for prognostic modelling.  Wherever possible they are 

grouped using commonly used statistical modelling terms: 

1. Internal covariate data: Data that is only available for 

the duration that either: (a) the underlying failure mode 

is progressing, or (b) while the asset suffering from the 

failure is operating.    

a. Direct failure mode data: This dynamic (temporal) 

data is obtained from sensors that measure the actual 

failure occurring (e.g. acoustic emission from cracks 

or wear, volume of wear debris, actual crack length).    

This type of data is rare, hard to detect, will only be 

available once a failure mode has commenced, and 

is usually only available whilst that failure is actively 

occurring.  Regular, or continuous monitoring of the 

exact area in which the fault is occurring, is usually 

needed.   However, for single mode failures, it may 

also be the easiest type of data from which to develop 

simple remaining life predictors.      

b. Indirect failure mode data:  This second type of 

dynamic (temporal) data relates to parameters that 

describe how the asset is responding to a failure 

mode that has already commenced (e.g. pump 

bearing vibration, exhaust gas temperature change, 

pipe wall thickness remaining).  Collective 

experience has identified that similar assets react to 

specific failure modes in similar ways.   As this is the 

most common type of data collected for diagnostics, 

it also the most used data type in prognostic models.   

This type of data is only available once failure has 

commenced and is sufficiently large to cause the 

asset to respond accordingly; it is also only available 

for the duration of the response condition.  Multiple 

failure modes often cause the same measurable 

response; this is useful in that multiple failure modes 

may be detected using the same sensor, but 

conversely, they may make it difficult to identify 

which failure mode is underway.  Coincident failure 

modes may be even more problematic to diagnose.  

Therefore, models based on indirect failure mode 

parameters need to be multi-variate so as to correctly 

identify which of several different outcomes is likely 

to eventuate.   

2. Situational or external covariates:  Dynamic 

(temporal) data that relates to parameters that are 

independent of the asset and its failure mode (i.e. 

external).  These parameters are useful for prognostics 

because they describe conditions that may determine 

which failure mode is initiated, or how quickly it 

develops thereafter (e.g. weather conditions, operating 

profile, fluid characteristics).   Unlike internal covariates, 

these data are available prior to, during and after failure.   

Unfortunately, this type of data is typically stored in 

disparate systems, is coarser than failure mode data, and 

is often overlooked when building prognostic models as 

it doesn’t relate to the failure progression itself.   

3. Asset meta-data:  Static (unchanging) data describing 

what asset is being modeled and information about it 

operating environment.  The design of the asset and its 

usual operating conditions (e.g. location, pumpage, type 

of site) may have a significant effect on how it will 

respond to conditions that initiate and promote failure.  It 

is classified separately, as this constitutes data that does 

not change during the asset’s life.  It is rarely used by 

researchers in their prognostic models, probably because 

the models being developed are only confined to a 

limited number of assets.    As prognostic models become 

more generic, or are incorporated into larger decision 
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making systems, this type of data will become 

increasingly important. 

Some models use data in its raw format (direct from sensors) 

whilst other models require pre-processing to extract 

pertinent signal features.  In the latter case, it is imperative to 

know how the data was extracted from the raw signals, so that 

the process can be replicated.  

When using a third party file it is also crucial to know how to 

read the file and interpret its contents.  We will hereby refer 

to this information as ‘file meta-data’ to distinguish it from 

asset or failure related meta-data. 

Asset failure data (particularly from actual operating plants) 

could be used nefariously by commercial competitors if the 

aggregated data (and meta-data) is overly specific.  Asset 

owners often do not want to be identified as having 

equipment that fails and manufacturers do not want 

alternative suppliers from being able to promote their own 

equipment as superior.   Fortunately, corporate identifiers are 

not relevant for developing and testing the performance of 

prognostic models (only the equipment/site being modeled).   

By removing these corporate identifiers, it is hoped that 

failure datasets will more readily be made available by 

industry. 

2.3. Prognostic Data Library 

A discussed in the previous section, datasets are only useful 

when they can be interpreted correctly.  Therefore, a need 

was identified for a mechanism to, not only pool and share 

prognostics datasets with interested parties, but also ensure 

that relevant metadata was provided with those datasets.  It is 

envisaged that these needs could be met using a virtual data 

library of suitable cataloged and appropriately classified 

prognostic datasets.  

This prognostic data library would thus need to be able to: 

receive datasets and capture their associated metadata, for 

any type of engineering asset, in a way that obfuscated any 

commercial identifiers; store (and manage) the uploaded 

datasets and associated meta-data; be readily searchable by 

users in any location using commonly available technology; 

and provide the desired datasets and their meta-data in an 

easy to manage and consistent format. 

2.4. Project Success Outcomes 

This project will be deemed to be successful if the 

Prognostics Data Library (PDL) is being used by 

stakeholders.  More specifically, the following 5 year success 

measures have been defined: 

1. 20 research institutions or academics contributing 

datasets; 

2. 20 companies contributing datasets; 

3. 500 datasets downloaded; 

4. 150 citations for contributing researchers.   

Partial success will be defined by 2 or more of these measures 

being achieved. 

3. METHODOLOGY 

3.1. Stakeholder Identification 

This project is being implemented using an Agile 

Methodology in which requirements and solutions are 

evolved through constant interaction between the developers 

and potential users of the system (Paulk, 2002). Prior to 

commencing any development the following stakeholder 

groups were identified.   

a) Researchers with datasets from laboratory or industry 

projects who want to share their data in order to gain 

wider recognition of their work. 

b) Researchers seeking data to test system health models 

they have developed.  

c) Industry players with data sets who will benefit from 

improved prognostic models about specific equipment 

types and are willing to make their data available, 

anonymously if necessary, to accelerate the creation of 

these models. 

In order to be successful, this project will need to ensure the 

needs of each distinctive group are sufficiently well 

accommodated.  The other stakeholder is the University of 

Western Australia (UWA) System Health Laboratory, which 

is funding the project, and various UWA IT departments, who 

are involved in managing the hosting for the system.  

3.2. Agile Methodology 

The five steps making up the Agile Development 

Methodology are shown in Figure 1.  This process is iterated 

continuously throughout the project.   

As this process is continual and involves iteration, it is not 

feasible to document the outcome of each cycle.  However, a 

number of key stages, as defined by their deliverables, can be 

identified: 

1. Preliminary work – A basic set of requirements and 

design approach was identified, along with a mock-up of 

key user interfaces.  This mockup was then used to 

initiate further discussion.   

2. Local basic functioning prototype – A basic prototype of 

the system was developed and basic features, such as 

uploading/downloading files, could be tested by users on 

the UWA intranet. 

3. Local more completely functioning prototype – 

Additional features were added to allow users to enter all 

required meta-data, search or browse files, and enter 

feedback data. 

 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

5 

 

 
 

Figure 1: Steps in an Agile Development Methodology. 

 

 

4. Externally accessible PDL – A web-based PDL that can 

be accessed from outside of the UWA domain.  This 

initially has the same functionality as the final local 

prototype, along with security and user registration 

functions, but is made available to a limited set of 

external users.  

5. Public PDL – Web-based PDL that is widely accessible 

and searchable via the internet.  Functionality is 

enhanced based on feedback from user testing.   

6. Enhanced PDL – Continually improving PDL with 

added functionality.    

Work to date has completed stages 1-3 and stage 4 is 

underway.    The results of the development process thus far 

are described in the following section. 

 

4. RESULTS 

4.1. User and Stakeholder Requirements 

Key user requirement can be identified for each group of 

users.  These are presented in Table 1. 

 

 

 

Table 1:  Key User Requirements. 

4.2. System requirements 

By reviewing the needs of each user group the following high 

level requirements have been identified.  The PDL should: 

 Be useable by persons anywhere in the world without 

any experience of using databases or any particular 

programming language; 

 Accommodate most (preferably all) types and formats 

of raw datasets; 

 Accept data collected from any type of engineering 

asset, thus resulting in highly variable meta-data; 

 Encourage users to contribute high quality data and 

meta-data without making the process of doing so 

overly onerous or time-consuming;   

 Ensure that the appropriate datasets can be found when 

searched for, so that they are appropriately utilized; 

 Track the suitability of particular datasets for 

prognostic modeling so that good datasets can be 

reused, and researchers do not waste time using poor 

quality datasets; 

 Secure data appropriately and, at a minimum, maintain 

its original integrity; 

 Provide instructions about how the use of the data is to 

be recognized or cited; 

Design

CodeTest

Accept 
changes

Assess user

requirements

Academics with datasets Researchers needing 

datasets 

 Generate citations for their 

prior work. 

 Benchmark their work 

against others using the 

same dataset. 

 Be recognized for sharing 

their data when applying 

for grants or promotions. 

 Find quality datasets 

easily and quickly. 

 Spend time improving 

models rather than 

collecting data. 

 Datasets to be free so they 

could download as many 

sets as were suitable. 

 View the meta-data and 

summary statistics prior to 

downloading data. 

 Benchmark their work 

against others using the 

same dataset. 

 Datasets need to be in the 

same format so that 

recoding is not required 

each time. 

 Know what issues prior 

users had identified with 

that dataset. 

Industry with datasets 

 Maintain corporate 

confidentiality.  

 Have researchers work 

with their data without 

significant additional 

expenditure to the 

business. 

 Know when users had 

developed new/improved 

models on their datasets. 
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 Provide researchers with sufficient meta-data about a 

dataset so that it can be utilized easily and 

appropriately;  

 Provide dataset files in a consistent format; and 

 Ensure confidentiality of commercially sensitive data. 

Optional features being considered include: data munging, 

data cleansing, collating data from multiple data-sources into 

a single new dataset, extrapolating sparse data or aggregating 

overly fine data, pre-processing data using existing tools and 

exporting results into a new dataset (e.g. spectral analysis, 

basic statistical reports), and tracking usage of datasets and 

users. 

4.3. System architecture  

The PDL is being developed using a database backend and 

web-delivered user-interface.  Datafiles are stored as flat 

files, most of which are currently in csv format. It is 

envisaged that an additional data processing and extraction 

layer could be incorporated in the future to enable data to be 

stored in a wider range of formats (e.g. external databases, 

compressed binary files).  As the only regular interaction 

required with the files is uploading and downloading, a 

traditional file structure is deemed sufficient.  Finally, 

although the total amount of data is expected to be quite small 

(<200 datasets, 1000 registered users or 3 concurrent users), 

a database schema has been developed that will be able to 

accommodate significantly more files should the requirement 

arise.  

4.4. Back-end Details 

The PDL database stores all meta-data (asset and file) in a 

number of sequential, normalized databases. Examples of 

some of the tables are shown in Table 2.  

For simplicity, the PDL backend has been implemented using 

an Access Database; however it may be migrated to a 

Microsoft SQLServer or other database server such as 

MySQL or PostgreSQL in the future.     

4.5. User Interface 

To ensure that users can interact with the PDL from any 

location around the world, the user interface was developed 

as a series of webpages.  These were coded directly in a 

mixture of HTML, JavaScript and PHP with predefined CSS 

stylesheets.      

User interfaces accommodate the following PDL specific 

tasks: 

a) Uploading data and entering meta-data;  

b) Data searching, preview and download; 

c) Reviewing datasets and providing feedback. 

 

 

The PDL website requires a significant level of interaction 

with the underlying data that is stored in a remote database.  

This database interaction must be done by the web server and 

therefore could potentially cause the user interface to seem 

slow and unresponsive.  Traditionally, either all possible data 

had to be sourced prior to the page first loading, or pages were 

repeatedly reloaded when any new or additional data was 

required.  Both options would result in the user ‘waiting’ for 

long periods of time whilst the pages retrieved and updated 

the web page with new information.    

To overcome this, all data interaction use Ajax function calls 

to interact with the remote database.  Ajax (short for 

Asynchronous JavaScript and XML) is a set of web-

development techniques that can send and retrieve data in the 

background, whilst maintaining the display and behaviour of 

the existing page.  When new data is available, only the 

relevant parts of the page are updated.  In the PDL, this allows 

a user to scroll through a list of potential files and view the 

associated meta-data in real-time.  When uploading metadata, 

the PDL is able to provide pre-populated selection boxes that 

continually adjust according to the user’s prior selections, 

thus insuring highly relevant data that is easy to provide by 

merely selecting the best option.  Freetext input is limited, 

minimizing the need for checking spelling and potential 

language vagaries. 

Label Description 

Registered User data Each user or contributor to the database 

will be registered. (User data will 

stored in a separate database to the file 

data.) 

File data Meta data describing the file such as 

what citation should be used, size of the 

data file, delimiter and other 

information relating to opening the file. 

File contents Details of the data in each column 

including a descriptor, data type, data 

source, processing details. 

Equipment/ asset 

static data 

Information describing the source for 

the data: type of equipment, type of 

industry, taxonomy level of 

prognostics prediction (e.g. system, 

sub-system, individual asset, 

component, part). 

Summary statistics of 

data columns 

Statistics for each column (e.g. 

statistical descriptors, number of 

categories etc). 

Data set ratings Stores user feedback and statistics for 

the number of downloads and citations. 

Known identifiers  Key terms to be removed from any 

datasets and metadata such as company 

names, part names/ numbers and site 

names. 

Table 2: Examples of tables in the PDL 
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4.5.1. File Upload and Meta-Data Entry 

The process of entering metadata is delivered via a web-based 

wizard.  Only registered PDL users can submit files.   The 

process for uploading to and using data in the PDL is shown 

in Figure 2. 

Users are requested to enter meta-data about: the file itself 

and the citation to use; the rows/columns within the file; 

information about the asset/assets from which the data is 

collected; operating parameters relevant to the asset/assets. 

Wherever possible, users are requested to select options to 

describe their data, rather than enter free text.  This is 

advantageous for the following reasons: reduces data entry 

errors from mistyping, misspelling or language vagaries; 

simplifies meta-data storage and classification; simplifies 

subsequent searching for appropriate datasets; reduces the 

chance of identifiers being stored with the data that could 

identify commercially sensitive information; simplifies the 

process of validating the meta-data as it is entered and 

thereby reduces the chance of malicious code corrupting the 

meta-data; and ensures the required meta-data is provided. 

Existing classification structures have been utilized to 

categorize data wherever possible.  For example:  

 Source industry is classified according to the ANZSIC 

codes as published by the Australian Bureau of 

Statistics. This was selected because it is readily 

available and covered most sectors of interest to PDL 

users. Should a more appropriate international 

classification be found, codes can be easily remapped.   

 Equipment is described according to classes initially 

described in ISO14224 and then expanded to cover a 

variety of industries and asset types. An example would 

be the Air Transport Association (ATA) Spec 2000 

standard.   Where no asset classification structure is 

available, these are created by the authors. 

It is expected that the volume of additional information 

supplied will vary greatly, depending on the amount of 

information available and the specific dataset.  Data files 

and meta-data are reviewed (primarily to check for 

corporate identifiers) prior to being published on the PDL.  

During this time, this data is stored in a separate location so 

that there is no chance of access to uncleansed data via the 

PDL interface. 

4.5.2. Data Searching and File Preview 

It is envisaged that metadata will be publically available.  

Thus any web user is able to find appropriate datafiles by 

browsing through all available datasets, or by performing a 

free text search.   Datafiles are then listed by relevance or user 

rating. The user can then select a datafile and review its meta-

data, summary statistics and a 10% sample of the dataset. 

Only registered users can download files. An example of the 

data screen resulting from a search of the database is shown 

 

Figure 2: Process of searching for and using data in the prognostics database. 

 

User 

searches 

or browses 

for datasets

PDL returns a list of 

available datasets

User selects which 

dataset to preview

User selects file to 

download

User logs in 

(or registers if new 

user)

Meta-data 

file is created

Datafile, meta-data 

and statistical 

summary data files 

are downloaded.

User uses 

dataset in new 

prognostics model.

User includes 

references to PDL 

and originating work 

in publications.

User rates dataset 

and meta-data.

PDL logs that data is 

downloaded by user.
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in Figure 3. The top section shows the results of the search, 

in this case “Excavator Bucket Failures”, the size and format 

of the file and its rating by previous users. The lower section 

includes five tabs of which only the contents of the first tab, 

Dataset Overview, is shown. The other tabs provide details of 

the each column in the data set, information on the asset, 

summary statistics of the data, the ability to preview the data, 

and finally a user feedback screen. 

4.6. System and Data Security 

We have taken a risk based approach to system and data 

security.  The main security risks we have identified include: 

a) Datasets and meta-data are intentionally used for 

nefarious purposes by a data owner’s competitors or 

activists; 

b) Datasets and meta-data is maliciously altered rendering 

it useless for prognostics; 

c) Fraudulent data is supplied to the PDL. 

 
 

Figure 3: Example of Prognostic Data Library Data Sets page showing the result of a search in the top table and 

information about the data set highlights in the lower table. 
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To mitigate these risks, the following measures will be 

employed: 

 Avoiding the storage of, and removing any remnant 

corporate identifiers.    

 Data input validation and the minimization of free text on 

all data entry forms. 

 ‘Parking’ of newly submitted information in a separate 

location until corporate anonymity has been verified. 

 Files are stored separately to the metadata; 

 Detailed citations or data collection information must be 

supplied with the dataset; 

 Regular backups in at least 2 physically separate 

locations. 

Although other best practice security measures will be 

considered, after removing any corporate identifiers the 

remaining information actually exists to be shared. 

Obfuscating corporate identifiers is the most significant risk 

mitigation measure used by the PDL.  This is achieved by 

various processes. 

Firstly, the meta-data entry process intentionally does not 

request the following information from users when entering 

meta-data:   

 Asset name; 

 Manufacturer; 

 Model Number; 

 Site. 

These fields commonly include information that could be 

used to identify a company (e.g. MarandooCrusher2).  

Instead, an Asset name is automatically generated from the 

other meta-data that has been provided.  Similarly, the 

original filename is replaced with a generic alternative.    

Secondly, the PDL will ask users to enter corporate 

identifiers that must not be contained in the publically 

released data or meta-data.   The PDL will then parse all 

supplied data-files and associated meta-data to ensure these 

keywords are not present.  If they are found, keywords are 

replaced with randomly generated alternative classifiers (e.g. 

Model KY35).    A list of known identifiers will also be built 

over time and all files checked for any entries in this list. 

Thirdly, the process of removing these identifiers occurs prior 

to saving the data in the PDL database and file server.  

Finally, if users need to contact any originators of datasets, 

then requests will need to be made via the PDL website.   The 

database of registered users will be kept in a different location 

to the metadata. The only corporate link that is retained will 

be a contact email address of the user uploading the data.  

This information will be kept in a separate database with only 

a numerical link retained with the meta-data. 

Data owners may offer to provide access to their datasets by 

way of an API (Application Programming Interface).  At this 

stage we do not envisage that this API would be published on 

the PDL.   Instead, data queries would be created by the 

database as per the API, and the output of these queries would 

then be provided to users.  The reasons for this are that by 

providing open access via an API:  corporate anonymity 

could not be ensured, data would not be supplied same 

format, datasets would be different each time and therefore 

could not be rated, and finally, it would not be feasible for the 

PDL to publish meta-data and statistics on every possible 

dataset derived from the API.  This approach may be 

reconsidered in the future. 

4.7. User Feedback 

Although the PDL administrators will be reviewing the 

datasets before they are made available on the PDL, the 

purposes of this review is only to: (a) remove corporate 

identifiers, (b) rearrange the data-file into a consistent file and 

(c) perform basic statistical analysis on the dataset.  The 

administrators will not be reviewing the data files or for 

‘prognostic usefulness’.  The best measure for prognostic 

quality will be user ratings. After registered users have 

downloaded and used the dataset, they will be requested to 

enter both textual feedback as well as provide three separate 

ratings out of five pertaining to the: 

1. Quality of data; 

2. Quality of meta-data; 

3. Suitability for Prognostics. 

They will also be asked to select what type of prognostic 

model was built using the dataset.  Ratings will be published 

for registered and non-registered users to view.  Other 

registered users with then be able to ‘like’ this feedback or 

reply to the comments.  We anticipate that some useful 

information will come out of analysis of which datasets are 

used most and least often to assist our collective 

understanding of what makes a “good” data set for 

prognostics. 

5. FUTURE SYSTEM ENHANCEMENTS 

Future work will involve enhancements to the system that 

would perform tasks such as data cleansing or preprocessing.  

It is envisaged that the system would increasingly be able to 

automatically extract data from uploaded files of various 

types (e.g. generic binary), preprocess the data as required 

and then downloaded the required data selections into new 

files that could immediately be used for prognostic modeling 

or system health analysis.    A webpage will be incorporated 

into the site where users can propose suggestions for system 

enhancements such as prognostic model performance 

metrics, enhanced searching functionality, and downloadable 

modules for capturing meta-data during experiments for 

Labview/Python/VB. 
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6. FUNDING 

It is expected that use of the Prognostics Data Library will be 

free.  Funding to develop and manage the system is currently 

available until 2020.  This includes funds to implement 

appropriate system and data security measures.  After that 

time, either additional funding will be sought or a suitable 

industry group will be approached to take over stewardship 

of the system. 

7. CONCLUSION  

This paper presents a free database for use by registered users 

from research institutions and industry to pool and maximize 

utilization of suitable datasets for testing prognostic models.    

Consideration has been given in the design of the database to 

the asset and file meta-data necessary to support prognostic 

modelling.  A user-based rating system will provide ongoing 

feedback to potential dataset consumers on the usefulness and 

suitability of each dataset for prognostic modelling.   It is 

expected that highly rated datasets will be used more widely, 

increasing the number of citations for originating sources, 

and thus increasing the motivation for owners of datasets to 

provide good quality datasets accompanied by good quality 

meta-data. The success of the Prognostics Data Library will 

depend on the database design, as presented here, on the 

willingness of data owners to commit data files, and modelers 

to make use of these files to develop and test new prognostic 

models. 
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