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ICD-LM2S, Université de Technologie de Troyes,
UMR 6281 CNRS,Troyes, France

edith.grall@utt.fr
pierre.beauseroy@utt.fr

antoine.grall@utt.fr

ABSTRACT

A novel method is proposed to exploit jointly degradation
measurements originating from a set of identical systems for
making a degradation prognosis. The systems experience dif-
ferent degradation processes depending on operational condi-
tions. The degradation processes are assumed to be Gamma
processes. The aim is to cluster the degradation paths in
classes corresponding to the different operational conditions
in order to group properly the data for the estimation of degra-
dation process parameters. A model of Gamma process mix-
ture is considered and an expectation-minimization approach
is proposed to estimate the unknown parameters. The feasi-
bility of the method is shown on simulated cases. Progno-
sis results obtained with the proposed method are compared
with results obtained with basic strategies (considering each
system alone or all system together).

1. INTRODUCTION

To estimate the remaining useful lifetime (RUL) of a dete-
riorating system it is necessary to be able to model its dete-
rioration in order to predict when the deterioration leads to
a failure i.e. when it reaches a given threshold. To perform
this RUL prognosis one generally relies on measurements of
the degradation level and on a degradation model which is
assumed to describe the degradation evolution in time (Si,
Wang, Hu, & Zhou, 2011; Nystad, Gola, & Hulsund, 2012).
For example, in the case of a metal pipe corrosion, the thick-
ness provides a deterioration measure.

The Gamma process is widely used for degradation models
when deterioration is monotonic and gradual (Van Noortwijk,
2009). This process is defined by a set of parameters, in par-
ticular the shape and scale parameters in the case of an homo-
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geneous process. These parameters are usually unknown and
must be estimated in order to perform prognosis. Obviously
the reliability of prediction is directly related to the estima-
tion precision. Most of the time, in operational conditions
the amount of measurement is very limited. So when a set
of similar systems is available, one can use the data coming
from all the systems in the set to estimate the model parame-
ters. The expected gain of using all measurements together is
to improve the estimator precision (reduction of its variance
for example).

By considering all systems as a single one while estimating
the model parameters it is assumed that the degradation pro-
cess model is the same for all systems. In most cases, the
degradation process depends also on operating conditions that
may be partially unknown. In the pipe corrosion example, the
evolution of the pipe thickness depends on the used metal but
it also depends on the characteristics of the fluid carried by
the pipe (liquid/gaz, temperature, pressure. . . ) and on the lo-
cation (air/ground/underwater. . . ) and on the environmental
conditions of the pipe (temperature, humidity. . . ).

In this paper, we consider that we have a limited amount of
data from different systems. Each system has one operating
condition among an unknown finite number. Then each sys-
tem evolves in relation with its operating condition, which
remains always the same. This is not a system which evolves
in different classes corresponding to functioning modes, as
in (Ramasso & Gouriveau, 2014).

We propose a method to cluster the observed systems in classes,
corresponding to each operating condition. The degradation
process is assumed to be ruled by a Gamma process model.
The aim is to estimate the parameters of these Gamma pro-
cesses in order to predict their RUL. In order to tackle the
hypothesis of a number of operating conditions, a model of
Gamma process mixture is introduced. An expectation-minimization
algorithm is proposed to estimate the parameters of each pro-
cess in the mixture model.
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The problem is formalized in section 2. Then in section 3,
the mixture model and the expectation-minimization algo-
rithm (Ambroise & Govaert, 1998)(Hu & Sung, 2006) are
presented to determine the clusters. In section 4, the consid-
ered prognosis is described and a criterion for comparing the
prognosis values obtained according to different strategies of
the Gamma process parameter estimation is proposed. In sec-
tion 5, results on simulated data are presented and analyzed.
A conclusion on the selection of process classes number and
on future developments ends the paper.

2. PROBLEM FORMULATION

This section first gives a description of the problem and nota-
tions and ends with a brief recall about the Gamma process.

2.1. General Aim

The data we consider originates fromN paths describing degra-
dation process realizations. Each path pn, (n = 1, . . . , N)
is composed of |pn| observations ln,i with i = 1..|pn|. The
observation ln,i is characterized by the time instant tn,i, and
the deterioration level xn,i = x(tn,i) ∈ Ωx ⊂ R. Then
pn = {ln,i = (tn,i, xn,i)}i=1..|pn|.

We suppose that the observation set can be divided into K
unknown clustersCk, (k = 1, . . . ,K). In practise, each clus-
ter would correspond to an operating condition. Each cluster
represents a deterioration process characterized by some un-
known parameter vector belonging to the parameter set Θ =
{θk}Kk=1. Besides, the latent membership, or cluster labels of
paths are denoted by z = {zn}Nn=1 where zn = k means that
the path pn belongs to the cluster k. A set of cluster labels
defines a partition of all paths. Obviously, for a given path n,
all observations ln,i, (i = 1, . . . , | pn |) belong to the same
cluster.

The aim is to determine the latent cluster label for each obser-
vation and jointly the parameter vector of each process. Af-
terwards this parameter vector can be used to do prognosis.
As an illustration, the prognosis we consider in this paper is
the mean remaining useful lifetime, defined as the remaining
time before reaching a given deterioration threshold which is
the failure limit.

In this paper the chosen model for the deterioration processes
is the Gamma process, parameterized by 3 parameters, a, b
and u described in section ??. The increments, given by
x(tn,i) − x(tn,i−1) with tn,0 = 0 and x(0) = 0, are inde-
pendent. Their density distribution in the cluster k depends
on the time and on the parameter θk, and can be written as

fk (x(tn,i)− x(tn,i−1) | tn,i, tn,i−1, θk) .

In the following, for simplicity we will use the notation
fk(∆xn,i|θk). It has to be noticed that the density distribu-

tions of all the degradation increments are not the same be-
cause the increments are usually all different and/or the pro-
cess may be not stationary.

The objective is to find out the unknown cluster labels {zn}Nn=1

and consequently the distribution parameter set θ = {θk}Kk=1,
such that paths in the same cluster originate from a process
model with the same parameters.

The relevance of a partition described by z and a parameter
set θ can be measured using the log-likelihood given by

l(z, θ) =

N∑
n=1

|pn|∑
i=1

logfzn(∆xn,i | θzn) (1)

2.2. Gamma process

Mathematically, the Gamma process is defined as follows:
let A(t) be a non-decreasing, right-continuous, real-valued
function for t ≥ 0, with A(0) = 0. The Gamma process
with shape function A(t) and scale parameter b > 0 is a
continuous-time stochastic process {X(t), t ≥ 0} such that:

• X(0) = 0 with probability one;

• {X(t), t ≥ 0} is a stochastic process with independent
increments;

• X(t)−X(s) follows the Gamma distribution Γ(A(t)−
A(s), b) for 0 ≤ s < t

The definition of the Gamma process leads to two straightfor-
ward properties:

• {X(t), t ≥ 0} is a non-decreasing process.

• For all t ≥ 0, the expectation value and the variance of
X(t) could be written as:

E(X(t)) =
A(t)

b
Var(X(t)) =

A(t)

b2
(2)

In the degradation modeling framework, a non-homogeneous
Gamma process defined by A(t) = atu, (a > 0, u > 0)
is often considered. Thus the process is described by three
parameters : a, b, and u. In this case, X(t) − X(s) follows
the Gamma distribution Γ(a(tu − su), b).

Two methods are often mentioned for the parameter estima-
tion of the Gamma process: the moments estimation and the
maximum likelihood estimation (Cinlar, Osman, & Bazant,
1977). The maximum likelihood estimator is asymptotically
unbiased, which means the estimates converge to the true val-
ues as the number of observations increases as: N →∞. On
the other hand, the moments approach leads to simpler formu-
lae of the estimator. It is more straightforward to implement
and the computation time is much reduced compared with the
maximum likelihood method.
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3. PROCESS CLUSTERING

The proposed approach is based on the computation of mix-
ture models using the expectation-maximization (EM) algo-
rithm (Dempster, Laird, & Rubin, 1977). Beside, side infor-
mation is considered according to (Shental, Bar-Hillel, Hertz,
& Weinshall, 2003).

3.1. Related work

The EM algorithm is an iterative method that produces a set
of parameters that locally maximizes the log-likelihood of a
given sample, starting from an arbitrary set of parameters. It
is often used to estimate the unknown parameters of a mixture
model of K p.d.f. fk given by:

f(x|θ) =

K∑
k=1

αkfk(x|θk)

where αk is the probability of class k and fk(x|θk) the a pos-
teriori probability of class k.

Furthermore the procedure we use is based on the work of
Shental et al. (Shental et al., 2003) which describes an EM
procedure for a Gaussian mixture model and for handling
positive constraints, indicating that some observations arise
from the same source. The data set is assumed to be a set of
chunklets, and each chunklet is a set of points that originate
from the same source. Alternating E steps and M steps leads
to the estimation of the probability of each class, and the pa-
rameters (mean and variance) of each Gaussian class. The
solution can be considered as a soft partition.

3.2. Proposed method

The problem we deal with, in comparison with the problem
considered in (Shental et al., 2003), has to lead to a hard parti-
tion. Then we add an intermediate classification step between
the E and M steps. Such a classification step has been intro-
duced in the CEM algorithm (Celeux & Govaert, 1992, 1995)
for hard classification problem using mixture models without
constraints.

In comparison with the problem considered in (Shental et al.,
2003), there is another main difference. The model is not a
Gaussian mixture model and especially the degradation incre-
ments have different density distributions. The density distri-
butions of all the degradation increments would be the same
only in the case of homogeneous Gamma process, and of reg-
ularly sampled paths.

Thus, we have proposed an algorithm based on the mixture
models for the problem of statistical process clustering with
the two following properties. On the one hand, it takes into
account that observations in a same path belong to a same
class, and on the other hand it takes into account that a hard
classification is searched.

The E step at iterationm consists in calculating an estimation
of the a posteriori probability for each observation using the
parameters θ(m−1) = (a(m−1), b(m−1), u(m−1)). The poste-
rior probability c(m)

nk at iteration m that the path n belongs to
class k, given pn and the parameter θ(m−1) writes according
to

c
(m)
nk = p(zn = k|pn, θ(m−1))

=
α
(m−1)
k

∏|pn|
i=1 fk(∆xn,i|θ(m−1)k )∑K

r=1 α
(m−1)
r

∏|pn|
i=1 fr(∆xn,i|θ

(m−1)
k )

(3)

with

fk(∆xn,i|(ak, bk, uk)) ∼ Γ(ak(tuk
n,i − t

uk
n,i−1), bk)

The expectation of the log-likelihood over all possible assign-
ments which comply the given constraints is given by:

E(l(z, θ)) =

K∑
k=1

N∑
n=1

|pn|∑
i=1

logf(∆xn,i|k, θk)p(zn = k|pn, θ(m−1)k )

+

K∑
k=1

N∑
n=1

logαkp(zn = k|pn, θ(m−1)k )

The M step at iteration m consists in computing the parame-
tersα(m)

k , and θ(m) that maximize the expected log-likelihood
found on the E step. The parameter α(m)

k is given by

α
(m)
k =

1

N

N∑
n=1

(z(m)
n = k) (4)

and the parameters (a(m), b(m), u(m)) are determined by max-
imization of the log-likelihood.

Then the algorithm is the following one.

• Initialize the parameter set θ(0)

• Repeat until l(z(m), θ(m))− l(z(m−1), θ(m−1)) < ε

– compute c(m)
nk for each path n and each class k using

relation (3)

– determine the partition z(m) : choose z(m)
n = k cor-

responding to the largest value c(m)
nk

– determine the parameter vector θ(m) that maximizes
l(z(m), θ(m))

– compute the new value of the probability α(m)
k for

each class k using relation (4).

4. PROGNOSIS AND PERFORMANCE EVALUATION

4.1. Considered Prognosis

The considered prognosis is the remaining mean time un-
til a threshold is reached. Let S be a threshold, pn a path
with its last observation (tn,|pn|, xn,|pn|), its class label zn,
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and a set of Gamma process parameters corresponding to the
class label θzn = (azn , bzn , uzn). If the last degradation
level is smaller than the threshold, i.e. xn,|pn| < S, then
it is possible to estimate the remaining mean time until the
threshold is reached. This time is noted Tn,θzn (S). Since
the increment ∆Xn,i follows a Gamma distribution given by
Γ(azn(t

uzn
n,i − t

uzn
n,i−1), bzn), its mean is

E(∆Xn,i) =
azn
bzn

(t
uzn
n,i − t

uzn
n,i−1)

Then, taking i = |pn| + 1, it leads to the value Tn,θzn (S)
given by:

Tn,θzn (S) =

(
(S − xn,|pn|)

bzn
azn

+ t
uzn

n,|pn|

) 1
uzn

− tn,|pn|

For a given value of K, a set Θ = {θk}Kk=1 and a set of
class labels z = {zn}Nn=1, the remaining mean time until a
threshold S is reached can be computed for each path n.

4.2. Prognosis performance evaluation

In the case of simulated data, it is possible to compare the
estimated prognosis result with the theoretical one. We have
prefered to use the theoretical remaining useful time than a
simulated value that we could obtain by running the path up to
the failure threshold. The estimated prognosis result for path
n, Tn,θ̃z̃n (S), is obtained using the estimated set of parame-

ters Θ̃ and the estimated set of class labels z̃. The theoretical
prognosis is noted Tn,θzn (S).

A large number of metrics in the forecasting applications have
been proposed, as accuracy and precision, which are classi-
cal metrics. The metrics we propose to use in this paper for
assessing the prognosis is near to relative accuracy given in
(Saxena, Celaya, Saha, Saha, & Goebel, 2010). It is a relative
error criterion which allows to give the same importance to
all classes. This is critical in our case because the precision
depends on the class evolution. For a path n, and a threshold
S we define the relative error en(S) as:

en(S) =
Tn,θ̃z̃n

(S)− Tn,θzn (S)

Tn,θzn (S)
(5)

Using all the paths for which the threshold is not reached for
the last sample, i.e. xn,|pn| < S, it is possible to compute the
mean of all the errors en to obtain Ee(S) and to compute the
standard deviation to obtain Se(S)

Ee(S) = Ê[{en(S)}n|xn,|pn|<S ] (6)

Se(S)(S) = σ̂[{en(S)}n|xn,|pn|<S ] (7)

The mean error should be equal to 0. The criterion which
characterizes the performance of an approach is the standard
deviation of the error.

Table 1. parameters - situations 1 and 2

Situation 1

class 1 class 2 class 3 class 4
a 16.67 28.12 41.67 55.80
b 1.67 1.87 2.083 2.23
u 0.8 0.8 0.8 0.8

Situation 2

class 1 class 2 class 3 class 4
a 16.67 24.5 33.75 43.21
b 1.67 1.75 1.87 1.96
u 0.8 0.8 0.8 0.8

5. RESULTS

Simulations have been done considering two situations. For
both of them, there are 4 classes, each class with 6 paths,
each path with 3 samples. The time increments are within an
uniform distribution between 2 and 8. Parameters for both
situations are given in table 1.

The mean theoretical evolution respectively for situation 1
and situation 2 is described in figure 1a and figure 3a. In
situation 2, the classes are more similar than in situation 1: at
each instant the mean values for 2 different classes are closer
than in situation 1. However the standard deviations are the
same for both situations.
Example of simulated data respectively corresponding to sit-
uation 1 and situation 2 are given in figure 2a and figure 4a.

The simulated data has been used to determine jointly the
class of each path and the parameter set of each class, for
different values of K (a priori number of classes). Simula-
tions have been done for K between 1 and 7.
For the example of situation 1, the estimated class of each
path for K = 3, 4, 5 is described in figures 2b, c, and d. The
mean evolution of the degradation corresponding to the esti-
mated parameters is given in figures 1b, c, and d. In the case
of K = 4 classes, it is possible to determine the number of
paths which are misclassified, since it corresponds to the the-
oretical number of classes. It can be seen than one path of
class 1 (’+’ red) is affected to class 2 (’*’ green). All other
paths are correctly classified.

Similar results for situation 2 are given in figure 4, for the
estimated class of each path, and in figure 3, for the mean
evolution of the degradation. In the case of K = 4 classes, 3
paths are misclassified: one path of class 1 is affected to class
2 and two paths of class 2 are affected to class 3.

The prognosis Tn,θ̃z̃n (S) has been determined in 9 cases of

estimation of parameter θ̃:
• “semi-theoretical case” : the parameter set is estimated

assuming the true class of each path is known;
• “path case” : a parameter set is estimated for each path

using the 3 observations of the considered path;
• “estimated K-class case” (for K = 1 . . . 7): the class of

each path and the parameter set of each class are deter-
mine jointly.
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Figure 1. Evolution of the mean degradation value in situ-
ation 1 for (a) the theoretical parameters (b) the estimated
parameters with 4 classes (c) the estimated parameters with
3 classes (d) the estimated parameters with 5 classes. Each
color corresponds to an estimated class.
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Figure 2. Example of simulated data in situation 2 for (a) the
theoretical class (b) the estimated class for 4 classes (c) the
estimated class with 3 classes (d) the estimated class with 5
classes. Each color corresponds to an estimated class.
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Figure 3. Evolution of the mean degradation value in situ-
ation 2 for (a) the theoretical parameters (b) the estimated
parameters with 4 classes (c) the estimated parameters with
3 classes (d) the estimated parameters with 5 classes. Each
color corresponds to an estimated class.
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Figure 4. Example of simulated data in situation 2 for (a) the
theoretical class (b) the estimated class for 4 classes (c) the
estimated class with 3 classes (d) the estimated class with 5
classes. Each color corresponds to an estimated class.
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Figure 5. Example of prognosis for (a) the theoretical pa-
rameters (b) the estimated parameters for each path (c) the
estimated parameters with 4 classes. Each color corresponds
to a theoretical class.

The prognosis obtained in the “semi-theoretical case” leads
to the minimum error which is reachable, for a given path
set. The obtained error is due to the error of the parameters,
arising from the estimation with a limited number of paths.

In figure 5, an example of prognosis for situation 2 with a
threshold S = 250 shows “theoretical case”, “path case” and
“estimated 4-class case”.

In the “path case” there exists a large variance and the bad
estimation is due to the very low number of samples for each
path. This is particularly visible when the degradation level at
the last inspection time is far from the failure level i.e. when
the time of prognosis is far from the failure time. In the case
of class 1 (red ’+’) predicted mean failure times are in [40, 80]
instead of [50, 60] for the “theoretical case”. In the “estimated
4-class case”, the impact of the misclassified paths appears
clearly. One path of class 1 is affected to class 2 and two paths
of class 2 are affected to class 3. Hence the estimated value
for parameter u is smaller than its theoretical value for class 2
(green ’*’) and the green line on figure 3b is more curved than
on figure 3a. As a consequence the estimated mean residual
lifetime for class 2 is greater than the theoretical one.

The simulation has been repeated for 200 path sets and for

Table 2. Estimated mean Ee(S) (relation 6) and estimated
standard deviation Se(S) (relation 7) for situation 1

(a)

threshold 200 300 350

semi-theor. 0.0057 0.0050 0.0055
1 path 0.0289 0.0276 0.0309
1 class -0.1183 -0.0123 -0.0104
2-class -0.0194 0.0002 0.0009
3-class -0.0080 0.0031 0.0037
4-class 0.0067 0.0059 0.0064
5-class 0.0103 0.0089 0.0097
6-class 0.0126 0.0109 0.0119
7-class 0.0143 0.0128 0.0140

(b)

threshold 200 300 350

semi-theor. 0.0450 0.0520 0.0555
1 path 0.1629 0.1813 0.1954
1 class 0.2960 0.3462 0.3512
2-class 0.1954 0.1897 0.1924
3-class 0.1117 0.1193 0.1221
4-class 0.0554 0.0615 0.0650
5-class 0.0745 0.0821 0.0868
6-class 0.0859 0.0947 0.1004
7-class 0.0961 0.1062 0.1131

Table 3. (a) Estimated mean Ee(S) (relation 6) and (b) esti-
mated standard deviation Se(S) (relation 7) for situation 2

(a)

threshold 150 200 250

semi-theor. 0.0073 0.0059 0.0054
1 path 0.0333 0.0280 0.0276
1 class -0.1777 -0.0581 -0.0124
2-class -0.0202 -0.0106 0.0003
3-class -0.0010 0.0011 0.0059
4-class 0.0098 0.0080 0.0075
5-class 0.0138 0.0105 0.0099
6-class 0.0159 0.0120 0.0113
7-class 0.0186 0.0143 0.0136

(b)

threshold 150 200 250

semi-theor. 0.0413 0.0460 0.0500
1 path 0.1602 0.1649 0.1769
1 class 0.2232 0.2797 0.3007
2-class 0.1755 0.1651 0.1642
3-class 0.1090 0.1154 0.1169
4-class 0.0708 0.0744 0.0769
5-class 0.0821 0.0876 0.0913
6-class 0.0893 0.0950 0.0995
7-class 0.0984 0.1043 0.1099
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three thresholds. The estimated prognosis values Tn,θ̃z̃n (S)

have been compared with the theoretical value Tn,θzn (S).
The mean error Ee(S) given by relation (6) and Se(S) given
by relation (7) have been computed for the 9 cases (described
above) of estimated Gamma process parameters and for each
threshold. The estimated mean errorEe(S) and the estimated
standard deviation Se(S) for situation 1, obtained using 200
path sets, are given in tables 2(a) and (b). For situation 2 they
are given in tables 3(a) and (b).

As expected, the estimated mean error is close to 0. For both
situations, the worse result is obtained with the “estimated 1-
class case”. From estimated standard deviation point of view,
the closest case to the “semi-theoretical case” is the “esti-
mated 4-class case”. It corresponds to the theoretical number
of classes and to the expected result. As one could expect,
results in situation 2 are worse than in situation 1 because the
classes are more similar. Consequently the number of mis-
classified paths is larger than in situation 1 and the Gamma
process parameters are estimated with a larger error. For both
situations, when the number of classes is larger than the theo-
retical one, the impact is not very important. On the contrary
when the number of classes is smaller than the theoretical
one, some paths from different Gamma process are mixed and
the parameters are not estimated correctly and consequently
the prognosis error can be important.

6. CONCLUSION

In this paper, a method is proposed for making a degrada-
tion prognosis based on Gamma process model parameters
that are estimated using degradation measurements on differ-
ent systems. It is assumed that there are a number of oper-
ational conditions leading to different degradation processes.
Estimating the Gamma process model parameters using only
one system leads to poor results due to the limited number
of samples. On the contrary, estimating the Gamma process
model parameters considering only one Gamma process leads
to poor results due to the mixture of systems with different
degradation trends.

The proposed method consists in considering a mixture of
Gamma process models. It allows to cluster the degradation
paths in classes corresponding to the different degradation
trends and to estimate the Gamma process parameters. It uses
an expectation-minimization approach that takes into consid-
eration that all measurements in a same path belong to the
same class.

Simulations have been done and demonstrate the feasibility of
the method. They have shown that grouping paths originating
from the same process allows to really increase the progno-
sis performance in comparison with the two basic strategies
(all paths in one class, one class per path). The best result
has been obtained with the class number equal to the theoret-
ical one ; however if the number of classes is sur-estimated

the result evolves slowly. A method for choosing the number
of classes, using the Bayesian information criterion (Kass &
Raftery, 1995), is currently being studied.
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