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ABSTRACT 
In this paper we will discuss some practical aspects of 
health management for a rechargeable Li-ion battery system 
for aerospace applications. Industry working groups have 
developed guidance for the flight certification of this type of 
battery system, and we will show how this guidance is used 
in the design. We will also discuss safety features embedded 
in the battery system related to industry guidance; including 
cell energy balancing, internal temperature monitoring and 
emergency fuses. The keys to battery prognostics and health 
management (PHM) are analytic State of Charge (SoC) and 
State of Health (SoH) algorithms implemented in these 
battery systems. We show how these are developed and how 
we have tested them before deployment. These battery 
systems also collect data that is made available to the 
aircraft processing systems, e.g., Aircraft Health 
Management System, On-board Maintenance System, etc.. 
This allows for near real-time confirmation of proper 
operation of these battery systems as well as adherence to 
MSG-3 maintenance standards. We close with a brief 
discussion of the practical limitations in our implementation 
and a discussion of our ongoing and future development in 
this area. 

1. INTRODUCTION 

Lightweight, high capacity, rechargeable batteries, primarily 
based on compounds of lithium, are becoming widely 
available due in part to increased demand for electric 
vehicle energy storage. The cost of individual battery cells 
continues to drop, making these battery systems more 

affordable for consumer products, where they are replacing 
mature technologies such as NiCd (Nickel Cadmium) and 
NiMH (Nickel Metal Hydride) (Economist (2008), 
Electropaedia). 

This trend has impacted the aerospace industry as well, 
where lithium based batteries are starting to replace mature 
technologies for aircraft energy storage.  

Aerospace batteries are required to deliver power reliably, 
have a reasonably long life, have a consistent output over 
their lifetime, and be certifiably safe. In addition, with a 
high premium on weight, in order to replace the older 
technology, they should be lightweight when compared to 
the traditional technologies.  

While lithium based products still require more electronics 
than the NiCd and SLA (sealed lead acid) products, lithium 
chemistries are of considerably greater energy density than 
traditional technologies. Further, costs are trending 
downward. For example, a 2012 report in the McKinsey 
Quarterly (Hensley et al.  2012) shows that the price, around 
$500/kWh then, could fall to $200/kWh by 2020 and to 
about $160/kWh by 2025. Though the numbers are 
approximations which do not deal with variations in lithium 
based chemistries, etc., they do illustrate the potential for 
lithium based energy storage as an advantageous alternative. 

Lithium chemistries, being of considerably greater energy 
density than the traditional technologies, are also more 
volatile. This volatility has resulted in the need for 
development of battery management and safety monitoring 
subsystems for lithium-based battery systems. Despite many 
well publicized thermal issues with Li-ion batteries in recent 
times (see e.g., Chang et al., 2010, George, 2010, FAA, 
2011, and NTSB, 2014), these systems are certifiably safe 
and reliable. 
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Our battery systems have integrated battery PHM in the 
form of cell energy balancing, SoH as a measure for 
remaining useful life estimation, internal fault detection, and 
system status monitoring. These subsystems are supported 
by the integration of data collection, processing, storage and 
reporting; thus integrating high density energy storage and 
battery management into a single embedded package. 

By additionally integrating the ability to send monitored 
data to the aircraft data systems, which can then be off-
boarded for immediate processing, these battery systems 
enable redundant and sophisticated processing for both 
remaining useful life predictions as well as near real-time 
stress level assessments. 

2. BATTERY SYSTEMS DESIGNED TO ENHANCE SAFETY 

When any technology is developed or modified for use in a 
civil aviation application, a critical step in the deployment 
process is system certification. This is the process by which 
regulatory authorities are assured of the safety of the system 
with respect to itself and the environment. The civil aviation 
authorities work to ensure the safety of all concerned by 
levying the need to demonstrate that all risks have been 
reduced to an acceptable level prior to certifying the system 
for flight. Some of the standards, guidelines, and 
recommended practices published by organizations such as 
SAE and RTCA that are applicable to the certification of 
aviation batteries and battery systems are: 

• ARP4754: Guidelines for Development of Civil 
Aircraft and Systems 

• ARP4761: Guidelines and Methods for Conducting the 
Safety Assessment Process on Civil Airborne Systems 
and Equipment  

• DO-160: Environmental Conditions and Test 
Procedures for Airborne Equipment 

• DO-178: Software Considerations in Airborne Systems 
and Equipment Certification  

• DO-227: Minimum Operational Performance Standards 
for Lithium Batteries 

• DO-254: Design Assurance Guidance for Airborne 
Electronic Hardware 

• DO-311: Minimum Operational Performance Standards 
for Rechargeable Lithium Battery Systems; see also 
FAA memorandum recommending the use of DO-311 
(FAA, 2010) 

• DO-347: Certification Test Guidance for Small and 
Medium Sized Rechargeable Lithium Batteries and 
Battery Systems 

The number and types of tests required to certify a system 
for flight is determined by the impact on flight safety as 
determined by the safety analysis of that system, which, as 
may be inferred by the number of industry specifications 
listed above, may be considerable. There are generally five 

design assurance levels (DAL) of safety assessment in the 
collective guidance. With the introduction of lithium based 
chemistries for aviation applications in recent years, 
regulatory “Special Conditions” are being levied on a case-
by-case basis to supplement the number and types of tests 
required to certify traditional chemistries.  

The additional monitoring and controlled levied by the 
“Special Conditions” drive the need for more electronic 
circuit based protection sub-systems. There is also need for 
high reliability/redundancy of the protection circuitry in 
order to satisfy the means of compliance associated with 
rechargeable lithium batteries.  

There are some applications wherein an indication of battery 
status prior to dispatch is required for the flight crew. The 
status message for such an application may be a “Clear to 
Dispatch” indication, and may be annunciated to the crew 
on the flight deck, with the minimum criteria for the 
indication being SoH and/or SoC above required levels.  

A common practice for measuring battery capacity is based 
on the voltage of a battery or the charge current of the 
battery, with the capacity of the battery being checked 
periodically via off-wing testing. These capacity tests are 
performed by removing the battery from the aircraft, fully 
charging it in a specialty shop, then determining the 
capacity stored by measuring the energy extracted through a 
complete discharge. This gives the new capacity of the 
battery (reflecting its SoH). The battery is then returned to 
the aircraft or serviced, if needed. This labor intensive 
method is meant to give confidence that the capacity (SoH) 
of the battery is not less than the required minimum level; 
allowing for an assurance of safety until the next battery off-
wing test takes place.  

With SoH data supported via “off-wing” tests, the crew 
reviews the SoC estimated data in real-time (i.e. via battery 
voltage) prior to flight. This provides the crew a go/no-go 
determination method.  

2.1. Advancement in Battery PHM 

The focus of battery PHM has been its application to 
automobiles (electrical vehicles (EV) and hybrid electrical 
vehicles (HEV)) but the techniques are similar when applied 
to civil aviation applications. The need for increased system 
certification and qualification testing brings additional 
constraints which need to be thoroughly dealt with before 
the product can be deployed. See the proceedings of the 
recent workshop (PHM Society, 2011) for an overview of 
the current state of the art in PHM research. 

Typically, large rechargeable battery stacks consist of 
smaller cells that are connected in series and parallel to get 
the requisite voltage range and current capacity. Most of our 
Li-ion batteries contain eight modules in series that generate 
the requisite voltage, and the number of cells within each 
module connected in parallel as needed to supply the 
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necessary current. Consequently, the desired output for a 
given application can be adjusted in a modular fashion by 
adding or removing individual module packs and cells to 
meet the application requirements.  

Charging and discharging the module cell stacks is a critical 
function because over-charging or over-discharging may 
prematurely degrade the cells within them. When all cells in 
a module are not identical, as is almost surely the case in 
practice, there is a danger of overcharging or excessively 
discharging any given cell if mechanisms are not emplaced 
to prevent it. The management of these functions is essential 
to maximize the life of the battery cells. This is fairly well 
known but see, e.g. the Battery University on the web for a 
lay exposition of this fact (batteryuniversity.com). 

Our battery management system has a dedicated Battery 
Management Unit (BMU); circuitry to implement fault 
detection, safety assessment, fault diagnostics, SoH, SoC 
and communications via industry standard ARINC 429 to 
the central Aircraft Health Management System (AHMS). 

The BMU combined with the battery chargers, allow the 
battery modules to be charged independently so as to 
prevent charging at higher than allowed voltages as may 
occur if one were charging modules in series. Further, the 
modules are discharged in a balanced fashion; meaning that 
the system is continuously working to balance the voltage in 
each module to better utilize the energy in the modules and 
to prevent any single module from prematurely terminating 
a discharge.  

The independent charging system ensures that the cells are 
charged at the cell voltage level, the very act of which 
eliminates the need for independent balancing techniques 
during charge. Moreover, during the discharge cycle, cell 
energy is redistributed to ensure more energy can be 
removed from the system before low voltage cut-off.  

Cell temperature has a critical role in the management of 
lithium based battery systems. We have incorporated a 
multi-stage power-down process by which the BMU ensures 
the control of the operation temperature of the battery 
system. There are multiple monitoring points for the 
temperature, including at the battery cell level and the 
internal ambient temperature of the entire battery system. 
Additional safety mechanisms in the battery system include 
physical fuses for over current protection. 

3. SOC AND SOH FUNCTIONS 

The topic of battery management is of considerable interest 
presently. As a result, there are numerous discussions in the 
literature covering a wide array of methods for SoC and 
SoH calculations. SoC, usually in a percentage, is a measure 
of the charge stored in a battery relative to its maximum 
charge storage capacity. Some aircraft batteries are essential 
for continuous safe flight and landing. In such case, the 
FAA Special Conditions require an indication of the SoC 

for the flight crew. The dispatch ready requirement for the 
SoC may vary per application however a common value 
chosen is when the SoC is greater than 90%. When this 
condition is met, the dispatch criteria are declared to be 
satisfied. 

SoH, expressed as a percentage, is a measure of actual 
capacity with respect to the declared battery capacity. We 
express the SoH as the ratio of the estimated battery 
capacity (in Ah) to the battery capacity when new, i.e., 
𝑆𝑜𝐻 =  𝑆𝑜𝐻𝑡

𝑆𝑜𝐻𝑛𝑒𝑤
. In this sense, the SoH can be additionally 

used as an advance indication of the future usefulness of a 
battery.  

Our lithium batteries provide a signal to the flight crew 
indicating that the battery can perform the required mission 
in the form of a “Clear to Dispatch” signal. For battery 
systems whose mission involves starting aircraft engines, 
there may be an additional ‘Clear to Start’ indicator. Both of 
these indicators may be generalized as an indication that the 
battery has sufficient available capacity, given the present 
environmental conditions and age, needed to perform a task. 
We began this work with these criteria in mind and with an 
economically beneficial intention of eliminating the need for 
removing the battery for SoH testing. 

3.1. Estimation of SoC and SoH  

There are several practical constraints to consider for an 
embedded SoC estimator; not the least is the need to include 
present environmental conditions in the state model (not a 
trivial matter as these state parameters are, themselves, 
dynamic and must be estimated) as well as available 
computational throughput. There are numerous methods for 
measuring SoC and SoH in current literature. For example, 
Di Domenico et al. (2010) use a model of the transport 
phenomenon in their approach and Lin et al. (2013) use 
thermal conduction models in theirs. The approach that we 
initially settled on was to employ the Unscented Kalman 
filter (UKF). A good description of the UKF is available in 
Kim et al. (2009) or Terajanu (2011). We used the UKF to 
develop an estimator used to build the SoC algorithm.  

During validation and under certain conditions, the results 
were promising but not consistent. The testing clearly 
exposed the sensitivity of the filter, which relies on a system 
state, or battery model. Even slight variations in the battery 
model caused divergence in the filter such that, in the end, 
the results required further refinement prior to being directly 
implemented as targeted.  

The sensitivity of the system parameters led us to conclude 
that an adaptive model, necessary to accurately reflect the 
physical changes in the battery due to aging, was not likely 
to prove sufficient for our needs at this time. Such an 
adaptive model is impractical given our computational 
constraints and the need for a much larger set of data to 
fully characterize the different environmental effects. This is 
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not to say that the UKF is a bad observer for this problem in 
general. Other researchers have been very successful in its 
application. See for example, Daigle et al. (2012), and we 
may reconsider it at a future time. Our current program 
constraints drove us to look further. 

3.2. State of charge (SoC) 

While refinements with the UKF carried forward, in a 
parallel fashion, we set about exploring alternate methods 
for tracking the SoC. An alternate method for calculating 
the SoC relies on coulomb counting (CC). This method 
maintains an accurate audit of charge moving in and out of 
the system over time. The basic requirements for this 
method are to have accurate measuring of the magnitude 
and direction of the current flow. There are a variety of 
physical effects to overcome, hardware related and 
chemically based obstacles, which make even such a 
seemingly simple approach quite involved. There are non-
linear effects stemming from environmental conditions, 
battery life, power losses, and measurement accuracy due to 
hardware limitations, which need to considered. The ability 
to provide this estimate within the required accuracy 
depends critically on sensor accuracy and knowing the SoH 
of the battery. As SoC tracking via CC requires knowing 
how much total charge can be held by the battery, the two 
cannot be separated. The type of application facing the SoC 
algorithm is a strong determining factor in the suitability of 
the CC method, along with the accuracy requirements on the 
SoH and current sensor. Tracking the SoC of an 
automobile’s battery is very different when compared to 
tracking the SoC of an airborne vehicle. This is due in part 
to the different charge and discharge scenarios experienced 
in those two examples. If relatively frequent full charge 
cycles are experienced, as in the case of civil aviation, 
calibration of the SoC estimate can take place with the 
completion of each charge cycle. This mitigates drift due to 
current sensing inaccuracies. 

Voltage-based SoC estimation is another method for 
tracking SoC, and used in lead-acid batteries. However, 
because in Li-ion cells, the voltage decreases non-linearly 
with the SoC, this method requires precise measurement of 
the system voltage, accurate predefined knowledge of the 
voltage decay profile under a myriad of conditions and 
accurate knowledge of ambient conditions as well as 
knowledge of operational history to be effective in 
estimating SoC for these chemistries. These requirements 
make voltage-based SoC less appealing than the CC 
method, which, as noted, relies most heavily on the current 
sensor and SoH accuracy. The exact voltage discharge 
curve, depends on the specific chemistry of the Li-Ion cell 
used. In our case, lithium iron phosphate (LiFePO4) is used. 
Unfortunately (at least for the purpose of voltage based SoC 
tracking), this chemistry has a very large section of the 
voltage curve that is nearly constant during discharge. In 
fact, approximately 80% of the charge might be stored 

within 130 mV of the voltage profile, making it very 
difficult to use the relationship between the voltage and the 
state of charge in this region. 

Other methodologies have been proposed in the literature, 
including physics and empirical model-based techniques. 
Like any analytical model, a physics-based model trades off 
complexity for accuracy. There are various approaches 
taken in the literature; such as Di Domenico et al. (2010), 
that incorporates a model of the transport mechanism of Li 
ions in the electrolyte to estimate charge. See also 
Malinowski (2011). 

One can also identify critical parameters for an empirical 
model, conduct experiments and use the experimental data 
to identify correlations. Figure 1, taken from Electropaedia, 
shows the result of a series of experiments that has 
established usable capacity as a function of discharge rate 
and temperature. This data can be turned into lookup tables 
or more sophisticated regression models to form the basis of 
an empirical SoC model. This has shown success both in the 
laboratory and in practical applications, though it also 
illustrates the need for a very large set of data solely to 
characterize one aspect of the SoC.  

 
Figure 1: Experimental data to support a model 

 
For our battery system, the design goal was to implement a 
SoC (and SoH) algorithm for aerospace applications that 
gives an estimate within a given error band when compared 
to the actual SoC and to do so in real-time. The end goal is 
to eliminate the need for periodic removal of the battery 
system from the host aircraft for SoH testing.  

3.2.1. The implemented algorithm 

Our early empirically based SoC algorithms were not 
successful in reaching our targets. Validation testing 
exposed weaknesses in correlating the slower time constants 
of the model with the rapid dynamic responses resulting 
from changing load conditions. As a result, a new approach 
was formulated which combined a voltage based method 
and the CC tracking method. The SoC is determined by 
using a weighing factor to change the amount of reliance on 
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SoC calculated based on CC vs. the open circuit voltage 
(OCV) vs. SoC data on the cells (this data is collected 
during assembly and stored on the battery). The weighting 
scheme will be described further below.  

A charge cycle is completed when the upper cut off voltage 
is reached in constant current mode followed by a constant 
voltage charge. Most often in civil aviation, the battery will 
complete a charge cycle on a regular frequency. By 
definition when fully charged the actual SoC is at 100%. We 
calibrate the SoC estimate by setting it to 100% whenever 
the unit completes a charge. This is done during the testing 
phase. 

The OCV charge/discharge curve for lithium iron phosphate 
has a large, nearly constant voltage region, e.g., a 15% SoC 
range may be represented by an approximately 3 mV 
voltage change. Voltage readings in nearly constant regions 
are not sufficiently reliable due to the necessary accuracy of 
the measurement in such a region. For this reason, our 
algorithm incorporates a disparity weighting technique for 
the final SoC estimate. When not charging or discharging, 
the SOCOCV is combined with the most recent SOCCC by 
weighting the contribution from each method as a function 
of the OCV. 

The weighting curve is given through incremental or 
differential capacity analysis as a scaling factor. 

   𝑄𝑑𝑖𝑓𝑓 =  1
𝑄

 𝑑(𝐴ℎ)
𝑑𝑉

,   (1)  

Where Qdiff is the differential capacity, Q is the total 
capacity in coulombs, and d(Ah)/dV is the derivative of the 
amount of charge added or removed with respect to the cell 
voltage change. 

The method relies on the fact that in regions where a large 
amount of charge (d(Ah)) is stored with a very small change 
in voltage (dV), the SOCCC is likely to be more accurate 
than the SOCV, and is thus amplified. 

With this real-time algorithm in place several tests were run 
in our actual battery system, at a variety of currents and 
temperatures. The test set included “ping-pong” testing; 
where we ran charge and discharge cycles for a variety of 
fixed time periods to quantify the effect of drift in the SoC 
estimate over time, drift being a known weakness of the CC 
method. In the long run, the drift is overcome by the battery 
charge cycle. When the battery charges to full capacity 
during normal operation, the SoC is known to be 100%.  
When reset to the known value, the drift resulting from the 
CC accumulation measurement error is eliminate and the 
cycle restarts. The results, which meet our expectation, are 
discussed in the results section. 

3.3. State of Health (SoH) 

As in the case of SoC, there are several methods for 
measuring SoH. Model-based, as well as empirical, methods 

are popular for determining SoH Williard et al. (2011) give 
a brief survey of some of these techniques. Hu et al. (2011) 
develop a multi-scale model for determining SoC and SoH 
based on an Extended Kalman Filtering technique. He et al. 
(2011) demonstrated an empirical model based on simple 
regression equations and optimal updating techniques. Le et 
al. (2011) show some very promising results using empirical 
techniques for the determination of SoH. A comprehensive 
presentation from Salman, et al. (2011) discusses what GM 
Research has been doing in all BPHM fields. Similarly, 
Klein (2011) gives a good overall perspective of BPHM. 

Typically, aviation batteries have an end of life defined as 
when the measured capacity is at 80% of the declared 
capacity. Capacity for this definition is determined at a rate 
of discharge that would result in the rated capacity of a new 
battery (1C) at room temperature. In most existing batteries, 
the capacity can only be measured in the lab. This requires 
the battery to be removed prior to testing and replaced 
which testing is completed.  The goal of a SoH calculation 
is to determine the battery degradation without removing the 
battery from the installation.  

To mitigate uncertainty we intentionally load stress the 
battery to compare the impedance of the cells at the present 
time against the impedance of those same cells when they 
were new.  

The basis for our SoH estimation is a multi-stage load test 
built into the battery. When the assembly of a battery unit is 
complete, an initial impedance test is conducted. This initial 
impedance is saved in the BMU and used as the baseline for 
the SoH calculations for the life of the battery unit. 

SoH tests are initiated automatically by the BMU at regular 
time intervals or at an end-of-charge event. The accuracy of 
the SoH results is increased when the battery SoC is at a 
known level; therefore the SoH test is run after every 
completed battery charge.  

The BMU initializes the module level impedance 
calculation by loading modules at a discharge rate designed 
to completely deplete the battery within 1 hour, or a 1C 
discharge rate. The individual module voltages and currents 
are logged. The BMU then initializes a high rate discharge 
for all modules. Again the module voltages and currents are 
logged. The voltage and current deltas are calculated and 
compared to determine the modules impedances. 

Cell impedance can be influenced greatly by temperature 
therefore the cell impedances must be scaled by a 
temperature scaling factor so the measured impedance can 
be correlated to the initial impedance measurement. This 
temperature factor polynomial was experimentally derived 
and is of the form: 

𝑇𝑓 =  
�𝑎+𝑇∗(𝑏+𝑇∗𝑐)�

�1.0+𝑇∗�𝑑+𝑇∗(𝑒+𝑇∗𝑓)��
   (2) 
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Where 𝑇𝑓  is the temperature scaling factor, T is the 
measured temperature and a, b, c, d, e and f are 
experimentally determined coefficients. 

A ratio of the temperature scaled module impedances to the 
initial module impedances, 𝑍𝑑𝑐_𝑟𝑎𝑡𝑖𝑜, is calculated and used 
as an input into another polynomial that was also 
experimentally derived.  

The SoH polynomial is shown in (3). 

 𝑆𝑜𝐻 =  �𝑔+𝑍𝑑𝑐_𝑟𝑎𝑡𝑖𝑜∗ℎ�

�1.0+𝑍𝑑𝑐_𝑟𝑎𝑡𝑖𝑜∗�𝑖+𝑍𝑑𝑐_𝑟𝑎𝑡𝑖𝑜∗𝑗��
  (3) 

Where 𝑍𝑑𝑐_𝑟𝑎𝑡𝑖𝑜 is the ratio of temperature scaled impedance 
to initial impedance and g, h, i and j are experimentally 
determined coefficients. 

Combined with boundary conditions and weighted data such 
as temperature historical measurements, the results have 
correlated well to the actual SoH of the battery modules.  

4. RESULTS 

Before discussing the results, the legends in the following 
figures will be described.  The BMU has an on board 
embedded system which logs and reports the SoC, as 
measured by the Securaplane system, over time.  This 
corresponds to the “BMU Reported SoC” seen in the graph 
legends.  A precision external data logging system was 
connected to the BMU to measure the voltage across and 
current into a given module.  These voltages and currents 
were used to calculate the “Measured SoC” seen in the 
graph legends.   The % error from the graph legends 
corresponds to the absolute value of the percent error 
between the “BMU Reported SoC” and “Measured SoC” as 
seen in equation 4. 

% 𝐸𝑟𝑟𝑜𝑟 =  �"BMU Reported SoC "− "Measured SoC" 
"BMU Reported SoC"

� (4) 

The two figures (Figure 2: Module A - SoC and Percent 
Error and Figure 3: Module B - SoC and Percent Error) 
show how our SoC algorithm tracks the measured SoC for 
two individual modules, A and B. The algorithm is 
generalized for all modules and as such the percent error 
does vary between modules; this accounts for the error 
discrepancy between module A and module B when 
comparing Figures 2 and 3.  

Also of note is the jump in the BMU reported SoC data at 
the end of the data sets. This is the aforementioned 
algorithm calibration when the end-of-charge is detected. 
The error between the final SoC value and 100% arises 
when a 0% SoC is assumed when the module is not actually 
at a 0% SoC value. This calibration can be seen in the 
Figure 2 and 3 for both modules A and B. 

 
Figure 2: Module A - SoC and Percent Error 

 
 

 
Figure 3: Module B - SoC and Percent Error 

 
Also included in the figures is the absolute value of the 
percent error for modules A and B. For both modules this 
error is under 2% for the majority of the charge cycle. The 
rise in percent error near the end of the graphs occurs as all 
modules transition to the constant voltage portion of the 
charging cycle and the charge current decreases. Due to the 
dynamic range of current required to be measured, our 
BMU inaccurately measures very low current values. This is 
the source of the error during the constant voltage charge 
mode. 

The “ping-pong” test results for module A are shown in 
Figure 4: Module A - "Ping Pong" Test Results. This figure 
shows the robustness of the algorithm over time with 
varying levels of current charge or draw. A divergence 
between the measured SoC and the BMU reported SoC can 
most easily be observed at 1:15, 2:15 and 3:15 on the figure. 
The BMU is required to measure a large current range; ones 
of amps to hundreds of amps.  The divergence in Figure 4 is 
due to the BMU’s inaccuracy measuring currents on the 
lower end of the measurement spectrum. To verify the 
accuracy of the algorithm an additional dataset was created 
and plotted which compensates for the incorrect current 
readings of the BMU.  
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Figure 4: Module A - "Ping Pong" Test Results 

SoH testing on substantially depleted battery modules has 
not yet been completed.  However initial test results shown 
in Figure 5: Module B SoH show relatively stable readings 
that establish a downward trend. The SoH progressing lower 
as the battery is aged is congruent with the expectation. 
Earlier results (prior to test number 26) show inaccuracies in 
the temperature scaling coefficients that are shown to be 
resolved from test 26 onwards. These initial results are 
promising; however more exhaustive testing is required to 
validate our SoH algorithm. 

 

 
Figure 5: Module B SoH 

 

5. FUTURE WORK 

The practical implementation of high accuracy SoC and 
SoH algorithms in embedded real-time battery systems has 
proven quite challenging. Such implementations require 
both measurement accuracy and robustness to 
environmental effects. The most significant challenge has 
proven to be developing accurate scaling factor calculations 
for consistent SoH results and having all necessary 
parameters accurately measured by the BMU for precise 
SoC results. Improvement to the algorithm’s accuracy and 
robustness can be attained through further refinement of 

these parameters and increased hardware sensitivity and 
characterization. 
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