
Evolving the Data Management Backbone: Binary OSA-CBM and

Code Generation for OSA-EAI

Andreas Löhr
1
 and Matthias Buderath

2

1
Linova Software GmbH, München, 80805, Germany

andreas.loehr@linova.de

2
Airbus Defence & Space, Manching, 85077, Germany

matthias.buderath@cassidian.com

ABSTRACT

Integrated system health monitoring and management

(ISHM) is a field of research and development where both

academia and industry is highly focused on. Airbus Defence

& Space has recognized that simulation is a key capability

for developing ISHM technologies and is therefore in the

process of developing a comprehensive simulation

framework in that area. One significant building block is to

invite 1st class technology providers, e.g. Universities and

SMIs, to provide innovative technologies and support their

integration into the simulation framework. This paper is a

joint presentation of Airbus Defence & Space and Linova

Software GmbH, an Airbus Defence & Space preferred

software provider. The Open System Architecture for

Condition-based Maintenance (OSA-CBM) and Open

System Architecture for Enterprise Application Integration

(OSA-EAI) are complementary reference architectures and

represent an emerging standard for application domain-

independent asset and condition data management. The

architectures address several challenges in building

Prognostic Health Management (PHM) systems, which are

commonly composed of disparate and distributed hard- and

software components. Therefore, a common challenge to

PHM systems is to be confronted with vast amounts of data

which are exchanged over a heterogeneous collection of

communication channels. Any such system’s success

depends upon an open, uniform, and performance-optimized

solution for data management. A solution that includes: data

definition, data communication, and data storage. We will

follow up on previous work and report on our experiences

from implementing our second generation data management

backbone based on binary OSA-CBM transmission. We also

aim at implementing a fully OSA-EAI compliant database.

We confirmed the general feasibility of OSA-CBM and

OSA-EAI by previous work. We have now migrated our

data management backbone to the current release of OSA-

CBM, which includes a standard binary transportation

format. We report on our experience from implementing this

format and discuss issues regarding message handling and

Meta data overhead. In previous work we used a simplified

and stripped-down implementation of OSA-EAI and our

current goal was to be fully compliant with the OSA-EAI

standard. In order to reach this goal, we have created a code

generator which receives OSA-EAI-provided

documentation artifacts as input. It produces compileable

source code for a Java-based 3-tier OSA-EAI information

system. We have identified issues with the OSA-EAI

standard regarding completeness and handling, which we

discuss, and suggest means for mitigation or enhancements

to the standard. To underline the feasibility of our solutions,

we provide empirical evidence drawn from our work. The

conclusion is a summary of our experience and the direction

of future work in the area of PHM system design for aircraft

maintenance. In total, our contribution to the community is

best seen from a practitioner’s perspective.

1. INTRODUCTION – MIMOSA STANDARDS

The paradigm shift from prevention towards prediction,

which PHM systems impose to maintenance and operational

processes of technical system, promise higher availability

and higher operational capability, coupled with a reduction

of overall maintenance costs. The challenges, which

programs to introduce PHM systems in any application

domain must face, are twofold. The enablers challenge

deals with developing enabling technology, such as novel

sensors, state detection, and health assessment

methodologies and models for determining future life of

(possibly deteriorated) components. The data challenge

deals with integrating heterogeneous data from disparate

and distributed sources into consolidated information and

dependable decision support. It has therefore been

recognized by the community that efficient data

management solutions are crucial to success of PHM. Such

Andreas Löhr et al. This is an open-access article distributed under the

terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

2

a solution should introduce a commonly accepted

framework for data representation, data communication, and

data storage. In other words, all solutions should be based

on a commonly accepted and open standard in order to

allow for seamless integration. In this writing we focus on

the data challenge, i.e., the realization of a highly productive

and standardized data management middleware

The organization MIMOSA is a “non-profit [...] industry

association, focused on enabling industry solutions

leveraging supplier neutral, open standards, to establish an

interoperable industrial ecosystem for Commercial Off The

Shelf (COTS) solutions components provided by major

industry suppliers” (MIMOSA). The organization performs

standardization work by defining reference architectures for

PHM data management, respectively, aspects of PMH data

management. We have chosen to base our data management

backbone on two of MIMOSA’s proposed standards, which

are introduced in the following.

1.1. OSA-CBM

The Open System Architecture for Condition-based

Maintenance (OSA-CBM) is an emerging reference

architecture which has a chance of becoming the de facto

standard for exchanging data in a condition monitoring

system. Being an implementation of the ISO-13374

functional specification, the architecture defines six

functional layers. Each layer is allocated different and

unique functions of the data processing chain in a condition

monitoring system (see Figure 1).

Figure 1.OSA-CBM Reference Architecture

This architecture focuses on the definition and

communication of PHM data. Specifically, on the question

as to which data entities and events can be exchanged

between the layers during operation and the communication

interfaces used for this purpose. The standard recommends

the usage of XML messages, which are transported over

HTTP, and for this purpose, a thorough collection of

specifications for XML messages is provided. Recently, a

binary transmission format for OSA-CBM messages has

been added to the standard, and it is recommended to be

used in embedded systems, or systems with limited

computing resources (Löhr, Haines & Buderath 2012). In

this writing, we will report about our experience in

implementing the binary OSA-CBM format.

1.2. OSA-EAI

The reference architecture OSA-EAI is complementary to

OSA-CBM and specifies comprehensive data storage

architecture for asset management and configuration

management systems. This architecture consists of: a

physical relational data model (Common Relational

Information Schema, CRIS), a corresponding logical object

model (Common Conceptual Object Model), and CRUD

interfaces (Create, Retrieve, Update, Delete) for all defined

entities, as depicted in Figure 2. The data model is

harmonized with OSA-CBM to facilitate storing data

coming from all six OSA-CBM layers. Analogously to

OSA-CBM, it is recommended that clients exchange XML

messages transported via HTTP. For this purpose, the

authors of the OSA-EAI standard provide a multitude of

CRUD XML message specifications.

Figure 2. OSA-EAI Reference Architecture

The XML message specifications have been provided in

XSD format. In this writing, we describe a Java code

generator, which processes the XSD files and generates a

fully functional client- and application tier upon the CRIS

relational data model provided by MIMOSA.

2. ENVIRONMENT

Airbus Defence & Space is developing a comprehensive

simulation framework for research in the areas of condition

monitoring and prognostic health management. The

framework includes airborne functions hosted on embedded

systems, as well as ground-based functions hosted on PC-

based systems. The primary objective is to interconnect both

airborne and ground-based systems using a uniform data

management philosophy and, as far as possible, uniform

communication protocols. The simulation environment

consists of airborne and ground-based functions which are

connected by a data management backbone upon OSA-

CBM and OSA-EAI.

In the following section, we provide a brief technical

overview, whereas a more detailed description can be found

in Löhr, Haines & Buderath, 2012. The air segment of the

simulation framework models systems and associated

sensors for which IVHM capabilities shall be developed. At

the core of the framework is a central IVHM data processor

to which data gets pushed by OSA-CBM. The IVHM data

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

3

processor calculates IVHM information according to the

OSA-CBM layer specifications, up to the health assessment

layer (refer to Figure 3).

Figure 3. Air Segment of Simulation Framework

The central data processor supports download of data, which

has been collected and calculated on board the aircraft, to

the ground-based environment for further processing (e.g.

during the aircraft’s turnaround). Once downloaded, the data

is stored in a central data management component, which

we call the CBM data warehouse (refer to Figure 4).

Figure 4. CBM Data Warehouse

The CBM data warehouse is based on the OSA-EAI

reference architectures and it serves two major purposes:

first, it hosts all current (i.e. short timeframe) and historical

(i.e. long timeframe) condition data. Second, it provides

services to distributed client applications that are involved

in the PHM process.

In our context, data management includes the entire data set

life cycle: from initial instantiation of a sensor value,

transportation to the IVHM data processor, downloading to

the ground-based environment, on through to storage and

further processing.

3. OSA-CBM ENCODING IN THE AVIATION DOMAIN

When implementing OSA-CBM for an on-board embedded

system one has to consider the software certification context

for in-flight software. In this regard, our implementation

deviates from MIMOSA’s recommendation of transmitting

OSA-CBM-encoded messages via a HTTP/TCP stack.

Instead, we transport OSA-CBM messages via a UDP/IP

stack. In our work we apply OSA-CBM messaging from

data acquisition layer up to health assessment layer and in

the following sections we report about our experience in

implementing the binary OSA-CBM messaging standard in

the C programming language under specific restrictions.

3.1. Programming Environment

When fielding OSA-CBM compliant applications on

embedded systems certified for in-flight usage, several

issues are brought to the fore. Ultimately, two aspects

defined the unique structure of our solution: resource

limitation and non-dynamism. Computing hardware for

avionics, due to qualification requirements, are generations

behind present off the shelf computing hardware.

Implementation rules for applications hosted on real-time

operating systems (such as VxWorks) typically forbid

dynamically allocating memory resources, as these

operations are potentially non-deterministic and lead to

memory leaks if not used carefully. This environment

imposes further constraints on the solution space: due to

qualification or certification requirements (depending on the

risk class of the final system) all embedded code must be

written in the C programming language. Furthermore, UDP

must be used as the sole protocol for network

communication.

3.2. Starting Point

In order to make our current work comparable to prior work,

we transmit the same OSA-CBM event instances as

described in Löhr, Haines and Buderath 2012. This is, a

heavy load data event set which contains four

heterogeneous OSA-CBM DMDataSeq events at

individual sample rates of 160Hz, 360Hz and 1 kHz (in total

2520 floats which corresponds to 10080 raw bytes).

Additionally, we want to transmit a light load data event set,

containing a single DMDataSeq event recorded at 20Hz

(80 raw bytes). Both data event sets will be transmitted with

a frequency of 1Hz. We have previously used these use

cases to compare the standard XML-based OSA-CBM

messaging protocol against a custom binary OSA-CBM

messaging protocol, which we had designed at a point in

time, where the standardized MIMOSA binary messaging

protocol was not yet available to us. The ratio between

transmitted data and usable payload, which shall act as a

benchmark for the standardized binary messaging protocol,

is given below.

 MIMOSA XML Prop. Binary Ratio

Heavy Load 165 345 bytes 40 792 bytes 4.1

Light Load 1 827 bytes 576 bytes 3.2

Table 1. Data Transmission Size Comparison

As seen in Table 1 there is a significant reduction in the

volume of data from XML-based transmission compared to

binary transmission, ranging up to a factor of four. Also,

processing the messages is less costly in binary mode

(Swearingen, Kajkowski, Bruggeman, Gilbertson &

Dunsdon, 2007).

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

4

3.3. Previous Work

For the implementation of our use cases in standardized

binary OSA-CBM, we expected no significant deviation

from the ratio of transmitted data versus usable payload, as

for our custom binary approach. We were however unsure if

it would increase or decrease. Our custom binary format is

not prepared for all optional or dynamic elements of an

OSA-CBM message. We provided maximum boundaries for

dynamic elements and implemented the subset of optional

elements, which we need, as static fields. In contrast, the

standard binary OSA-CBM format can deal with all optional

and dynamic fields, but has to include metadata fields which

control the interpretation of the byte stream.

In our previous work we modeled OSA-CBM data as structs

and captured their memory footprint for direct transmission

to the receiver side. An example can be found in Figure 5.

We transmitted OSA-CBM messages from a 32-bit Ubuntu

sender system on an Intel processor to a 32bit VxWorks

receiver system on a PowerPC. In order to overcome the

platform differences we worked with artificial padding bytes

so that the internal in-memory arrangement of our

transmission structs was equal on both platforms. Also, we

performed byte-swapping on the receiving platform to deal

with high- and little-endian issues. This allowed us to easily

cast the UDP package payload into the required structures

(including pointer remapping) with a minimum of

marshalling and un-marshalling effort.

Figure 5. Data Event Set as Custom C Structure

However, our approach was highly platform- as well as use

case-dependent and did not cater for the full spectrum of

OSA-CBM features. The standard OSA-CBM binary

protocol is platform independent as it

- defines endianess

- introduces a limited set of primitive data types

with specified width and defines signdness

- strictly serializes the OSA-CBM classes into a flat

byte stream. Here, it benefits from the fact that no

multiple inheritance is used in the OSA-CBM

classes

3.4. Design and Implementation

The high level design of our implementation consists of the

following three core parts:

- a representation of all OSA-CBM data types, Meta

data elements, enumerations, constants, etc. as C

language elements, such as enums, structs and

defines. We modelled inheritance as already shown

in Löhr, Haines & Buderath, 2012.

- an encoder library, which receives an instance of

an OSA-CBM data event (struct instances) as input

and transforms it into an OSA-CBM-compliant

binary byte buffer

- a decoder library, which receives a binary byte

buffer as input. It interprets the buffer form left to

right, and instantiates and wires respective structs

from left to right into an OSA-CBM compliant

event structure

We have chosen to not include the actual network

transmission layer into our implementation. It depends on

the deployment of how the encoded bytes are actually

transmitted or the encoded bytes are received. Our C code

implementation is subject to the restrictions pointed out in

section 3.1, according to which we do not have dynamic

memory allocation available. We require that the caller of

the decoder or encoder provides a chunk of (statically)

allocated memory, on which the en- or decoder operations

work. All structs will be allocated within this static piece of

memory, of which the allocation we assume to be external

to the library.

We model OSA-CBM data elements as C structs an enums,

and have restricted the scope of implementation to OSA-

CBM data event elements. Other elements, such as

Configuration, can be implemented analogously. Having the

user of our library modifying the data event struct and its

children directly is possible, but error prone. Meta data

fields could be missed, or the structure might simply be

incomplete or incorrect. To avoid such errors, we provide a

comprehensive set of wrapper functions for creation of

events in the correct structure and for setting attributes on

this structure. The creation functions operate on the pre-

allocated static buffer. With these functions the user can

create and populate an OSA-CBM data event set without

having to deal with implementation details (such as pointer

handling or OSA-CBM Meta data management). Also, the

functions assure that the event is in a valid state at any time.

An example will be given in the following.

1. osacbmCreateNewDataEventSet: provided

with a chunk of statically allocated memory, the

function will create an empty OSA-CBM data

event and return a handle for further manipulation

2. addDMRealToDataEventSet: provided with a

handle to an existing data event set, the function

will add a new DMReal event to the given event

set, hereby hiding all memory handling details.

Also, the function returns a handle to the new

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

5

DMReal event for further manipulation (i.e.,

setting its value).

3. addDMDataSeqToDataEventSet:

analogously, this function will add a new

DMDataSeq event to a given data event set. Using

the returned handle, the DMDataSeq can be

populated

4. addValueToDMDataSeqEvent: given a

handle to a DMDataSeq event, this function can

populate the DMDataSeq event with a potentially

infinite number of values

5. setNumAlertsForDMDataEvent: example

for one or many functions which set specific

attributes on a given event structure

Having constructed the required event structure as described

above, the actual encoding is just one additional function

call. Additionally to the actual data event that should be

encoded, our encoder’s entry function takes a pre-allocated

buffer to which the resulting encoded byte stream shall be

written. The encoder inspects the given struct and serializes

it to the byte buffer. This approach is straight forward as it

means implementing the pre-defined OSA-CBM

specification.

The resulting binary and OSA-CBM compliant content can

then be transmitted with any medium, such as

UDP/Ethernet, a serial line or AFDX, to only name a few

examples. On the receiver side, the decoding process is

essentially the inverse of the encoding process. The function

osacbmDecodeOSACBMBinaryDataPacket receives

the transmitted bytes and a handle to a statically allocated

working buffer. Additionally to the decoded data even

struct, the function returns a handle to an object modeling

the OSA-CBM message properties. Using our wrapper

functions, the user can inspect the content of the just

received data event set; for example, for passing the data

into a state detection or health assessment layer.

3.5. Discussion of Results

As described in section 3.2, we transmit a data event set

containing four heterogeneous OSA-CBM DMDataSeq

events at individual sample rates of 160Hz, 360Hz and 1

kHz. The overall data event set has a frequency of 1Hz. The

resulting data push represents 2,520 individual

measurements being sent across the system every second.

The second sample is a light load data event set, containing

a single DMDataSeq event recorded at 20Hz; the

corresponding overall data event set has a frequency of 1Hz.

The heavy load event transmits 10080 raw bytes and the

light low data set transmits 80 bytes.

Prop.

Bin.

Std.

Bin.

Ratio gross/

net Std.

Delta

Prop.

Heavy

Load
40 792 16 972 1.7 58%

Light

Load
576 568 7.2 -1%

Table 2. Performance of Binary OSA-CBM

The figures in Table 1 illustrate the performance of our

binary OSA-CBM implementation. For the heavy load event

a reduction of 58% of total raw bytes has been achieved. For

the light load data event set the number of raw bytes

increased by 1% -- obviously, Meta data has less impact for

large payloads than for small payloads. We explain the

significant reduction for the heavy load data event by the

possibility to allocate dynamic data sections in the binary

OSA-CBM protocol. Our custom implementation used fixed

blocks with a maximum length for dynamic data fields (e.g.,

strings, arrays) and left unused space populated with

initialization data, whereas in binary OSA-CBM the length

as well as the actually transmitted number of bytes may

vary.

4. OSA-EAI-COMPLIANT CBM DATA WAREHOUSE

The ground segment of our simulation framework includes a

central repository for data and information, called the CBM

data warehouse.

4.1. Motivation

Design of the CBM data warehouse was driven by the

following high-level requirements.

1. act as a central information system

2. provide a uniform and standardized interfaces

3. maintain full traceability for in-service data

The MIMOSA reference architectures define a uniform data

management philosophy that allows for full traceability of

virtually any sensor value and its derived information.

Earlier work (Gorinevsky, Smotrich, Mah, Srivastava,

Keller & Felke, 2010, and others) demonstrated the

feasibility of using these architectures as a reference to build

a comprehensive information system for the aerospace

domain. We consequently considered the selection of OSA-

EAI and OSA-CBM as guidelines for the design of our

CBM data warehouse as a promising approach to satisfy our

high level requirements.

4.2. Previous Work

We have implemented a subset of the OSA-EAI standard for

our initial version of the CBM data warehouse, as described

in Löhr, Haines & Buderath, 2012. The subset was derived

with the aim of providing data management for diagnostics

and prognostics on our candidate systems. We concentrated

on the ability to express system breakdowns (Assets,

Segments, and Parent/Child relations) and the ability to

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

6

associate data from the data acquisition, data manipulation,

and state detection layers. Additionally, each asset was to

have an active history of health assessments and remaining

useful life estimates. We customized the utilized OSA-EAI

tables in a way that would simplify the generation of test

and reference data. We made further customizations to map

specific features of the aerospace domain and stripped the

composite primary keys of each entity down to a single

dataset id, allowing us to strip down foreign keys as well.

This approach was shown to be feasible by Mathew, Zhang,

Zhang and Ma Lin (2006). Finally, we only considered

those columns of any table which we really required. As a

result, our CBM data warehouse was fully compatible to

OSA-EAI, as it represented a subset of the standard.

However, it was not compliant to OSA-EAI and we began

work towards implementing the OSA-EAI standard to its

full extent.

4.3. Approach and Architecture

The OSA-EAI standard defines a magnitude of documents

and IT-specific artifacts of which the core artifacts – at least

for our work – are briefly described here:

- CRIS: Common Relational Information Schema, a

heavily normalized relational database schema.

The standard provides CREATE statements for

Oracle and other databases in the form of text files

- XML Request Specification: a set of XSD

document type definitions which represent the

entirety of XML-based requests that a client can

send to an OSA-EAI compliant database. Also, the

responses are defined.

The information sources above are the technical entry point

for implementing an OSA-EAI database. Considering the

proposed architecture from Figure 2 the implementation

effort can therefore be summarized as follows. Instantiate

the provided CREATE statements (porting the statements to

the utilized RDMBS might be necessary). Create a server

application which consists of a top layer listening for

incoming XML messages via HTTP. The next layer inspects

the parsed XML and routes the request to a more specific

request processor. The request processor translates the XML

content into an SQL statement (SELECT, INSERT or

UPDATE) and executes the SQL statement against CRIS.

Then, the result form the SQL statement, if any, is captured

again by the request processor. If there is resulting data, the

result set is worked off and the data it is wrapped into an

XML document according to the XSD specification that

corresponds to the initial request. The resulting XML

response is finally serialized and appended to the output

stream of the originating HTTP request – and as such

received by the client.

The implementation of the server application cannot be

done without significant effort by boldly implementing the

partially very complex XML request for up to 300 XSD

documents, which have to be mapped against up to 400

individual tables from CRIS. Instead of implementing the

server application “by hand”, we thought of a tool that

would generate the source code for the server application

from the available artifacts (CRIS CREATEs and XSD

documents). The architecture of such a tool is depicted in

Figure 6. The code generator receives all available XSD

documents as well as the CRIS description as input, parses

and analyzes them, and finally generates code for any layer

of the described server application. Also, the code generator

is able to generate unit tests for the server.

Figure 6. Code Generator for OSA-EAI

4.4. Realization

The OSA-EAI XML request specification is roughly

grouped into the following three categories:

- Tech-Doc: facilitate data exchange between an

application with information which it needs to

publish periodically

- Tech-CDE: entity-centered, simple CRUD (create,

update, retrieve and delete) operations

- Tech-XML: region-centered complex query,

update, and create operations

For our work we initially focused on Tech-CDE and Tech-

XML because our motivation was to create the required

services for managing the information content in the

database. For this purpose, CRUD operations only are

required. We started with an analysis of the XSD documents

provided in order to infer the required steps and architecture

of the code generator. Both request groups provide a central

XSD file which defines all XSD types referenced by the

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

7

request definitions. In addition, Tech-CDE provides one file

which contains all available retrieve requests (Tech-CDE

Query) as well as one file which contains all available

create, update, and delete requests (Tech-CDE Write). In

contrast, Tech-XML provides a magnitude of files for each

specific Tech-XML request. In total, there are 256 request

files, of which the majority is Query definitions, followed

by a few Create and Update definitions. The core difference

between Tech-CDE and Tech-XML is that a Tech-CDE

request is focused on one specific entity only. Relations to

other entities are only considered by the respective foreign

keys and entity-references are not fully resolved. It can

therefore be seen as a relation-centric way of interacting

with the database – just that one is not talking SQL, but

XML. In contrast, Tech-XML defines requests which are

based on a core entity upon which all provided filter

parameters shall be applied. In addition to Tech-CDE the

Tech-XML requests also resolve the entities which are

referenced form the core entity. A response to a query

request therefore not only contains the core entity’s data, but

also the resolved attributes of any referenced entity. As a

result from this analysis we chose to focus on Tech-XML

only, at least for the first iteration, since we believed Tech-

CDE being a virtual subset of Tech-XML – at least from the

perspective of what is required to talk to the underlying

database. A significant result of our analysis was – as we

hoped to confirm in the first place – that the

request/response definitions all follow a common structure.

This was the key prerequisite for designing the code

generator. For the first iteration we made an important

assumption: our aim was to only query or manipulate the

core table that a specific Tech-XML is directed to. Although

foreseen by the standard, we did not intend to resolve

foreign key relations and thus we treated Tech-XML like

Tech-CDE. We considered foreign key resolution as just an

implementation effort.

Our code generator produces Java code: a server application

which performs the XML request handling and the mapping

of XML to SQL and vice versa, and a Java client library

which provides an interface for client applications. The

client library encapsulates the XML-messaging and leaves

transparent that the client is actually talking to a remote

database via the network. We will describe the four major

phases of code generation:

Phase 1: Generate Model Classes

In this phase, the code generator parses the XSD files and

generates Java POJO (plain old java objects) classes which

correspond to the type hierarchy imposed by the XSD

definitions. These classes do not implement any business

logic and act as model objects for marshalling and un-

marshalling XML or SQL result sets. For this task, we

utilized the JAXB framework (refer to JAXB in the

references section) which is an implementation of the Java

API for XML Binding. The framework was able to create

respective Java POJO code from the XSD files provided by

MIMOSA. The generated model classes will both be

utilized by the client library as well as the server application

and thus act as common interface between the two parties.

For example, from the XSD type asset_healthTYPE

the class as depicted in Figure 7 will be generated (getters

and setters have been omitted in the figure).

Phase 2: Generate Client and Server Interfaces

The interface that the client library exposes is not explicitly

defined by the provided MIMOSA artifacts. We therefore

chose to infer suitable method names from the request types

as provided in the Tech-XML XSDs. For example, using the

inherent substructure of the request element mim_6002, the

interface method for this request type can be generated as

follows:

public Mim6002Ack query(Mim6002Req query);

Phase 3: Generate Client/Server XML Transmission Code

In this phase the generator “implements” the client interface

methods by generating code that serializes the given request

object to an XML string, wraps the string into an HTTP

POST request and opens the server URL. At this stage, the

client instance can already perform request validation based

on the multiplicity and optionality information declared in

the XSD.

Figure 7. Example Generated POJO Class (getters and

setters have been omitted for clarity)

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

8

For the server side, the generator creates code which

receives the incoming HTTP POST request from a HTTP

server socket, inspects the XML prefix in order to

instantiate the correct XML parsing method (specific to the

Tech-XML request type) for obtaining an object tree

corresponding to the request. At this stage, the generator

also produces code which serializes the object tree of the

response into XML and streaming it to the output stream of

the incoming request.

Phase 4: Generate Database Queries

The request object tree is inspected for the purpose of

generating an SQL SELECT, INSERT or UPDATE

statement depending on the content of the request. The type

information of the objects themselves as well as Java

annotations provided by JAXB provided enough

information, to create syntactically and semantically valid

SQL. For SELECT-type queries, the code generator

produced code which inspects the result set from the

database and – again, by utilizing the POJOs type and Meta

information – which is able to translate the result set into a

Tech-XML response object tree. As already explained in

phase 3, this response object tree can then be serialized to

XML and pushed to the requesting client.

4.5. Discussion of Results

The generation of POJOs was done by hooking up a single

file into the JAXB framework. All dependent types and files

were well referenced. We noticed however that the resulting

class naming is somewhat odd – as already seen in Figure 7

all POJOs have a *TYPE postfix, which is introduced by

JAXB. We found this issue to be of cosmetic nature only.

The generation of interface method names seemed straight

forward at first. The multitude of method names however

made the client interface rather confusing as the request

number (e.g., 6002) has to be mapped mentally to what the

request is actually doing (e.g., asset health).

Compared to Tech-CDE it is not clear how the current

catalog of Tech-XML requests was motivated. During the

utilization of our generated application we were missing

several request types for accessing specific areas of the

OSA-EAI database model, such as the steps of solution

packages. We were able to work around the missing

requests by adding to the catalog following the already

existing philosophy. We do not see this as a significant

drawback of the OSA-EAI standard as the requests which

are missing in Tech-XML can be found in Tech-CDE. It is

however a strong indication that a productive application

should implement both Tech-XML and Tech-CDE requests.

We encourage the standardization committee to include the

possibility of defining customer Tech-XML requests on the

basis of standardized XSD request specifications.

Tech-XML requests provide support for equality filtering

(‘=’) on the attributes on an entity. It is also possible to get

the N latest (chronologically) instances of an entity, which

is necessary for PHM applications, e.g., the latest asset

health assessment of a specific asset. What’s missing is

support for filtering beyond attribute equality. We were

missing the general possibility for range filtering (left-,

right- and left-right-bounded) on numeric or date attributes

(range filtering is possible for specific date attributes), and

filtering by regular expressions on character attributes, or at

least wildcards. The latter is a matter of interpreting the

already existing search criteria on the server-server side, and

does not require structural modification, but explicit

conventions of how to populate the search criteria. The

former can be realized by enhancing Tech-XML XSDs to

include optional left and right bounding attributes for each

Tech-XML search criteria. A negative filter (“get all entities

which do not match”) is missing, but can be integrated

analogously.

We were also missing the possibility for grouping, or

ranking, and aggregation within a single query. Our

application requires retrieving the latest health and RUL for

each asset and both information types are stored as time

series per asset in respective tables. It is possible to write a

single SQL query on table asset_health which returns

the latest health grade per asset. In Tech-XML this is

currently not possible, and one has to make one Tech-XML

query per asset. Again, a solution to this issue is the

enhancement of the Tech-XML query XML to include

indicators on a search attribute, whether the result should be

grouped or ranked by this attribute, and which aggregation

functions should be used on the result columns.

The “core” table of a Tech-XML request, i.e., the entry

point into the data, is not highlighted in the request

specification and cannot be uniquely inferred from the list of

parameters. However, for the majority of requests, the first

entity of the response specification corresponds to the core

table that shall be queried. Here, we suggest a more explicit

way of specifying the request parameters, i.e., which entity

should actually be queried.

For SQL code generation, the mapping between entity

names to table names as well as entity attribute names to

column names is not 1:1. For our generator we exploited

the fact that both XML elements and database elements

followed a specific naming schema that could be used for a

bidirectional mapping – however, the naming schema is not

documented, thus, subject to be changed (accidentally). We

suggest to standardize a bidirectional mapping function

(e.g., the current pattern) for entity/table and

attribute/column names. We found that for the sake of

request validation the consideration of the CRIS CREATE

statements was needed for synchronizing multiplicity

information from the XSD with primary and foreign key

definitions on the database level.

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

9

4.6. Summary & Outlook

Assuming that any graphical user interface will take the role

of a client application we have shown that a fully functional

OSA-EAI information system for Tech-XML requests can

be generated from the provided MIMOSA documentation as

is. The compiled system is able to run the entire request-

response cycle, starting from the assembly of the request on

the client side, transmitting the request, issuing SQL against

the CRIS database and sending back the results. Our

implementation does not yet resolve foreign key relations

but provides the foreign keys themselves for later referral.

Since Tech-XML provides a different focus than Tech-CDE

we conclude that a productive application must provide both

Tech-XML and Tech-CDE interfaces to provide access to

the full information content. Tech-CDE provides CRUD

access for every entity and can therefore be considered as

the “Swiss Army Knife” for OSA-EAI interaction. Tech-

XML provides convenience functions and the ability to

resolve dependent entities in a single request. In further

work we will extend our code generator to Tech-CDE

request types. Given the more complex nature of Tech-

XML, we do not expect any significant issues for this

endeavor.

5. CONCLUSION

We presented our experience from the realization of our

next generation data management backbone for a simulation

framework for PHM systems in the aerospace domain. For

the airborne segment OSA-CBM-based communication was

chosen. From previous work, where we evaluated XML-

based transmission, we were motivated to use binary

transmission and defined a custom protocol. Recognizing

the drawbacks of our approach we switched to the new

available binary transmission standard of OSA-CBM 3.3.1.

We have shown that the standard can be implemented in the

C programming language under the restrictions of airborne

software development. Furthermore, for this special

environment, we have suggested a layered approach which

provides simple creation as well as manipulation functions

for OSA-CBM data, which hide the details of the underlying

implementation. The ratio of transmitted event size to usable

payload is about 25% of the XML-based approach

(overhead for HTTP and TCP not included).

The ground-based part of our data management backbone is

centered on an information system, which we call the CBM

data warehouse. It is designed compatible to the OSA-EAI

reference architecture. Confirming the feasibility of OSA-

EAI by a prototype implementation of a stripped-down

instance of OSA-EAI in previous work we describe here our

experience from realizing a Java code generator for a fully

functional OSA-EAI client-server application system. We

could successfully show that the MIMOSA-provided

artifacts provide enough suitable information to generate

executable code in an automatic way. We further found that

Tech-CDE and Tech-XML should be both implemented in a

productive information as both request categories cover

different aspects (however, they also have common areas).

During the implementation of our code generator we found

several issues regarding object naming and object mapping

which we do not consider critical. We found that the request

specification lacks comprehensive support for extended

filtering and aggregation when assembling a request. By

providing such support in a standardized way the response

times and the network traffic could be reduced significantly.

REFERENCES

Dunsdon, J. & Harrington, M. (2008). The Application of

Open System Architecture for Condition Based

Maintenance to Complete IVHM. IEEE Aerospace

Conference, March

Gorinevsky, D., Smotrich, A., Mah, R., Srivastava A.,

Keller, K., &Felke, T. (2010). Open Architecture for

Integrated Vehicle Health Management. AAIA

Infotech@Aerospace Conference, April20-22

JAXB. JAXB Project Website. https://jaxb.java.net/

Löhr, A., Haines, C., & Buderath, M. (2012). Data

Management Backbone for Embedded and PC-based

Systems Using OSA-CBM and OSA-EAI. AAIA

Infotech@Aerospace Conference, April20-22

Mathew, A. D., &Ma, L. (2007). Multidimensional schemas

for engineering asset management. Proceedings World

Congress on Engineering Asset Management,

Harrogate, England

Mathew, A. D., Zhang, L., Zhang, S., & Ma Lin (2006).A

review of the MIMOSA OSA-EAI database for

condition monitoring systems. Proceedings World

Congress on Engineering Asset Management, Gold

Coast, Australia

MIMOSA. Mimosa Organization Website.

http://www.mimosa.org

Swearingen, K., Kajkowski, W., Bruggeman, B., Gilbertson,

D., &Dunsdon, J. (2007). Multidimensional schemas

for engineering asset management. Proceedings IEEE

Aerospace Conference

BIOGRAPHIES

Matthias Buderath Aeronautical Engineer with more than

25 years of experience in structural design, system

engineering and product- and service support. Main

expertise and competence is related to system integrity

management, service solution architecture and integrated

system health monitoring and management. Today he is

head of technology development at Cassidian. He is member

of international Working Groups covering Through Life

Cycle Management, Integrated System Health Management

and Structural Health Management. He has published more

than 50 papers in the field of Structural Health

Management, Integrated Health Monitoring and

Management, Structural Integrity Programme Management

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

10

and Maintenance- and Fleet Information Management

Systems.

Conor Haines received his B.Sc. degree in Aerospace

Engineering from Virginia Polytechnic Institute and State

University in 2003 and his M.Sc. degree in Computational

Science from the Technical University of Munich in 2011.

For 3 years Conor was a test engineer supporting the NASA

Near Earth Network, providing simulation support used to

guide system development. At his current post, he is

focused on developing IVHM and Computer Vision

technologies as a Software Engineer for Linova Software

GmbH.

Andreas Löhr received his M.Sc. degree in Computer

Science from the Technical University of Munich in 2001

(Informatics, Diplom) and earned his PhD degree in

Computer Science from Technical University of Munich in

2006. For 6 years he worked as a software engineer at

Inmedius Europa GmbH in the area of interactive technical

publications and researched in the field of wearable

computing. He founded Linova Software GmbH in 2008

and at his current post as managing director he focuses on

development of maintenance information systems and data

management architectures.

