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ABSTRACT 

Prognostics and health management (PHM) represents a 

paradigm shift from legacy condition based maintenance 

(CBM) frameworks by expanding the potentials to 

accurately and robustly detect and diagnose incipient system 

faults. The ultimate goal of PHM is reliably predicting 

system failure times to allow for efficient maintenance 

scheduling either autonomously or by human decision 

makers (DM). In many industrial settings today the output 

from PHM systems constitutes a decision support system 

(DSS) used to aid DM, as entirely autonomous systems have 

not seen widespread industrial integration. However, there is 

relatively little support for engineers designing PHM 

systems in terms of human factors and how to provide the 

information in a way that actively supports human decision-

making and this gap may result in limited use of PHM 

system by maintainers. The reliability of the information 

presented is a critical factor in the user acceptance and trust 

in a system. As a first step in developing such guidance, this 

paper reviews the implementation of other DSS and presents 

a design framework whereby PHM reliability levels are 

mapped against a suggested level of human input to the 

decision making process regarding required maintenance. 

The aim is to provide engineers with a guide to the level to 

which they should consider human factors and the 

presentation of information in the design of their PHM 

system. Fundamental to the suggested paradigm is that the 

uncertainties within a PHM system can be quantified, and as 

uncertainty increases, the requirement for DM to access 

additional information not explicitly tied to the PHM output 

increases. This information can form both explicit and tacit 

knowledge of a system or indeed industrial contexts 

surrounding decision implications, such as acceptable 

maintenance intervention windows in busy production 

schedules. As the complexity of a system or component 

being monitored is likely to affect the uncertainty within the 

PHM system associated with it, we are considering the 

overall cumulative uncertainty of a model output as the 

metric through which the required level of human input can 

be inferred. Coupled to this is the fact that increased model 

uncertainty is a causal factor in distrust and potential non-

use of the model in industrial applications. It is the authors’ 

belief therefore that designing for increased human-model 

interaction concurrent with increasing model uncertainty 

may lead to a better engagement with PHM decision support 

capabilities, thereby offering the full advantages that PHM 

has to offer. The framework presented in this paper is an 

initial step towards facilitating the design of more usable 

and useful PHM systems. 

1. INTRODUCTION 

Human factors (HF) considerations remain wholly 

underutilised within PHM framework design. More 

specifically, a human factors integration (HFI) approach, as 

outlined in ISO standard 9241-210 (International Standards 

Organisation, 2010) is rarely if ever considered as part of 

the PHM design process. Although much of the 

technological developments in the field to date relate to 

mathematical and computational scheme advancements, HF 

is a discipline which cannot be overlooked if maintenance 

decision support is to continue its necessary evolution in the 

coming years. 

Recent developments in measurement devices, data storage 

capacities, data processing, and computational capabilities 

have occurred concurrently with advancements in industrial 

internet technologies. These developments are encouraging 

high risk industries in particular, such as the military, 
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nuclear, oil and gas, chemical, automotive, pharmaceutical, 

and aerospace to adopt Prognosis and Health Management 

(PHM) systems for increasing system availability, 

minimizing unscheduled shutdowns, reducing maintenance 

costs, and increasing safety (Walker & Kapadia, 2009). In 

these high risk industries detecting and isolating faults and 

subsequently predicting the remaining useful life (RUL) of 

critical components is a crucial task. If logistical support 

services, predominantly maintenance activities and 

associated spare parts inventory management, are to operate 

as efficiently as possible to achieve this goal, active 

contributions from multiple disciplines are required. These 

are typically cited as being from the engineering sciences, 

computer science, reliability engineering, communications, 

management sectors etc. (Vachtsevanos, Lewis, Roemer, 

Hess, & Wu, 2006).  The main bulk of current research 

activity in industry and academia towards PHM focuses on 

the availability of run-to-failure data, accelerated ageing 

environments, real-time prognostics algorithms, uncertainty 

representation and management (URM) techniques, 

prognostics performance evaluation, and methods for 

verification and validation (Saxena, Roychoudhury, & 

Celaya, 2010). Performance assessments of PHM systems 

currently evaluate the technical and economic feasibility of 

diagnostic and prognostic technologies (Vachtsevanos et al., 

2006), with little to no consideration given to end-user 

requirements or ergonomic issues. While this work is 

critical and valid from a technical standpoint, we propose 

that the human factors discipline also has a key role to play 

in the efficacy of PHM systems, particularly if they are to 

have a defining role in new global industrial systems.  The 

authors believe it is necessary to take a holistic view of 

PHM system design and implementation if they are to enjoy 

widespread industrial integration in the coming years and 

lessons can be learned in this regard from DSS developed 

for other applications. Even though many successful R&D 

activities in the PHM domain are carried out by numerous 

major companies such as GE, Boeing, Lockheed, and 

Honeywell, PHM still lacks widespread acceptance as a 

technology standard (Vachtsevanos et al., 2006). 

2. PHM OVERVIEW 

Prognostics and Health Management (PHM) has been 

defined as ‘an approach to system life-cycle support that 

seeks to reduce/eliminate inspections and time-based 

maintenance through accurate monitoring, incipient fault 

detection, and prediction of impending faults’ (Kalgren, 

Byington, Roemer, & Watson, 2006). To do so, different 

information and data sets relating to the past, present and 

future behaviour of the equipment in question are required. 

An accurate PHM system requires the availability of 

sufficient and relevant statistical equipment failure data. 

However, the common scarcity of such data, particularly of 

critical components in the nuclear industry for example, has 

led to the development of numerous approaches based on 

different sources of information and data, modelling and 

computational schemes, and data processing algorithms 

(Zio, 2012).  A typical PHM scheme consists of three main 

facets, Fault Detection (D), Fault Diagnosis (FD), and Fault 

Prediction (FP). Fault detection normally includes fault 

isolation, which is a task to locate the specific component 

that is faulty. Fault detection in a broader sense indicates 

whether something is going wrong in the monitored system, 

and fault diagnosis determines the nature of the fault after it 

has been detected. Prognostics deals with fault prediction, 

and is a task to determine whether a fault is impending and 

estimate how soon and how likely that fault is to occur. 

Diagnostics therefore can be defined as posterior event 

analysis and prognostics as prior event analysis. Prognostics 

is much more efficient than diagnostics in achieving zero-

downtime performance. Diagnostics, however, is required 

when fault prediction of prognostics fails and a fault occurs, 

and is important from a root cause analysis (RCA) 

perspective to avoid future failures of a similar nature 

(Jardine, Lin, & Banjevic, 2006). 

2.1. Fault Detection 

Within fault detection, several empirical signal 

reconstruction models have been explored to estimate the 

expected values of measured variables under both changing 

and steady state process conditions, such as: Auto-

Associative Kernel Regression (AAKR) (Baraldi, Di Maio, 

Pappaglione, Zio, & Seraoui, 2012); Artificial Neural 

Networks (ANNs) (Hines & Garvey, 2006); Evolving 

Clustering Method (ECM) (Zhao, Zio, & Baraldi, 2011); 

Principle Component Analysis (PCA) (Garcıa-Alvarez, 

2009; Jain, Duin, & Mao, 2000); Independent Principle 

Component Analysis for redundant sensor validation (Ding, 

Hines, & Rasmussen, 2003); Support Vector Machines 

(SVMs) (Laouti, Sheibat-Othman, & Othman, 2011); and 

Fuzzy Similarity (Baraldi, Di Maio, Genini, & Zio, 2013). 

For robust determination of anomaly detection certainty 

several methods can be found in the literature. For example, 

in threshold-based methods (Montes de Oca, Puig, & Blesa, 

2012; Puig, Quevedo, Escobet, Nejjari, & de las Heras, 

2008), the process of an anomaly is concluded when the 

residual values exceed a predefined threshold. Another 

example is using statistical methods such as sequential 

probability ratio test (SPRT) (Hines & Garvey, 2006) in 

which  anomaly detection is concluded if the probability 

distribution function of the residual differs from the 

probability distribution function calculated during normal 

conditions. However, these methods have some practical 

difficulties such as setting of the threshold value in 

threshold-based methods and some parameters (e.g., SPRT), 

and when no information about the confidence on FD 

outcomes (e.g., threshold-based) is provided.  
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2.2. Fault Diagnostics 

System diagnostics lead to increased overall equipment 

effectiveness (OEE) in a number of ways. This is because 

when an alarm is triggered due to an identified system 

event, a decision must be taken to (Zio, 2012): 

 

 Ignore the alarm. This increases the chances for 

potential accidents and catastrophic equipment failure 

in the case of a true alarm event. 

 Stop the equipment. This will lead to additional utilised 

manpower resources, lost production time, and extra 

costs in the case of a false alarm. 

 Further manual investigations without stopping the 

system, which, in the case of false alarms, again leads 

to extra costs and manpower.  

 

An automated event diagnosis system is therefore used after 

an event detection module concludes that there are sufficient 

abnormal conditions in a system at a time t, in order to 

identify the root cause(s) of the occurred abnormality, on 

the basis of the observed signals which are representative of 

the system behaviour. This can be considered as a 

classification problem in which specific classes of event are 

associated with specific values of observed measured 

variables (Baraldi, Di Maio, Rigamonti, & Zio, 2013; 

Venkatasubramanian, Rengaswamy, Yin, & Kavuri, 2003). 

2.3. Fault Prognosis 

Upon fault detection and diagnosis, prognostics becomes a 

fundamental task of a PHM system which aims to reliably 

and accurately forecast the RUL of the equipment/system 

(Kalgren et al., 2006) so that it may function for as long as 

its design intended (Zio, 2012).  RUL is typically a time, 

cycle, or some other specific context driven expression. The 

RUL is the prediction of a component or systems 

functional/operational usage expectancy based on measured, 

detected, modelled, and/or predicted health state. The RUL 

is dependent on the intended set of operating conditions or 

mission to be performed (Kalgren et al., 2006). 

It is not pertinent within this work to give a further detailed 

treatise of PHM and its constituents. For this purpose the 

interested reader is referred to the work of Zio (2012) and 

Vachtsevanos et al (2006).  

3. PHM AND THE FOURTH INDUSTRIAL REVOLUTION 

PHM must meet the challenge facing industry in the first 

half of the 21
st
 century. This challenge, commonly labelled 

‘Industry 4.0’, (German Federal Ministry of Education and 

Research, 2013) is what has been termed as the fourth 

industrial revolution, where future industrial production will 

be characterised by industrial internet driven smart factories 

centred around adaptability, resource efficiency and 

ergonomics. ProcessIT Europe, an innovation centre 

focusing on manufacturing automation solutions for EU 

process industries, outline the elements expected to be key 

in the expansion of large-scale automation systems required 

to drive Industry 4.0 (ProcessIT Europe, 2013). Among 

these are improvements in automation system functionality 

to enable the integration of traditionally separated systems, 

along with greater internet compatibility and open 

standards, such as those developed under EU funded 

projects SIRENA, SODA, SOCRADES, and AESOP 

(Bohn, Bobek, & Golatowski, 2006; Deugd, Carroll, Kelly, 

Millett, & Ricker, 2006; Souza, Spiess, Guinard, Moritz, & 

Karnouskos, 2008; Karnouskos, Colombo, Jammes, 

Delsing, & Bangemann, 2010). Machine to machine 

communications (M2M) using Internet of Things (IoT) 

principles will form the so called Cyber-Physical Systems 

(CPS) predicted to enable new automation archetypes and 

improve plant operations in terms of increased OEE. One 

component of this is a need for improvement in human-

machine interface development, which must continue to 

improve the possibilities for efficient plant operations 

through the visualisation, virtualisation, and simulations of a 

plant and its automation systems (ProcessIT Europe, 2013). 

GE outlined their own similar initiative titled ‘The Industrial 

Internet’ (Evans & Annunziata, 2012). Central to this 

initiative is an integration of three fundamental elements 

which embody the essence of the Industrial Internet, 

‘Intelligent Machines’, ‘Advanced Analytics’, and ‘People 

at Work’. Evans and Annunziata (2012) argue that human-

machine interaction will be a critical step in blending the 

hardware and software components required to support the 

minimal input and undesired output of future industrial 

automation systems. 

Lee and Lapira (2014) argue that adoption of the IoT 

ideology within Industry 4.0 presents a unique opportunity 

for organisations to create tools and technologies that can 

identify and quantify organisational uncertainties, to 

determine an objective estimation of the assets and 

processes and the resultant manufacturing readiness of the 

organisation. The authors argue that interactive PHM 

systems are the next phase in the industry’s evolution that 

will provide transparency in the factory, giving DM the 

opportunity to proactively implement mitigating or 

countermeasure solutions to prevent production losses.  

Tying into this, ISO 9241-210 (International Standards 

Organisation, 2010) describes six key principles to ensure 

that the design of such interactive systems are user centred, 

which are: 

 

 The design is based upon an explicit understanding of 

users, tasks and environments. 

 Users are involved throughout design and development. 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

4 

 The design is driven and refined by user-centred 

evaluation. 

 The design process is iterative. 

 The design addresses the whole user experience. 

 The design team includes multidisciplinary skills and 

perspectives. 

 

In terms of addressing the whole user experience, the 

standard outlines the following: 'the concept of usability 

used in ISO 9241…can include the kind of perceptual and 

emotional aspects typically associated with user 

experience’. This is an important point, as for a system to be 

fully utilised, it has to be more than ‘easy to use’, it has to 

engage with users in multiple ways. One of the best 

examples of this is through operator trust in a system. This 

concept is discussed later in the paper.  

4. UNCERTAINTY IN PHM 

The ultimate goal of PHM is to increase component 

availability, reduce maintenance costs, minimise 

unscheduled shutdowns, and increase safety. The 

importance of uncertainty quantification in this context 

should not be understated. Monitoring the health state of 

systems, subsystems, and components, the classification of 

the different types of faults that may occur in these 

components, and estimating the RUL along with other 

prognostic metrics such as the End-of-Prediction (EoP) time 

index,  can be extremely helpful to support DM in assessing 

whether maintenance intervention is necessary or not. In 

ever more complex environments, operators need to quickly 

make thousands of decisions to maintain optimal decision 

performance. Although this challenge can be overcome by 

enabling a DSS to perform select operations with human 

consent (Evans & Annunziata, 2012),  without quantifying 

the associated uncertainties, remaining life projections have 

little practical value within PHM systems (Engel, Gilmartin, 

Bongort, & Hess, 2000).  It is the comprehension of the 

corresponding uncertainties that is at the heart of being able 

to develop a business case that addresses prognostic 

requirements. The assumption of data monitoring without 

uncertainty is particularly problematic, as this forces 

maintenance planning to become an exercise in decision 

making under uncertainty with sparse data (Sandborn, 

2005).  

As stated previously, PHM systems are usually 

implemented in three stages for the holistic health state 

management of a component of interest: fault detection, 

fault diagnosis, and system lifetime prognosis. Several 

methods have been widely developed in the last few decades 

to increase the reliability of PHM systems. In this paper, we 

define the reliability of the PHM system models as the 

cumulative reliability of the following; 

Fault Detection: the ability to confidently monitor the health 

condition of a system with low false and missing alarm rates 

with respect to the detection of normal or abnormal 

conditions. 

Fault Diagnosis: the ability to identify the fault type/class 

with a low misclassification rate 

Fault Prediction: the ability to predict the probability of 

system failure and the RUL with low inaccuracies, taking 

into account the set of missions needed to be completed. 

This cumulative information will provide the organisation 

with the information required to decide if maintenance 

intervention is necessary and if so, when to perform 

maintenance actions (Zio, 2012). It is worth mentioning that 

assessing the reliability of the PHM system is made a priori 

during model development using the previously mentioned 

methods dedicated to each part of the PHM system. In this 

respect, the different sources of uncertainty which exist 

within the varied fault detection, diagnosis, and prognosis 

methodologies have to be taken into account. For example, 

those sources may influence the performance of the PHM 

system, causing false or missing alarms, and hence impact 

the overall reliability. In the false alarm case, the output of 

the PHM system indicates that a healthy component is 

experiencing abnormal conditions, causing potential 

unwarranted downtime, whereas in the missing alarm case 

the output of the PHM system indicates that an unhealthy 

component is operating under normal conditions, potentially 

leading to catastrophic unexpected failures of the 

component/system with associated large downtimes, high 

cost, as well as possible safety and environmental 

implications  (Zhao et al., 2011). 

For these reasons, it is necessary to manage the different 

sources of uncertainty that may arise in the PHM system 

stages. In practice, the possible sources of uncertainty that 

may arise in a PHM system are: 

 

 Uncertainty in the signal measurements: incomplete, 

noisy, and imprecise measurements 

 Uncertainty in the models adopted at each data 

management stage, such as: 

 Model Structures: un-modelled phenomena, 

approximations, simplifications, hypotheses, 

assumptions, etc.  

 Model parameters: the Kernel Bandwidth in Auto 

Associative Kernel Regression (AAKR) methods, the 

threshold parameter in threshold-based methods 

classification and detection algorithms such as Support 

Vector Machines (SVM) etc.  

 Uncertainty due to the inherent stochasticity of the 

physical processes: stochasticity in the current and 
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future states of the system, unforeseen future loads and 

environmental conditions etc. 

 Human decision errors relating to the decisions made 

given the PHM system output 

 

Uncertainty quantification research currently, both in 

industry and academia, focuses on the shortcomings in the 

availability of run-to-failure data, accelerated ageing 

environments, real-time prognostics algorithms, uncertainty 

representation and management (URM) techniques, 

prognostics performance evaluation, and methods for 

verification and validation (V&V) (Saxena et al., 2010).  

Essentially, the inherent uncertainties which propagate 

through PHM systems mean that the PHM output can never 

be perfectly reliable (Aven, Baraldi, Flage, & Zio, 2014; 

Gertler, 1998; Jardine et al., 2006; Sankararaman & Goebel, 

2012).  Even if it were, in practice a PHM system is being 

applied in complex industrial environmental contexts and 

there will almost always be human DMs at the system 

interface who may choose not to follow the guidance of the 

PHM system, because of a possible lack of trust in the 

system output or because they have knowledge extraneous 

to the modelled parameters. Context drivers in this regard 

include financial pressures to delay maintenance activities, 

unexpected environmental conditions which could affect the 

reliability/uncertainty of the algorithms, a change in the 

maintenance policies of the organisation, cost of shutting 

down at a particular time, resource availability, time 

available for production intervention activities (including 

time of the year), audit timing within regulated industries, 

management interests, corporate politics etc. With this in 

mind, it is important to consider the application of the PHM 

system within the overall socio-technical system of the 

maintenance organisation. Only by providing a PHM system 

that is calibrated against the actual usage of the system can 

the full benefit be achieved. 

Sandborn (2005) asks; given that the forecasting ability of 

PHM is fraught with uncertainties in the sensor data 

collected, the data reduction methods, the models applied, 

the material parameters assumed in the models, etc., how 

can PHM results be interpreted so as to provide value?  

Sandborn argues that this problem partly reduces to one of 

determining optimal safety margins and prognostic 

distances for health monitoring. This determination is 

intrinsically contextually driven. Engel, Gilmartin, Bongort, 

and Hess (2000) also argue that the calculation of system 

RUL in PHM systems alone does not provide sufficient 

information to form a decision or to determine corrective 

action. They state that without comprehending the 

corresponding measures of the uncertainty associated with 

the calculation, DSS outputs have little practical value. 

5. HUMAN FACTORS OVERVIEW 

Human factors is defined as ‘the scientific discipline 

concerned with the understanding of the interactions among 

humans and other elements of a system, and the profession 

that applies theoretical principles, data and methods to 

design in order to optimize human well-being and overall 

system performance’ (International Ergonomics 

Association, 2000). Within multiple high risk industries 

such as nuclear, oil and gas, and the medical domains, there 

is an existing recognition of the importance of HF, not just 

from a safety perspective, but also from a systems 

performance perspective. A recent directorate of the Nuclear 

Installations Inspectorate (NII) of the Health and Safety 

Executive (HSE) of Great Britain (2010) outlines how HF 

needs to be incorporated in all industrial projects in the 

field, throughout the full project lifecycle, to achieve both 

the aims of increased safety and reliable energy production. 

The objective is again reiterated about considering HF as an 

integral part of all projects, and not just an afterthought.  

The issue that we see repeated is that if the requirements of 

system operators are only accounted for at the end of system 

design, then it is unlikely that it will be a useable system.  

PHM systems aim to be highly autonomous up until the 

point that a decision is required regarding maintenance 

intervention. In this way PHM systems can assist 

maintainers to determine the optimum time to perform 

maintenance given a host of constraints, providing the 

operator with confidence bounds on the availability of 

critical assets to meet production schedules.  Ideally 

autonomous diagnostic and prognostic capabilities are to be 

implemented within an integrated maintenance and logistics 

system that supports critical complex systems throughout 

their lifetimes (Vachtsevanos et al., 2006). However, there 

is little to no evidence that it has as yet proven possible in 

practice to achieve this level of autonomy, and some degree 

of human intervention is typically required. In fact, a 

complete prognostic health management system still does 

not exist (Saxena et al., 2010). For this reason this paper 

draws on the human factors discipline in order to propose a 

set of design rules for the incorporation of human factors 

into PHM, particularly with regards to data visibility during 

the decision making process.  

5.1. Human Factors in PHM 

The application of human factors has traditionally been in 

safety critical industries, where a variety of methods and 

techniques are applied to understand human interactions 

within a system and the potential for human error, and 

recommendations are made to improve the system, 

environment, organisation or tasks to improve human 

performance. It has long been recognised that maintenance 

tasks are vulnerable to human error, particularly in the 

aircraft maintenance domain (Australian Government Civil 

Aviation Authority, 2013; Ben-Daya, Duffuaa, Raouf, 
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Knezevic, & Ait-Kadi, 2009; International Civil Aviation 

Organization (ICAO), 2003; Latorella & Prabhu, 2000; 

Rankin, Hibit, Allen, & Sargent, 2000) and maintenance of 

the protection systems in nuclear industries 

(Khalaquzzaman, Kang, Kim, & Seong, 2011; Rasmussen, 

1975). In these instances human factors principles have been 

applied in order to reduce both the rate and impact of human 

errors. 

However, there has not been a strong input from human 

factors in the domain of PHM. Most of the PHM literature, 

when it considers human interactions within the system at 

all, considers that a benefit of PHM is the potential 

reduction in required maintenance interventions, thereby 

reducing the opportunity for human errors in the 

maintenance process ( e o,  it gibbon, Puttini,   de Melo, 

2008). While true, this view of human factors does not 

consider the possibility of harnessing human intelligence 

and reasoning abilities to improve the overall maintenance 

system, or of modelling human interactions with the system 

to improve both the prediction of faults and effectiveness of 

the system output. Only Zhao, Tian, and Zeng (2013), and 

Yu, Syed Zubair, and Yang, (2013) suggest that human 

factors could be included as an uncertainty in the PHM 

system itself, although ultimately both works neglected to 

use HF as a modelling parameter. Research in this area 

could investigate the feasibility of incorporating some of the 

existing HRA techniques in a PHM model, or could use 

another approach whereby there is feedback from the 

maintainer/installer in order to generate a confidence 

interval for the possibility of human error having occurred. 

Despite the potential in these areas, in this paper, we 

propose a more general framework for the level of human 

interaction with a PHM system based on the calculated 

reliability (or inversely speaking the calculated 

uncertainties) of the PHM system, and from this the 

requirements for the outputs from the PHM algorithms and 

the feedback to the human maintainer. There are several 

papers that consider the important issue of the user interface 

through which PHM analysis is displayed to the 

maintenance staff (Bechhoefer & Morton, 2012; Mathur, 

Cavanaugh, Pattipati, Willett, & Galie, 2001; Saxena et al., 

2010). Mathur et al  (2001) recognise that human factors 

considerations need to guide the development of interface 

components and accessibility requirements. They provide an 

example of a web-based design of servers which support a 

distributed, multi-platform, three-tier architecture. Saxena et 

al (2010) detail four key parameters driving the 

requirements for prognostics from a technical engineering 

perspective, but alludes to the fact that classifying software 

requirements based on functionality, e.g. feature set, 

capabilities, generality, security, and usability e.g. human 

factors, aesthetics, consistency, and documentation,  is also 

important. Bechhoefer and Morton (2012) studied the lack 

of adoption of condition monitoring systems relating to 

wind turbines in the renewable energy sector. They 

concluded that as no single condition indicator (CI) can 

detect all failure modes, a user display requirement is 

necessary to view, threshold, and trend information that 

incorporates more than just spectral data or one CI. They 

specify the need for a data reduction methodology that is 

intuitive and user friendly, citing the use of the health 

indicator (HI) concept, which is the integration of several 

condition indicators into a single value. The HI provides the 

health status of the component to the end user. In contrast to 

these works, which focus on providing a user friendly 

interface at the end of the system, we propose that early 

consideration of how the operator will use system outputs in 

practice should drive the whole philosophy of the PHM 

system and hence influences not just the design of the 

interface, but the decisions on what data to present and at 

what level of detail. 

5.2. PHM as a Decision Support System 

Sandborn (2005) states that methods used to obtain and 

store large amounts of information has largely been 

perfected, and as a result, a sort of information overload is 

prevalent, where it is not uncommon that a lot more 

information exists than organisations know how to use. 

Sandborn states that the trick now is to figure out how to 

make decisions based on that information. The goal of 

applied PHM technology is to provide decision support. 

Therefore, the final form of the output from a PHM system, 

driven by the context of the user, is actionable information 

that supports improved decision making (Kalgren et al., 

2006). Decision Support Systems (DSS) are designed to 

support the intelligence, design, or choice phases of human 

decision makers (DM) (Mintzberg & Simon, 1977).  

A comprehensive study was conducted by Ketteler (1999) 

on the requirements for equipment monitoring and decision 

support systems in the machining/manufacturing domain 

regarding their reliability, flexibility, and user friendliness, 

using the input of industries from Japan, the USA, Canada, 

and Europe. Data from machine builders, end-users, and 

monitoring system suppliers was collected and analysed. 

The main conclusions are applicable across multiple 

industries, dealing with the theme of industrial integration, 

and lack thereof, of online decision support capabilities 

aiding maximum throughput. Ketteler concludes that less 

than 38% of end-users were at the time satisfied with 

available monitoring systems, the main reasons for this 

being the lack of system reliability, too many false alarms, 

and the complicated nature of the monitoring systems. 

Reliability was defined as high detection rates with low 

false alarms. While the number of satisfied end-users may 

have increased in the preceding decade, Ketteler’s 

conclusions on end-users general expectations leading to 

their satisfaction in monitoring systems and DSS are still 

applicable today. The most important expectations for end-

users when using DSS were less downtime of the 

production equipment, less scrap production, higher 
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productivity, easier DSS operability, and less false alarms. 

Given the need for greater operability, DSS and associated 

technologies need to move out of the realm of esoterica, 

enabling full implementation and management 

environments within organisations. Many analytics 

technologies still focus on the technical aspects with 

insufficient regard for the monitoring of model performance 

and the sharing of information in a collaborative 

environment. Although this is one of the less glamorous 

aspects of predictive technologies, in many ways it is one of 

the most important, as without the establishment of the 

confidence levels in predictive models the technology will 

always be underexploited and untrusted (Butler, 2013).  

5.2.1. Human Factors Considerations in Decision 

Support Systems 

Human interaction with automation as a whole, of which 

PHM can be considered a branch, and the use of DSS has 

been widely researched in human factors. Many lessons can 

be learned by PHM system designers from the introduction 

of automated systems in the aviation industry for example, 

and there is a large volume of knowledge which exists in the 

HF literature on the subject. One of these lessons is whether 

total system safety is always enhanced by allocating 

functions to automatic devices rather than human operators 

(Wiener & Curry, 1980). Research on DSS information 

output indicates that DSS which indicate the status of a 

system are preferable to those that advise operators on how 

to respond (Crocoll & Coury, 1990). Similar findings in 

high-risk industries where the information is imperfect 

suggest that status displays are better than command 

displays (Sarter & Schroeder, 2001). DSS which incorporate 

a high degree of decision autonomy have failed frequently 

in industrial settings, as discussed earlier. In theory, a DSS 

acts as a ‘prosthesis’ to aid a human DM who is purportedly 

characteristically flawed and inconsistent in his/her decision 

making. As such, more precise algorithms are the preferred 

research objectives of PHM, as opposed to a greater 

understanding of the power of human cognition (Salvendy, 

2012). This type of reasoning is common in the PHM 

literature. However, the level of automation required with 

such an approach conflicts in reality with the amount of 

situations the algorithms must face. The great danger here is 

that a DSS will make wrong decisions about situations it has 

not been modelled to compute. Tied to this is the fact that 

removing the responsibility of decision making from a 

human DM in high-risk industrial settings has been shown 

to have negative consequences as people will simply blame 

erroneous decisions on the automation.  

This phenomenon has been labelled as automation bias 

(AB), essentially the tendency to over-rely on automation, 

and has been studied in various academic fields. Although 

most research shows overall improved operator and system 

performance with the use of automation, there is often a 

failure to recognise the new errors that DSS can introduce. 

This problem can also be described as automation-induced 

complacency or insufficient monitoring of automation 

output. User factors which directly influence AB include 

operator trust and confidence in the DSS. Environmental 

mediators include workload, task complexity, and time 

constraints, which pressurise the cognitive resources of the 

end users. Mitigating factors of AB includes implementation 

factors such as training and emphasising user accountability, 

and DSS design factors such as the position of the advice on 

the screen, updated confidence intervals of the DSS output, 

and the provision of information versus recommendation 

(Goddard, Roudsari, & Wyatt, 2012). The ‘information 

versus recommendation’ degree of automation where the 

DM is used to critique the output of a DSS has met with 

more success in terms of industrial integration, particularly 

in high-risk situations (Salvendy, 2012). For example, 

Guerlain et al. (1999) created a DSS for blood type 

identification in a blood bank. When used as a critiquing 

tool, where the DSS presented the users with different 

hypotheses regarding the data available rather than defined 

solutions, the operators made correct decisions 100% of the 

time. This was in contrast to a DSS which did not allow the 

operators to critique the decisions, which led to wrong 

decision being made between 33% and 63% of the time. 

This gives us an interesting insight into the power of human 

cognition, one of a number of seemingly intangible elements 

important for successful businesses (Pecht, 2008). With 

regard to the power of human cognition in the decision 

making process, it has been written that the human 

recognition process relies heavily on context, knowledge, 

and experience. The effectiveness of using contextual 

information in resolving ambiguity and recognizing difficult 

patterns is therefore the major differentiator between the 

recognition abilities of humans and systems (Jain et al., 

2000). With this in mind, the fundamental research issue in 

building intelligent DSS should centre on linking the 

domain-specific knowledge of experts with the normative 

power of analytical decision techniques to improve the 

quality of decisions (Yam, Tse, Li, & Tu, 2001). It has been 

said that the complex human decision process largely 

follows a Bayesian approach, as given a set of information, 

human decision makers tend to duplicate Bayesian 

predictions if they are provided adequate information in 

appropriate representations (Martignon & Krauss, 2003). 

The strength of this approach is demonstrated in recent 

research which illustrated that human reasoning in complex 

situations, in this case complex ribonucleic acid (RNA) 

folding schemes related to HIV and cancer research, 

outperformed specifically formulated RNA folding 

algorithms almost by an order of magnitude. The research 

focused on allowing humans to come up with complex 

folding patterns for RNA through a crowdsourcing 

application, and not only were humans able to develop 

better models of RNA folding than previous computer 

algorithms, but design rules formulated by the online 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

8 

community have even been used to construct a new 

algorithm, EteRNABot, and in some cases represent 

completely new understandings about RNA folding that 

have yet to be explained mechanically (Lee et al., 2014). 

Formal methodologies have been developed, called 

knowledge-based expert systems, in an attempt to capture 

human knowledge to draw conclusions in a formal 

methodology framework. An expert system is a DSS that 

essentially mimics the cognitive behaviour of a human 

expert. It consists of a knowledge base, a set of if–then–else 

rules, and an inference engine which searches through the 

knowledge base to derive conclusions from given facts 

(Venkatasubramanian, Rengaswamy, & Kavuri, 2003). This 

essentially forms a sort of indirect fusion approach, which 

uses information sources like a-priori knowledge about the 

environment and human input into a DSS (Teti, Jemielniak, 

O’Donnell,   Dornfeld, 2010). Again we see however that 

the problem with this kind of knowledge representation is 

that it does not have any understanding of the underlying 

physics of the system, and therefore fails in cases where a 

new condition is encountered that is not defined in the 

knowledge base. Therefore, this kind of knowledge is 

referred to as ‘shallow’ since it does not have a deep, 

fundamental understanding of the system which it is 

attached to (Venkatasubramanian, Rengaswamy, & Kavuri, 

2003). 

Similarly Billings (1991) describes what he terms as 

‘human-centred automation’ in the aviation industry. 

Automation systems in Billings definition include systems 

which have intelligence, or some capacity to learn and then 

to proceed independently to accomplish a task. Such 

reasoner systems are evidenced frequently in PHM 

literature. Billings argues that the quality and effectiveness 

of an automation system depends largely on the degree to 

which the system takes advantage of the combined strengths 

of humans and automation technologies, and equally 

compensates for the weaknesses of both elements. Though 

Billings admits that humans are far from perfect sensors, 

decision-makers and controllers, he argues that they possess 

a number of vital attributes which automation systems do 

not. These are that humans are excellent detectors of signals 

in the presence of noise, can reason effectively given 

uncertainties, are capable of abstraction and conceptual 

organisation, can cope with failures not envisioned by 

system designers, possess the ability to learn from 

experience and thus the ability to respond quickly and 

successfully to new situations, recognise and bound the 

expected, cope with the unexpected, and to innovate and to 

reason by analogy when previous experience does not cover 

a new problem. Humans thus provide a degree of flexibility 

with regards to decision making and system control that 

cannot be attained by computational DSS alone, except in 

narrowly and well defined, well understood domains and 

situations. These uniquely human attributes each provide a 

reason to retain the human in a central position in systems 

which are neither directly controllable nor fully predictable 

(Billings, 1991).  

The reliability of automation and decision support tools has 

long been understood to be a key factor in the success of the 

tool (Wickens & Dixon, 2007). Madhavan and Wiegmann 

(2007a) and  Wickens and Dixon (2007) both conducted a 

meta-analysis of numerous research studies relating the 

reliability of diagnostic automation and its effect on the 

performance of human operators. The main conclusion from 

both studies indicates that below an optimal threshold of 

70% reliability, performance degrades to the point that DSS 

are largely disused. Balfe et al (2012) describe a set of 

principles for automation systems, designed for rail 

automation but applicable to other domains. Among these 

are the importance of reliability of the automation, and 

feedback to the human operator in terms of making the base 

information, raw data that has been transformed in to useful 

information, visible and providing understandable outputs to 

the operator. Bechhoefer and Morton (2012) explicitly 

mention the need for end-user confidence in PHM systems 

to be high in order to preserve the value of the system. They 

refer to the need to reduce false alarm rates (type I errors) 

and increase the sensitivity to actual faults (type II errors), 

i.e. increasing PHM system reliability. They also specify 

that to achieve widespread deployment of CMS, it is 

necessary to change the perception of end-users by 

convincing them of the value proposition supporting PHM. 

One of the facets enhancing a strong proposition that they 

note is an improved user interface, greater system reliability, 

and greater access to more actionable information.   

5.2.2. Trust in Decision Support Systems 

A review of trust in automation systems was conducted by 

Balfe (2010), of which DSS can be considered a branch.  

Table 1 below outlines the key findings from research on 

the factors leading to operator trust in automation systems. 

It can be argued that the usage of DSS under uncertainty 

relies on the same tenets to realise integration into the 

working environment. Balfe (2010) concludes that the effect 

of system uncertainty on trust and subsequent usage has 

been conclusively proven, and that evidence exists to 

support the notion of human competence as a key dimension 

in trust as understanding automation systems can improve 

the rating of trust. 
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Table 1: Summary of key research on trust in automation, 

adapted from (Balfe, 2010) 

Key Finding Author 

There is a correlation 

between trust in and usage of 

automation. 

(De-Vries, Midden, & Bouwhuis, 

2003; Muir & Moray, 1989) 

High reliability and 

competence are fundamental 

requirements for trust in 

automation. 

(Muir & Moray, 1989; 

Wiegmann, Rich, & Zhang, 2001) 

Operator self-confidence and 

the usefulness of the 

automation also influence 

usage. 

(Lee & Moray, 1992, 1994) 

For complex systems, 

explicit feedback is required 

to develop trust. 

(Dzindolet, Peterson, Pomranky, 

Pierce, & Beck, 2003; Sarter, 

Woods, & Billings, 1997; 

Sheridan, 1999) 

Trust must be well calibrated 

to ensure optimal use of 

automation. 

(Lee & See, 2004; Madhavan & 

Wiegmann, 2007b) 

Accurate mental models are 

important to ensure correct 

calibration of trust. 

(Sheridan & Parasuraman, 2006) 

Individual differences 

influence trust. 
(Merritt & Ilgen, 2008) 

 

Decision making given large uncertainties has been widely 

studied in the medical literature, many of whose conclusions 

on DSS integration into the working environment agree with 

those of Balfe (2010). One example of this is evidence 

based medicine (EBM), where clinicians integrate 

individual clinical expertise with the best available external 

clinical evidence from systematic research. Combining both 

individual expertise with external evidence allows clinicians 

to improve the accuracy and precision of diagnoses and 

prognoses (Sackett, Rosenberg, Gray, Haynes, & 

Richardson, 1996). EBM has led to the creation of clinical 

decision support systems (CDSS), interactive computer 

software systems designed to aid doctors with medical 

decisions, designed to impact clinician decision making 

about individual patients at the point in time that decisions 

are made (Berner, 2007). They are similar in scope and 

design to their industrial counterparts, albeit the system 

inputs are clinical metrics related to the human body. This 

same approach can be utilised by maintenance and 

management personnel involved in decision making related 

to defective components or equipment. Uckun, Goebel, and 

Lucas (2008) and Popov, Fink, and Hess (2013) draw 

similar comparisons. 

While CDSS have many proven benefits, their uptake by 

GPs (general practitioners) is limited. Shibl, Lawley, and 

Debuse (2013) researched how and why GPs accept DSS 

via a UTAUT (Unified Theory of Acceptance and Use of 

Technology) based model. The insights into the reasons 

why GPs do not use DSS are transferable to other industries 

for the development of strategies to enable greater 

widespread adoption of DSS. Shibl et al. (2013) conclude 

that the four main factors influencing DSS acceptance and 

use include usefulness, facilitating conditions (including 

training), ease of use, and trust in the DSS output. Similarly, 

Alexander (2006) concludes that a clinician's level of trust 

in CDSS is affected by how knowledge is represented, the 

CDSS’ ability to make reasonable decisions, and how they 

are designed. Again, usage issues arise if end-users do not 

understand how to use the CDSS. 

Dreiseitl and Binder (2005) investigated how physicians 

react when faced with DSS suggestions that contradict their 

own diagnoses. They found that in 24% of the cases in 

which the physicians' diagnoses did not match those of the 

DSS, the physicians changed their diagnoses. Physicians 

were significantly less likely however to follow the decision 

system's recommendations when they were confident of 

their initial diagnoses. They conclude that given 

uncertainties, people are most likely to trust their own 

judgement. False trust leads to wrong diagnoses, therefore 

uncertainty quantification is critical. Quality assurance and 

validation of such systems is therefore of paramount 

importance. 

The challenge of increasing system reliability concurrent 

with decreasing system complexity allowing greater 

usability cannot be understated. For while the algorithms 

and methods behind the three facets of PHM, detection, 

diagnosis, and prognosis, must become more robust and 

potentially more complex as they seek to reduce and 

ultimately eliminate uncertainties, so too must their outputs 

become flexible, reconfigurable, and subjectively easy to 

interpret. While one can argue that this approach would 

dictate the use for a ‘black box’ style methodology to DSS, 

this too is also not favourable. This is because the 

complexity of the mathematical models involved, coupled 

with end-user perception of high missed detection and false 

alarm rates, leads to mistrust and eventual non-use of DSS. 

Consequently a more open interface is required where PHM 

outputs are viewed as non-esoteric. This essentially means 

the transformation of data to usable information, useable 

information being context driven. As such the management 

of DSS must be addressed to providing the right information 

in the right form to the right people at the right time in the 

right place to support maintenance-related decision-making 

across different organisational levels (ProcessIT Europe, 

2013).  Uckun et al. (2008) similarly state the need for PHM 

to become less of an art and more of a science. They 

conclude that one of the main issues with PHM today is the 

lack of standardisation governing the research, and that it is 

often impossible to derive actionable conclusions based on 

the research results. 
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6. PROPOSED DESIGN FRAMEWORK 

The aim of PHM systems is to provide information for 

maintenance decisions and ideally, the information would 

be totally reliable. However, although a perfectly reliable 

PHM system is a noble aim, it is unfortunately unlikely to 

always be possible. The uncertainties within any system 

mean that a PHM methodology acting as a DSS can never 

be perfectly reliable, either due to technical difficulties in 

creating an accurate model or external factors which 

influence the reliability of the output. With this in mind, it is 

important to consider the application of the PHM system 

within the overall socio-technical system of the maintenance 

organisation and develop the system against a design 

philosophy appropriate for the context of use. 

The design framework presented here is intended to assist 

the developer of a PHM system in considering the feedback 

requirements based on the expected reliability of the PHM 

algorithms and hence set a design philosophy. This is a 

crucial first step in correctly setting the user requirements 

and designing the HMI. We propose that as the level of 

reliability of the algorithm increases, the required feedback 

to the operator decreases as per a simple proportional 

relationship. It is important to note that in this paper we deal 

with this concept purely in the notional sense. The reliability 

of the PHM system is intended to be calculated after it has 

been developed, and before the detailed design of the user 

interface for presenting the results. This is an adaptation of 

the well-known pilot control and management continuum 

developed by Billings (1991) for NASA, which directly 

relates levels of automation and human involvement in 

flight control systems for pilots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Proposed Design Framework 

Figure 1 describes this proportional relationship and 

suggests five categories of PHM system. The categories 

begin with a low PHM reliability and a corresponding high 

level of human involvement. In this case the system would 

probably not benefit from a PHM system at all; however 

this decision must be made at a local level. At the other end 

of the scale, very high PHM reliability (e.g. very low levels 

of model uncertainty) could successfully achieve an 

autonomous PHM system in which human input is not 

required.  

The lower level of reliability considered in this model is 

suggested to be 70%, on the basis of the previously 

discussed research (Madhavan & Wiegmann, 2007a; 

Wickens & Dixon, 2007) which provides evidence that 

automation below this level is not useful. The same research 

by Wickens & Dixon (2007) describes how the benefits of 

automation increase as the reliability level increases and on 

the basis of their analysis, we describe a suggested banding 

of the reliability levels to support the model in Table 2. The 

banding is intended as a guide and not a hard and fast rule. 

 

Table 2: Banding of Reliability Levels 

 

Reliability Feedback Required 

< 70% Manual Monitoring 

70-80% Component Condition Data 

80-90% PHM Recommendation 

90-99% PHM Decision 

>99% Autonomous PHM  

 

 

Each of these bandings is described below: 

 

 Manual Monitoring – below a 70% reliability threshold 

it is proposed that traditional methods of system 

maintenance are employed, such as corrective and/or 

scheduled maintenance approaches. The development 

of a PHM system with such an amount of present 

uncertainties is unlikely to add significant value to the 

maintenance decision process; 

 Component Condition Data – between 70% and 80% 

reliability, it is proposed that a PHM DSS use 

component condition data in conjunction with 

traditional methods of system maintenance to provide 

an additional data source to aid human decision makers. 

This generates requirements in terms of the data 

presented to the decision maker which must be at a 

sufficient level of detail for them to interpret. A 

combination of these two elements might take the form 

of scheduled maintenance intervals, in which 

maintenance will always be performed, interspersed 

with the use of CBM technologies to help ensure the 

component does not fail between maintenance 

windows. 
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 PHM Recommendation – when reliability levels are 

expected to reach 80%, the PHM system can provide a 

primary recommendation on proposed maintenance 

actions, and there is no need for the inclusion of 

traditional maintenance approaches. The 

recommendation should be provided in conjunction 

with supporting information for a final decision by the 

human decision maker, and at the lower levels of the 

reliability band should be presented alongside 

alternative hypotheses. Again, this suggests 

requirements on presentation of the PHM analysis in a 

manner which facilitates the human decision maker in 

interpreting the data; 

 PHM Decision – above 90% reliability, a decision can 

be made by the DSS and be provided to the human 

decision maker for confirmation. Supporting 

information is not required at this stage and the human 

decision maker would be expected to seek out 

additional information if they believed it was necessary 

with regard to a particular decision. The interface 

requirements are perhaps less demanding in this case, 

but is still necessary to provide access to interpretable 

data when required; 

 Autonomous PHM – if the reliability of the PHM 

system is proven to be above 99%, the system can be 

considered for implementation as an autonomous 

system, with directions for maintenance interventions 

passing directly from the system to the maintenance 

team, without the involvement of any human decision 

maker. There is also scope in such a system to 

coordinate with inventory management systems and/or 

a logistics knowledgebase for complete synchronisation 

of the maintenance effort. Such a system would be 

particularly efficacious in the self-maintaining systems 

envisioned as the next generation in intelligent 

industrial equipment enabling the fourth industrial 

revolution (Lee, Ghaffari, & Elmeligy, 2011) 

 

Identification of the correct banding is key to developing the 

correct design philosophy and presenting the PHM data to 

the human decision maker in a way which optimises 

operator trust in and use of the system. However, regardless 

of the banding, the system should still facilitate the user in 

‘drilling-down’ in to the source data in order to support 

understanding and trust in the system. Again, this is to avoid 

the use of a ‘black-box’ style approach. The design 

framework detailed here proposes that the source data can 

become gradually more hidden as reliability increases. We 

believe this framework can act as a useful guide for PHM 

system designers, and that further research is needed in the 

area if PHM is to continue its advance to becoming a 

standard industrial methodology in the coming years. 

7. CONCLUSION 

In this paper we conducted a comprehensive review tying 

together for the first time the literature within the HF, 

automation, decision support, and PHM domains. We have 

presented unique findings from these disciplines across 

multiple domains that will aid in the acceptance, widespread 

industrial integration, and ultimate end-use of PHM systems 

which act as maintenance DSS. Some of the key findings in 

this paper include the factors which govern the acceptance 

of automation and DSS technologies in multiple 

applications, including presentation of information 

considerations and developing operator trust in those 

systems. From the knowledge and insights gained we 

demonstrated how such HF elements must be considered 

from the outset of system development, and why it is 

important to consider the application of a PHM system 

within the overall complex socio-technical-economic 

contexts existing within today’s organisations. We 

presented a theoretical blueprint which is a useful first step 

in designing and deploying successful PHM systems in 

industry, where using a quantitative assessment of PHM 

reliability, based on PHM system uncertainties, one can 

alter the system outputs to cater for the needs of both end-

users and the organisation as a whole.  

While an important step in bridging the gap for the first time 

between human factors and PHM, this work represents early 

theoretical research. Further research activity can be focused 

towards the identification of applicable industrial case 

studies to provide empirical evidence in support of the 

model, generating a more detailed model of guidance for 

implementation of PHM systems, and combining HF 

metrics as inputs into PHM systems in order to increase the 

reliability of decision outputs. In addition, the different 

types of uncertainty (e.g. false positive and false negative 

rates in diagnosis, accurate prognosis horizons in prediction, 

receiver operating curves, etc.) may have different 

implications for how the information is presented. Future 

work will look at the sources of uncertainty in terms of 

detection, diagnosis, and prognosis and expand the model 

presented here to include guidance on the human factors 

concerns relating to different types of uncertainty.  
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