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ABSTRACT 

A reliable prognosis is crucial to manage asset health and 

predict maintenance needs of large civil jet engines, which 

in turn contribute to enhanced aircraft airworthiness, longer 

time on wing and optimized lifecycle costs. With the 

accumulation of large amount of data over the last decade, 

one can relate the number of components serviced during a 

maintenance visit to the history of parameters inside and 

outside the engine (temperatures, pressure, shaft rotation 

speeds, vibration levels, etc.). While established statistical 

models had been developed for small samples, more recent 

computer-intensive statistical techniques from the field of 

Machine Learning (ML) can handle more complex datasets. 

In particular, binary classifiers constitute an attractive 

option to predict the probability of servicing the components 

of a given jet engine at the next maintenance visit. This 

paper demonstrates the validity of such data-driven methods 

on an industrial case study involving failures of thousands 

of compressor blades in aeronautical turbomachines. The 

prediction accuracy obtained with the ML techniques 

presents a significant improvement over the state-of-the-art. 

Moreover, the performance of six binary classifiers with 

different characteristics - logistic regression, support vector 

machines, classification trees, random forests, gradient 

boosted trees and neural networks - was compared 

according to four qualitative and quantitative criteria. 

Results show that there is no clear winner, although 

ensemble models based on trees (random forests and 

boosted trees) offer a good overall compromise while neural 

networks offer the best absolute performance.  In the 

industrial world, the business objectives, the environment in 

which the models are deployed and the users’ skills should 

dictate the choice of the most adequate statistical technique.   

1. INTRODUCTION  AND MODELING APPROACH 

A jet engine is complex machine subject to particularly 

demanding operating conditions that explains the 

deterioration of the engine components. Therefore, a proper 

maintenance of jet engines is crucial to ensure 

airworthiness, reduce fuel consumption and ultimately lower 

operating cost. Large amount of data are acquired on a 

permanent basis by jet engine manufacturers to help 

engineers in predicting future maintenance needs. On the 

one hand, the health of a jet engine is monitored in real-time 

by dozens of sensors measuring hundreds of variables inside 

and outside the engine (temperature, pressure, rotation 

speeds, vibration levels…); the data from this Engine Health 

Monitoring (EHM) system are recorded in corporate 

databases for later analysis. On the other hand, for every 

maintenance shop visit performed all around the world, the 

number of components scrapped are registered by 

maintenance technicians and engineers and sent to the 

engine manufacturer. These two major types of data can be 

combined to establish a prognosis of the health of the fleet 

of engines. 

To predict future maintenance needs, reliability engineers 

rely on multiple techniques that can be divided into two 

categories: 

1. Analytical inductive methods based on engineering 

reasoning and analysis of failure modes of the part, 

such as Failure mode, effects, and criticality analysis 

(FMECA) (Jordan, 1972). Methods in this category 

typically require a deep technical expertise and 

knowledge of the product but limited volumes of 

historical data.   

2. Deductive statistical techniques inferring risk of failure 

using actual past data from similar cases. Many such 

statistical methods have been applied to reliability 

engineering (Meeker & Escobar, 1998): analysis of 
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failure time data (Kalbfleisch & Prentice, 2011), 

biostatistics-inspired survival analysis (Lawless, 2003), 

Poisson-related models based on count data with excess 

zeros such as zero-inflated models (Lambert, 1992) or 

hurdle models (Grogger & Carson, 1991).  

This paper covers a set of methods belonging to the second 

category. Most of such statistical methods currently in use 

by industrial corporations are based on established statistical 

models developed for dealing with small samples. However, 

the large volumes of monitoring data acquired over the last 

decade allowed resorting to more data-driven, computer-

intensive methods for predicting maintenance needs 

(Jardine, Lin, & Banjevic, 2006). In this paper, we intend to 

validate a statistical approach for PHM of jet engine parts 

based on binary classifiers from the field of machine 

learning. Such binary classifiers predict whether a given part 

in the engine is likely to be scrapped (output variable   
 ) or not (   ) at the next maintenance visit, given its 

own history and the history of similar components. 

Compared to the aforementioned statistical models, the 

literature on binary classifiers applied to reliability 

engineering and maintenance planning is still scarce. For 

instance, Kim, Tan, Mathew, Kim, and Choi (2008) used 

Support Vector Machines to predict the remaining useful 

life of elements in high pressure liquefied natural gas 

pumps. Caesarendra, Widodo, and Yang (2010) used 

logistic regression to evaluate the degradation of bearings. 

Rafiee, Arvani, Harifi, and Sadeghi (2007) used neural 

networks to monitor the condition of gearbox components. 

Nevertheless, there are few examples in the literature 

comparing rigorously the predictive performance of several 

binary classifiers concurrently, which is the objective of our 

paper. 

According to our approach, the statistical model of part 

failure can be expressed in the most general way as: 

                                    ( )    (1) 

where   is the     output vector to be predicted 

(containing the probability of failure or the occurrence of 

failure in our case study),   is the   (   )  matrix of 

predictors (including intercept) ,     is the actual function to 

estimate and   is an     vector of residuals (i.e. errors) of 

the model. The function    is potentially complex, nonlinear 

and depends on a set of parameters   – varying from model 

to model - to be estimated via model fitting. In equation (1), 

the residuals   are assumed to be centered and normally 

distributed with constant variance   , i.e.    (    )). In 

fact, it is impossible to identify the actual function   : 

instead, the statistical models provide an estimate  ̂  of the 

actual   . The role of the statistician is to find the model that 

is as close as possible to    by 1) finding the most relevant 

type of model and 2) by tuning the parameters  . 

Following the description of the context in this introduction, 

the article will present the case study and the dataset in 

Section 2 before detailing the methodology – including 

simple mathematical formulation behind the classifiers - in 

Section 3. The results of the comparison of the binary 

classifiers are covered in Section 4 and commented in 

Section 5, which also opens discussion for potential 

improvements and next steps. 

2. CASE STUDY AND DATASET DESCRIPTION 

2.1. Description of the compressor blades   

We tested the validity of our approach on a case study 

involving blades in the intermediate pressure (IPC) and high 

pressure compressors (HPC) of Rolls-Royce Trent 500 

engines (Figure 1). Such compressor blades are made of 

titanium (in the front and middle stages) or nickel alloys (in 

the rear stages of the HPC) and manufactured by forging or 

machining processes. We selected compressor blades as our 

case study as they are relevant candidates to test the validity 

of the statistical approach:  

 There are numerous stages in a Trent 500 (8 in the IPC 

and 6 in the HPC), each containing dozens of blades. 

Thus, in total, there are hundreds of compressor blades 

in a Trent 500 engine. This leads to a dataset with more 

observations (higher  ), an important condition for 

making the statistical approach viable. 

 The 14 different types of blades are located all along 

the gas path of the engine, and therefore subject to very 

diverse operating conditions (amplitude of temperature 

and pressure, rotation speeds and vibration levels in the 

IPC and HPC shafts, etc.). This large diversity of 

situations also improves the meaningfulness and quality 

of the statistical estimates.  

 

 

Figure 1 - Location of the blades in Trent 500 engine 

 

Knowing the deterioration mechanisms of the component is 

important to select the most adequate type of statistical 

model and the predictors entering the model as inputs. 

Compressor blades are subject to demanding conditions 

during engine operations and their degradation is influenced 

mostly by gas temperature and pressure, shaft rotation speed 

and vibration levels.  
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2.2. Structure of the dataset  

Our dataset comprises a total of         serviced 

components, corresponding to 36 components per engine, 

for 337 maintenance visits performed on 176 different 

engines between 2000 and 2012. The number of 

components serviced during the maintenance visits comes 

from the analysis of maintenance invoices while the 

predictors of the model have been extracted from the Engine 

Health Monitoring (EHM) database. 

Out of the hundreds of variables recorded by the EHM 

system, we have selected only the      most relevant 

ones (Table 1). Selecting a limited number of variables 

fulfills several objectives: 1) keep the predictors most 

pertinent to the failure mechanisms of the components in the 

case study, 2) make the approach more tangible for the 

reader by exposing few, meaningful variables and 3) not to 

compromise industrial confidentiality. 

 

The number of cycles and the Turbine Gas Temperature 

(TGT) are usually considered by maintenance engineers as 

the best proxies for overall deterioration of a jet engine. The 

rotation speed N2 of the intermediate shaft can be 

considered as a proxy for fatigue due to centrifugal forces 

and fluid-structure interaction. Taking both the margin and 

absolute values of some of those engine parameters allowed 

us to include in the statistical models two complementary 

types of information about the engine operations. The 

average and delta values over the period between two 

maintenance visits provide us with information about the 

average and variability of the engine parameters, 

respectively. 

3. METHODOLOGY 

In this Section 3, we describe the general modeling 

approach that we followed, as well as the simple 

characteristics of the binary classifiers compared in the 

paper. 

3.1. General approach and data cleaning  

Our objective is to obtain an estimate  ̂  that is as close as 

possible to the actual true function   explaining   as a 

function of the engine parameters defined in the matrix   of 

predictors in equation 1. The choice of the model  ̂  

depends on the probability distributions of the output   and 

the structure of the predictors  . The predictors   being all 

numeric, it is possible to use a large variety of models. After 

preliminary data exploration, we found that the probability 

distribution of the output   discarded models based on the 

Poisson distribution or count data. Instead, binary classifiers 

appeared more adapted to our case study: the output   thus 

takes the value of 1 for a failed component and 0 for a non-

failed component.   can alternatively be a probability of 

failure, in which case a threshold has to be defined so as to 

classify the probability as corresponding – or not - to a 

failed component. 

The list of predictors   being defined, we pre-processed the 

data to make them more suitable for subsequent statistical 

analysis. First, the few outliers were removed or their value 

reattributed by usual imputations techniques: imputations of 

the mean or median by relevant groups and regression on 

other predictors. Second, the predictors were scaled
1
 in 

order to increase the quality of the estimates and increase 

the convergence of the algorithms, as some are known for 

their instability, notably neural networks. Scaling the 

predictors thus ensures giving a common ground for 

comparing all the binary classifiers. 

                                                           
1  Scaling means that each predictor    in   was transformed as   

  
(      

)    
⁄  where    

 and    
 are respectively the mean and standard 

error of the variable    

Table 1. Variables selected as model predictors. 

 

Variable Description 

Cycles 
Number of cycles (i.e. flights) done by the 

engine between two maintenance visits 

Average 

TGT 

margin 

Average of the margin (i.e. difference with 

the admissible value) of the temperature in 

the turbine (highest temperature in the 

engine) over the period between two 

maintenance visits 

Delta TGT 

margin 

Difference between the initial and final 

values of the turbine temperature margin  

over two maintenance visits 

Average N2 

margin 

Average of the margin  of the rotation 

speed of the intermediate shaft over the 

period between two maintenance visits 

Delta N2 

margin 

Difference between the initial and final 

values of the intermediate shaft speed 

margin  over two maintenance visits 

Average N2 

Average of the absolute rotation speed of 

the intermediate shaft over the period 

between two maintenance visits 

Delta N2  

Difference between the initial and final 

values of the intermediate shaft absolute 

speed  over two maintenance visits 

Average 

VB2  

Average of the vibration level in the 

intermediate shaft over the period between 

two maintenance visits 

Delta VB2  

Difference between the initial and final 

values of the intermediate shaft vibration 

level  over two maintenance visits 

Average 

OAT 

Average of the absolute Outside Air 

Temperature over the period between two 

maintenance visits 

Delta OAT 

Difference between the initial and final 

values of the absolute Outside Air 

Temperature  over two maintenance visits 
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3.2. Characteristics of binary classifiers 

Many binary classifiers have emerged from the field of 

Machine Learning over the last two decades to predict 

phenomena involving binary outcomes in a large diversity 

of applications (e.g. disease diagnosis, image recognition). 

We cover in this section 6 of the most popular ones, 

presenting a gradual increase in terms of model complexity, 

from the easily interpretable linear logistic regression to the 

complex, highly nonlinear neural networks. This section is 

based on the widely acknowledged text of Hastie, 

Tibshirani, and Friedman (2009) and intends to initiate the 

reader – especially the one not versed in statistical methods 

– to the main characteristics and differences between binary 

classifiers. An intuitive presentation of the principle and a 

simple formulation of the mathematics of the techniques are 

presented; moreover, the tuning parameters (aka 

hyperparameters) of the models are described so as to 

illustrate their complexity. Indeed, behind the sometimes 

fancy names attributed by statisticians or computer scientists 

to those binary classifiers, one should be aware of the 

explanatory power and predictive accuracy of these 

techniques, but also the amount of skills required to use 

them properly. 

3.2.1. Logistic regression 

In logistic regression the binary output   is transformed so 

that the natural logarithm of its odds
2
 is expressed as a linear 

function of  , the matrix of predictors. It can also be written 

as the probability
3
 of the outcome of   given  :  

 

 

   (
 (       )

 (       )
)         

 (       )

 
    (      )

      (      )
    (       ) 

(1) 

Therefore, the logistic regression is a binary classifier 

depending on a linear function of the predictors. The model 

provides the linear coefficients    that quantify the risks on 

the output  :  

     (  )      (2) 

where   is the increase (and symmetrically decrease if 

      ) of the relative risk of failure provoked by an 

increase in one unit of the predictor   . Thanks to the 

coefficients of the logistic regression, it is thus possible to 

                                                           
2  An odd is defined as the ratio of  (       )  the probability of 

failing given the predictors   over  (       )      (      
 ) the probability of not failing given  . 
3 Since a probability is obtained, it is still necessary to define a threshold to 

classify the outcome as 1 or 0. A method to identify the best threshold is 
given in Section 4.1.   

estimate the marginal effect of each predictor on the output 

variable  , rendering the model more interpretable. This 

unique characteristic combined with the simplicity of the 

model assumptions makes the logistic regression 

particularly attractive and popular amongst analysts with 

little statistical background. Moreover, the logistic 

regression doesn’t require tuning parameters (aka 

hyperparameters) which often represent a considerable part 

of the modeling process.  

Nonetheless, the deterioration of jet engine components is a 

nonlinear stochastic process and predictors are usually 

correlated. Unable to capture this added complexity of the 

dataset, the logistic regression is limited in terms of 

goodness-of-fit and prediction accuracy: more sophisticated 

models thus have to be used.   

3.2.2. Support Vector Machines 

Support Vector Machines (SVM) became popular two 

decades ago after the research on statistical learning theory 

of Vapnik (1996). It is a nonlinear and non-parametric 

method based on transforming, via a complex transform 

function  , the initial (often non  separable) dataset into a 

new space of much higher – and potentially infinite – 

dimension. In this new space, the likelihood of having a 

separable dataset is much higher and it becomes possible to 

obtain a linear decision boundary, in lieu of a nonlinear 

decision boundary in the initial space. In this article, we 

used a particular type of SVM classifier called “C-SVM” 

which can be formulated mathematically as an optimization 

problem under constraints (Chang et al., 2011): 

 

         
 

 
‖ ‖   ∑   

 
     under 

  (〈   (  ) 〉    )      and 

              

(3) 

In equation (3),    is the i
th

 element of the relabeled
4
 version 

of the output  ,    is the i
th

 element of the initial matrix of 

predictor  ,   is the vector of coefficients,    a constant 

(i.e. intercept) and             are parameters quantifying the 

degree of non separability of the elements in the dataset. 

Geometrically speaking, solving this problem consists in 

determining the hyperplane such as the estimated values 

〈   (  ) 〉     don’t deviate from the output values   . 

The aforementioned mapping from the initial low 

dimensional space to a higher dimensional space is done by 

so-called kernel functions  (     ) expressed as the inner 

product of the transform function   i.e.  (     )    (  )  

  (  ). There are several types of kernel functions: linear 

     , d-degree polynomial (        ) , Gaussian radial 

basis functions (RBF)    (  ‖     ‖
 
)  and sigmoid 

    (        ). We have selected RBF kernels for our 

                                                           
4 While the initial         , the relabeled              
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analysis because they offer the best trade-off in terms of 

computing cost, stability and performance. 

In our case, C-SVM with Gaussian kernels can be tuned by 

2 hyperparameters: 

1.   is a “cost” (i.e. regularization) parameter controlling 

over fitting: the larger the C, the higher the penalization 

of the error. It makes a compromise between the 

complexity of the model and the respect of the 

constraints in equation (3). 

2.   
 

     is the scaling constant (aka kernel bandwidth 

parameter in non-parametric statistics) controlling the 

shape of the Gaussian kernel: the higher the  , the 

smaller the standard deviation of the Gaussian. 

3.2.3. Classification trees 

A classification tree is another nonlinear non-parametric 

statistical technique consisting in a hierarchy of nodes 

obtained by recursive partitioning of the initial dataset. Each 

child node is characterized by a subset of its parent node
5
 

and is obtained by splitting the parent subset over a unique 

predictor, according to a threshold (continuous predictor) or 

partition over its levels (categorical predictor). Popularized 

by Breiman, Friedman, Stone and Olshen (1984), CART 

(Classification and Regression Tree) is the most popular 

implementation algorithm for classification trees and 

requires three elements: 

1. a criterion to select the best dichotomic split at each 

node by minimizing a measure of error, typically the 

Gini index or a measure of information entropy 

2. a stopping rule to decide whether a node is final - 

becoming a “leaf” of the tree – or whether the splitting 

process should continue 

3. a decision rule to assign each leaf to a class (i.e. 

outcome) of the output  .  

The tree is progressively grown in a recursive fashion by 

dichotomic splits at each node until all leaves have been 

generated. Each leaf corresponds to one of the disjoint 

partitions of the initial dataset and is characterized by a 

simple model that differs from leaf to leaf. The full tree 

being often prone to overfitting, it is possible to “prune” it 

and obtain a smaller tree with less leaves but better 

performance. The mathematical formulation of a 

classification tree is relatively simple: 

  ̂ ( )  ∑          

 

   

 (4) 

where   is the number of leaves of the tree,      the indicator 

function and    the value of the class (i.e. 0 or 1) assigned 

to the     leaf corresponding to the subregion    of the 11-

                                                           
5 The first “root” node of the tree corresponds to the full initial dataset. 

dimensional space of predictors. It should be noted that the 

variable names in Figure 2 and Figure 3 are ordered in a 

different manner than in Table 1. 

 

Figure 2 - Tree fitted on the case study (renamed variables) 

 

Trees are particularly flexible since they accept indistinctly 

continuous, ordinal or binary predictors. They are also very 

easy to interpret thanks to the visualization of the tree 

structure (Figure 2). Last but not least, calculations on trees 

are particularly fast.  

However, they are characterized by low bias and high 

variance: the addition of an outlier or a new observation in 

the dataset may dramatically modify the thresholds for the 

dichotomic split and lead to trees with very different 

classification results. A solution to this instability consists in 

“averaging” the predictions from a set of trees: this is the 

idea behind random forests and gradient boosted trees. As a 

consequence, although a single tree is a relatively weak 

binary classifier, it is actually a very important statistical 

technique as it constitutes the basis of more sophisticated 

models. 

The choice of the splitting criterion being not a tuning 

parameter per se but rather a methodological choice, the 

performance of classification trees can be adjusted by 2 

hyperparameters: 

1. The number of leaves in the tree, which is related to the 

depth of the tree and the degree of overfitting. 

2. The cost complexity parameter    that defines the 

minimum benefit to be obtained in terms of model fit 

before a split should be attempted. It is notably used to 

prune the fully-grown tree. 

3.2.4. Random forests 

Formalized by Breiman (2001), random forests is an 

ensemble model constructed by combining a large number 

of bootstrapped trees after random sampling with 
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replacement amongst the   observations of the training 

dataset (   ) and also after random sampling amongst the 

  predictors   at each node. The class assignment is made 

by the majority vote on the class membership of the output 

  (classification case). By averaging from a large number of 

uncorrelated, unbiased but high-variance single 

classification trees, the variance is reduced and the 

prediction accuracy is improved. The mathematical 

formulation of random forests is less simple because of the 

combination of single trees. 

Random forests are not prone to overfitting (Hastie et al., 

2009) and are also robust to outliers, noise, unbalanced 

datasets and missing data. Fast to compute, they provide 

estimates of correlations between predictors, the level of 

prediction accuracy and an assessment of the importance of 

each variable (Figure 3). 

 

 

Figure 3 – Relative importance of the predictors  

 

Random forests accept 3 main hyperparameters: 

1. The number of single trees to be averaged into the 

random forest. The higher the number of trees, the 

higher the accuracy and the computing cost. 

2. The number of predictors randomly sampled at each 

split.  

3. The minimum size (i.e. number of elements) in the 

terminal nodes, or equivalently the maximum number 

of leaves in each of the individual trees. 

3.2.5. Gradient boosted trees 

Like Random forests, Gradient Boosted Tree (GBT) is an 

ensemble method based on combining a large number of 

single (classification) trees to form a stronger model. 

Contrary to random forests though, each individual tree in a 

GBT is weighted according to its prediction accuracy; a 

shrinkage parameter       can also be defined to 

penalize the contribution of each tree when it is added to the 

GBT. Developed by Friedman (2001), boosted trees can be 

formulated mathematically as: 

  ̂ ( )  ∑   ∑           

  

   

 

   

 (5) 

where   is the number of trees while the weights    and 

the coefficients     are estimated by iterative procedures 

and are functions of the shrinkage coefficient  . 

Boosted trees can quantify the relative importance of the 

predictors as well as their nonlinear marginal influence (aka 

partial dependence) on the output  . We showed in equation 

(2) that the coefficients   have a similar role in the logistic 

regression, although they were constrained to have a linear 

marginal influence.  

Gradient Boosted Trees can be tuned by 3 hyperparameters, 

some of which are common to the hyperparameters of single 

trees: 

1. The number   of individual trees to combine in the 

ensemble model, equal to the number of boosting 

iterations. The higher, the more accurate and the 

computing cost of the model. If   is too high though, 

over fitting might occur, contrary to random forests. 

2. The size            (i.e. the number of leaves) of each of 

the   constituent trees of the GBT.  

3. The shrinkage parameter   is penalizing each tree 

constituting a GBT. It is equivalent to the learning rate 

or the decay also encountered in neural network. 

3.2.6. Neural networks 

Neural networks are made of individual perceptrons whose 

output    can be written      (∑          )  where      are 

the inputs of the perceptron,       its weights and    a so-

called “activation function”, typically the sigmoid   ( )  
 (      )⁄ . The perceptrons are organized in such a way 

that the output of a perceptron located upstream becomes 

the input of a perceptron downstream, forming de facto a net   

organized in three types of layers:  

1. the input layer made of the   observed predictors, 

2. the hidden layer(s) containing   non-observed 

perceptrons      (     ∑     
 
     )  computing 

the nonlinear features from linear combinations of the 

inputs 

3. the output layer containing the probability of failure  

 

In a neural network, the probability of each class of the 

binary output   is therefore expressed as a complex 

nonlinear function of linear combination of the predictors:  



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

7 

 (         )  
 
     ∑       (     ∑     

 
     )

 
   

∑  
     ∑       (     ∑     

 
     )

 
    

   

   (6) 

Neural networks are very relevant to highly nonlinear 

problems and can produce very accurate results, despite 

being potentially subject to overfitting or non-convergence. 

However, they require a scaled dataset with no categorical 

predictors and a certain expertise in choosing the number of 

perceptrons and layers, the structure of the connections, the 

penalization (also called weight decay), amongst others. The 

two hyperparameters for neural networks are: 

1. The decay   is often compared to a learning rate, in the 

sense that it will penalize the estimation of the weights 

     of the neural network  

2. The maximum number of iterations before 

convergence. The higher this number, the higher the 

probability for the neural network to reach a stable and 

accurate solution 

 

Each of the aforementioned binary classifiers exhibit 

advantages and drawbacks that have been extensively 

documented in Machine Learning literature (Huang et al., 

2003). The next section presents a comparison of their 

merits through an application to our case study. 

4. RESULTS 

This section presents the results of models’ performance, 

based on the methodology developed in Section 3. After a 

description of the criteria retained for comparing the 

models, we present an overall ranking of the binary 

classifiers, followed by a more quantitative assessment of 

model’s performance based on two criteria: prediction 

accuracy and the c-statistic. 

4.1. Criteria for comparing models 

To account for the different characteristics of the 

aforementioned binary classifiers, we defined a set of 

comparison criteria: 

1. The accuracy of the model is a quantitative criterion 

measured by metrics such as the percentage of 

outcomes correctly predicted or the area under the 

Receiver Operating Characteristic (ROC) curve, a 

typical tool in the field of machine learning applied to 

binary classification (Fawcett, 2006) (Figure 4).  

2. The interpretability of the model is defined more 

subjectively as the difficulty to understand and use the 

results of the model for a subsequent engineering 

analysis. 

3. The easiness to fit the model is a second qualitative 

criterion indicating the level of efforts and skills to 

actually train the model (selection of the predictor, 

tuning of the hyperparameters, etc.). 

4. The cost is a quantitative assessment of the computing 

time needed to train the model. For a fair comparison, 

the measures are acquired on the same computer under 

similar conditions for all the models. 

We decided to include two qualitative comparison criteria 

because the performance of a binary classifier can’t be 

reduced to quantitative metrics such as accuracy or 

computing cost. The complexity in training, understanding 

and interpreting a model indeed represents a large hidden 

cost that might strongly limit the performance of the model 

and even prevent its use in some situations (low 

maintainability, poor formal training, lack of statistical 

skills of the users, etc.). 

4.2. Overall comparison of binary classifiers 

The 6 binary classifiers are compared according to the 

aforementioned criteria, each assesses on a qualitative scale 

in order to respect confidentiality agreement (Table 3). Each 

binary classifier presents advantages and drawbacks for 

each of the criteria.  

Not surprisingly, ensemble models based on classification 

trees (random forest, gradient boosted trees) as well as other 

strongly nonlinear models (neural networks and SVMs to a 

lower extent) are much more accurate than the linear logistic 

regression or the unstable weak classifier (single tree). 

Regarding interpretability, logistic regression provides the 

coefficients of the model, which allows estimating the 

marginal effect that each predictor has on the output. Single 

trees give an interesting visual view on the problem, 

provided the tree is not too deep (number of leaves smaller 

than 20). Random forests can rank the predictors according 

to their importance. The other classifiers are more difficult 

to interpret because 1) their mathematical formulation is not 

as easy and/or 2) they don’t provide directly a measure of 

the influence of the predictors.  

The easiest training and fit is obtained with robust models 

with few and conceptually simple hyperparameters such as 

decision tree, logistic regression or random forest and 

boosted trees to a lower extent. On the contrary, complex 

and unstable techniques such as SVM and neural networks 

require expertise to be properly trained and fitted. 

Unsurprisingly, the more sophisticated and the higher the 

number of hyperparameters, the more computing resources 

are necessary to fit the model. There is almost a direct 

relationship between the easiness to train a model and its 

cost. 

4.3. Focus on prediction accuracy of the classifiers 

Even though qualitative criteria are important, the prediction 

accuracy is often attributed a greater importance when 

ranking models, as it might appear as the most objective 

criterion: the higher the prediction accuracy, the more likely 
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the model will predict future outcomes with success. In the 

case of binary classifiers, the prediction accuracy is the 

number of outcomes correctly predicted (i.e. the sum of true 

positives and true negatives) over the total number of 

observations in the dataset.  

Nonetheless, the prediction accuracy varies according to 

hyperparameters of the model or according to the cut-off 

threshold selected to separate positive (   ) and negative 

(   ) outcomes. This variation in accuracy is obtained by 

computing the prediction accuracy over a range of 

hyperparameters or cut-offs, whose results are visualized 

through the so-called ROC curve. The ROC curve expresses 

True Positive Rate (TPR aka sensitivity of the model) in the 

Y-axis as a function of the False Positive Rate (FPR equal 

to 1-specificity) in the X-axis (Figure 4).  

 

 

Figure 4. ROC curve comparing the classifiers’ accuracy
6
. 

 

There are two efficient ways to evaluate the performance of 

a binary classifier from the ROC graph: 

1. identify the point at the closest Euclidean distance from 

the top left corner of the ROC. This point corresponds 

to the highest TPR and the lowest FPR simultaneously, 

namely the highest prediction accuracy attainable by 

the model. This particular point has been retained as a 

common ground for comparing model accuracy, 

although Provost, Fawcett, and Kohavi (1998) debated 

over its robustness and relevance. To mitigate this 

effect, we generated Monte-Carlo simulations of 20 

ROC by random sampling of training and test sets from 

the initial dataset, from which we extracted the worst, 

average and best prediction accuracy (Table 2). The 

averaged 20 simulations are presented in Figure 4 and 

allows a comparison between the 6 binary classifiers. 

2. the Area Under the Receiver Operating Characteristic 

(ROC) curve (AUC), also called the c-statistic, 

                                                           
6 The TPR and FPR normally vary from 0 to 1 in a ROC curve. Figure 4 is 

only an extract with unscaled axes from the full ROC curve as it serves 
only as an illustration of the principle of ROC curves. 

corresponds to the “probability that the classifier will 

rank a randomly chosen positive instance higher than a 

randomly chosen negative instance” (Fawett, 2006). 

The c-statistic measures the quality of the classification 

of the binary classifier over the full range of a 

parameter or threshold. For this reason, it is often 

described as more robust at quantifying the average 

performance of a classifier than the mere prediction 

accuracy. 

We compared the binary classifiers by computing their 

average accuracies and the c-stastistic in percent (first value 

in each cell), as well as the minimum and maximum values 

(values in brackets) from the 20 Monte Carlo simulations 

(Table 2). To respect industrial confidentiality however, we 

provide data relatively to the average fit of the logistic 

regression model (marked in bold), as it is the simplest of 

the aforementioned binary classifiers. Since neural networks 

are known to be very sensitive to non-scaled datasets, we 

give the accuracy and AUC for the non-scaled (first line in 

each cell) and the scaled versions of the dataset (second line 

in each cell). 

 

Several insights arise from Figure 4 and Table 2: 

 The performance of the logistic regression is indeed the 

lowest on average, as measured by the prediction 

accuracy and the c-statistic. It is followed by 

classification trees, SVM, Gradient Boosted Trees, 

Neural Networks and random Forests, in that order. 

 According to the partial ROC curve, some models are 

more accurate for some values of FPR and TPR. In 

absolute terms, neural networks are the most accurate 

for low to middle FPR while SVMs are more accurate 

for middle to high values of FPR. 

 The variation in performance for different simulations 

of the same model is important, as measured by the 

range between the minimum and maximum values of 

Table 2. Accuracy and c-statistic of the binary 

classifiers relatively to logistic regression. 

 

Classifier 
Relative 

accuracy 

Relative c-

statistic 

Logistic regression 
100% [86-111] 

101% [88-111] 

100% [90-109] 

100% [91-106] 

SVM 
106% [25-128] 

105% [27-132] 

115% [108-122] 

115% [109-120] 

Classification trees 
114% [82-131] 

112% [80-136] 

108% [98-116] 

107% [100-116] 

Random Forests 
134% [131-136] 

134% [131-136] 

111% [103-118] 

111% [101-122] 

Gradient Boosted Trees 
121% [102-132] 

120% [99-131] 

115% [104-127] 

114% [105-120] 

Neural network 
115% [61-132] 

127% [119-132] 

115% [77-126] 

123% [115-129] 
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the accuracy and the AUC. For instance, SVMs have a 

good average performance (accuracy=106%, 

AUC=115%) but a change in the dataset can lead to 

very poor (25%) or excellent (132%) prediction 

accuracies.   

 The variation in model performance can be large for 

one criterion and not for the other. The lower the 

variation, the more robust the method and thus the 

higher degree of confidence one can have on the quality 

of the output of a given model. Again, SVMs offer a 

good illustration of this effect, as the accuracy has a 

high variance compared to the AUC  

 Except for 8 out of 24 cases, scaling the dataset 

improves the prediction accuracy of the c-statistic. It is 

particularly significant for neural networks, whose 

lowest performance becomes one of the highest 

amongst all models. 

5. DISCUSSION AND CONCLUSION 

First of all, the results appear promising compared to the 

state-of-the-art, although confidentiality agreement impeded 

us to provide absolute performance of the binary classifiers.  

The overall comparison of the binary classifiers shows that 

the models are complementary. As often in statistical 

modelling, there is no “one size fits all” but rather models 

whose dissimilar characteristics make them more suitable to 

different objectives or users. On the one hand, the logistic 

regression will be more adapted to an infrequent user with 

less statistical skills and interested in quickly obtaining an 

approximate estimate from a simple and robust model. On 

the other end, neural networks might be a better choice for a 

well-defined objective where high and robust prediction 

accuracy is required (e.g. the integration into an 

optimization system). Business objectives will decide on the 

trade-offs between the conflicting criteria in Table 3, 

knowing that accuracy is often the criterion against which 

the other criteria - interpretability, computing cost, easiness 

to fit-  have to be traded with. Nonetheless, ensemble 

models based on trees – namely random forests and boosted 

trees – seem to offer a proper overall compromise: they are 

robust, easy to train and fit, not too costly for the 

performance increase they allow while still yielding deep 

insights if interpreted correctly. 

A quantitative ranking of the models is somewhat arbitrary 

as the performance might not increase for the accuracy and 

the AUC simultaneously. Moreover, some models are more 

performing for some zones of the ROC curve, meaning that 

different binary classifiers should be chosen according to 

the target values of FPR and TPR. Thus, it might be 

worthwhile to create an ensemble “meta-model” based on a 

combination of the 6 models, eventually applied selectively 

to right portions in the dataset. 

Variation in performance can be quite high and depends on 

two main factors, whose relative influence on the model 

robustness is challenging to assess:  

1. The structure of the training and test sets randomly 

generated at each simulation. In such case, the absolute 

robustness of the models should be clearly questioned 

and the model should not be used, as it might not be 

possible to ensure the degree of accuracy of its 

predictions. SVM and to a lower extent single 

classification trees should thus be used carefully in our 

case study. 

2. The internals of each method have some influence on 

the model performance: random generation of initial 

weights for neural networks, a local instead of a global 

minimum encountered by an optimization technique, 

etc. In such a case, the robustness of the model can be 

improved by tuning its hyperparameters. Nonetheless, 

this operation requires high statistical expertise and 

might not improve significantly the performance of a 

model   

Scaling the initial dataset provides a better ground for 

comparing the models and almost always improves the 

model performance, should it be measured by the AUC or 

the prediction accuracy. This data transformation step is 

even necessary to ensure the relevance of neural networks, 

which finally ranks as the most performant in absolute 

terms. Thus, we recommend scaling the datasets whenever 

possible before fitting binary classifiers.  

Next steps for future research can be formulated:  

 The first step would consist in increasing the robustness 

of the performance assessment by generating more 

simulations (hundreds or even thousands) and taking 

quantiles or confidence intervals from the simulated 

ROC instead of the minimum and maximum values  

 Improving the performance of each model might be a 

second step, done by better tuning of the 

hyperparameters and by adding more predictors, at the 

expense of a higher computing cost and probably for a 

marginal gain in performance. 

 Compare the prediction accuracy of the statistical 

models with the manual engineering-based estimates 

done by seasoned maintenance engineers. This task 

would be time-consuming and uncertain, given the lack 

of structured data.  
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NOMENCLATURE  

  number of observations in the sample 

  number of predictors in the model 

      output vector to be predicted, containing the   

probability or the occurrence of failure 

    (   ) matrix of predictors (incl. intercept) 

      vector of residuals of the model 

  (   )    vector of model’s coefficients  

   actual function explaining   according to   

 ̂  estimate of the actual function  
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APPENDIX 

 

The binary classifiers are ranked qualitatively according to four criteria, amongst which accuracy that is related to results in 

Table 2. The more asterisks, the better the classifier on the criterion. The qualitative ranking can be interpreted for two 

criteria: 

 For “Interpretability”: *** corresponds to a classifier directly returning regression coefficients, so that the results 

can be easily interpreted by non-specialists (i.e. coefficients of a multiple linear regression giving the marginal effect 

of the predictor). ** corresponds to either an easy visualization of the results (classification trees) or the classifier’s 

ability to return the relative importance of the variables (random forests). * is given to “black-box” models for which 

engineering insights are difficult (gradient boosted trees) if not impossible to obtain (SVM, neural networks) from 

the results. 

Table 3. Overall qualitative comparison of binary classifiers according to four criteria. 

 

Classifier Accuracy Interpretability 
Easiness to train and 

fit the model 

Computing 

affordability 

Logistic regression * *** ** *** 

SVM ** * * * 

Classification trees * ** *** *** 

Random Forests *** ** ** ** 

Gradient Boosted Trees *** * ** * 

Neural network *** * * * 
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 For “Easiness to train and fit”: *** corresponds to a classifier that can be used by anyone with normal engineering 

skills can manage with less than one days training. ** is awarded to classifiers requiring approximately 1-2 weeks of 

specialized training. * is given to models requiring professional expertise. 


