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ABSTRACT

Data-driven prognostic approaches like Gaussian Process
combined with Unscented Kalman Filter (GPUKF) are
promising methods for predicting the Remaining Useful Life-
time (RUL) of a degrading component. Whereas the Gaus-
sian Process (GP) is appropriate to derive a suitable degrada-
tion model by means of a set of training data, the Unscented
Kalman Filter (UKF) employs this model to determine the
prediction and its uncertainty.

Since a degradation process is highly stochastic, it is assumed
that by applying more sets of training data the accuracy and
precision of the GPUKF is increased. In order to examine the
performance enhancement two different approaches are in-
vestigated in this paper: First, a single GP is trained with all
available data sets. The second approach combines several
GPs (each created with a data set of one degradation process)
by extending the GPUKF with a Multiple Model Method.
The development of a third prognostic approach aims at the
investigation of the UKF as a suitable tool for the prognostic
algorithm. Therefore, a third method applies a Particle Filter
in combination with the GP.

For the evaluation of the aforementioned prognosis algo-
rithms according to their precision and accuracy a set of
prevalent performance metrics like the Prognostic Horizon
and the Mean Average Percentage Error of a prediction is an-
alyzed. The validity of the determined results is increased by
considering the variance of certain metrics over several units
under test. Moreover, particular focus is set on the exami-
nation of the performance change caused by the use of more
training data sets. In order to quantify this process known
metrics are extended. The evaluation is based on simulated
data sets, which are generated by an exponential degradation
model.
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permits unrestricted use, distribution, and reproduction in any medium, pro-
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The analysis of the implemented algorithms indicates that the
applied metrics are in a comparable range. However, the three
approaches reveal a different behaviour concerning the con-
vergence of the performance values according to the number
of training data. In particular cases there is even a decline in
accuracy and precision attend by a rising number of training
data.

1. INTRODUCTION

In recent years the prognosis of the condition of component
parts with a high relevance to safety has become a key tech-
nology in Condition-Based Maintenance (CBM), especially
in application fields like aerospace or power generation. Al-
though the use of a CBM system is aimed for cost reduction
in the overall maintenance cycle, the initial implementation is
cost-intensive, since a profound knowledge and observation
of the examined element’s degradation processes is essential.

Here, data-driven methods can be beneficial, as the origin
and the mechanism of a failure is irrelevant for the gener-
ation of prognosis models. An additional advantage is the
generic coding for possible applications of data-driven algo-
rithms in comparison to model-based methods, which need a
specific model for every degradation process. Beside other
data-driven methods like the widely spreaded artificial Neu-
ronal Networks or the Support Vector Machine for regression,
the Gaussian Process (GP) became a state of the art regres-
sion estimator due to its simplicity and the ability to forecast
model uncertainties.

The examinations in this paper focus upon the evaluation of
three different prognosis methods, which all base on the GP
for regression modelling. The first two algorithms use the
Unscented Kalman Filter (UKF) for state estimation adapted
from the results of (Anger, Schrader, & Klingauf, 2012),
whereas the idea to combine a GP with a UKF was first intro-
duced by (Ko, Klein, Fox, & Haehnel, 2007) for an observa-
tion model of a robotic blimp. In (Anger et al., 2012) it was
proven that the combination of a GP with a UKF (GPUKF) is
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generally capable of predicting even highly stochastic degra-
dation processes using the example of a rolling-element bear-
ing. Additionally, a second concept was introduced by ap-
plying several GPUKFs with different models which are
connected by a superior algorithm, the Interacting Multiple
Model (IMM). By means of the IMM in combination with a
GP regression (GPMMM) the robustness of the predictions
was significantly increased, since it is able to forecast differ-
ent damage courses w.r.t. the training data sets. Thus, the
central question of this enquiry is, if it is more beneficial to
separate the available set of training data into different mod-
els or to set up one single model with all data points.

Drawbacks in the prediction uncertainty of the aforemen-
tioned GPUKF and GPMMM led to a third algorithm, a
combination of a GP regression model with a Particle Filter
(GPPF). It is shown that the prognosis of the RUL by means
of the GPPF is a more straight forward approach according
to the handling of variances. Again the idea of this combina-
tion has its seeds in the localization, since Ferris et al. used
a similar algorithm for location estimation of people within
buildings in (Ferris, Hähnel, & Fox, 2006).

For the evaluation of these different algorithms, performance
metrics are necessary. In (Saxena et al., 2008) and (Saxena,
Celaya, Saha, Saha, & Goebel, 2009) several metrics con-
cerning the accuracy, precision and robustness of predictive
algorithms are summarized. In section 4 well-known metrics
like Mean Absolute Percentage Error (MAPE) or Prognostic
Precision (PP) are extended by their values w.r.t. the applied
number of training data sets. Since one major drawback of
data-driven approaches is the need of training data, savings
are possible, if these extended metrics do not indicate an in-
crease in the prediction performance after a certain amount of
training data.

This paper is divided into six sections: first, the three afore-
mentioned algorithms GPUKF, GPMMM and GPPF are in-
troduced in section 2. After that the model of the simulated
degradation data is described, whereupon one major demand
was simplicity. The evaluation and especially the applied per-
formance metrics are described in section 4 and the results are
summarized in section 5. We conclude in section 6.

2. PROGNOSIS ALGORITHMS

Three different prognostic concepts are compared in this pa-
per, whereupon all base on the Gaussian Process regression
modelling. One motivating question for the approaches is:
”Is it more beneficial to train one GP with all available data
sets or to establish many models by means of every single
data set separately?”. There are many benefits and drawbacks
assumed, such as: If one GP is trained with many data sets,
which result from a similar degradation process, the regres-
sion model inherits more information about the process and
thus is less prone to process noise. On the other hand in

case of highly stochastic degradation, the probability to find a
match between trained models and tested degradation courses
raises, when the regression models are established separately.

Thus, this section starts with the basics of GP regression
modelling that was introduced in (Rasmussen, 2006). After-
wards the two algorithms GPUKF and GPMMM are shortly
described. Since the UKF shows drawbacks concerning the
prognostic uncertainty calculation, a third algorithm based on
a Particle Filter is introduced.

2.1. Gaussian Process for regression modelling

Regression modelling tools like the GP enable the opportu-
nity to reproduce processes without the application of any
parametric model. Since the GP defines a Gaussian distri-
bution over a function, see (Rasmussen, 2006), the main ad-
vantage of regression modelling with a GP is furthermore the
potential to identify the model’s uncertainty according to the
variance of the distribution.
Thus, the aim of the GP regression modelling is to establish a
function f(X) so that a noisy process

y = f(X) + ε, (1)

can be described w.r.t a given training data set D =
{(x1, y1), (x2, y2), ...(xn, yn)}, where X = [x1, x2, ..., xn]T

is an n×m input matrix with m the number of inputs and n
the length of the single input vector xi. y is an n-dimensional
vector of scalar outputs and ε represents a noise term, which
is drawn from a Gaussian distribution N (0, σ2).

A Gaussian distribution can be described by its mean µ and
covariance Σ. Thus, the GP defines a prior which is a zero-
mean Gaussian distribution over the given outputs y of the
training data D, as follows

p(y) = N (0; K(X,X) + σ2
nI). (2)

Here, σ2
nI is a Gaussian noise caused by ε. The entries of the

kernel matrix K indicate the deviation of the inputs among
each other and are defined by the applied covariance function
k(xi, xj). Although the squared exponential is a standard ker-
nel function, in this paper it is extended by a linear and con-
stant term as follows

k(xi, xj) = σ2
f exp(−1

2
(xi − xj)W(xi − xj)T )

+σ2
nδij + σlxi · xj + σc, (3)

where σ2
f is the signal variance and W is a diagonal matrix

that contains the distance measure of every input. By means
of the other parameters σl and σc, the linear and constant de-
viation can be tuned separately.

The meanGPµ and the covarianceGPΣ is then expressed for
a given test input x∗ and test output y∗ w.r.t. the training data
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D by the following equations

GPµ(x∗, D) = kT∗ [K + σ2
nI]−1y (4)

for the mean and

GPΣ(x∗, D) = k(x∗, x∗)− kT∗ [K + σ2
nI]−1k∗ (5)

for the covariance, respectively. For reasons of clarity the
abbreviations K(X,X) = K and k∗ the covariance function
between the test input x∗ and the training input vector X are
used. Obviously, the mean prediction in equation 4 is a lin-
ear combination of the training output y and the correlation
between test and training input. The covariance is the differ-
ence of the covariance function w.r.t. the test inputs and the
information from the observation k(x∗, x∗).

All in all, the regression modelling with the applied GP
requires the optimization of five so-called hyperparameters
θ = [W σf σn σl σc] for the kernel function and the process
noise. This can be done by standard optimization algorithms
as conjugate gradient descent.

For the purpose of this paper, the degradation of the Unit Un-
der Test (UUT) is considered as a 1-dimensional state speci-
fied by x. Using equation 1 a stochastic dynamic degradation
process can be written as

xk+1 = xk + ∆xk + εk. (6)

The GP regression modelling is then applied on the state tran-
sition ∆xk so that the input X is the current degradation state
xk and the output y is the state transition. With the training
data set D = {x,∆x} the next degradation state is written as

xk = xk−1 +GPµ(xk−1, D) (7)

and the covariance GPΣ(xk−1, D), both fully describe the
Gaussian distribution of the GP. One example of the degrada-
tion modelling is given in figure 1.

2.2. Combining GP and an Unscented Kalman Filter

The aforementioned dynamic model of a stochastic degrada-
tion process is the basis for the first prognostic algorithm,
where one GP is trained with all available training data. Since
it is expected that the different degradation courses which
have to be forecast are quite similar, the application of all
training data in one GP is assumed to be beneficial, as the
GP contains more information about the degradation process.
Additionally, for uncertainty estimations of the new degrada-
tion state w.r.t. measurements and the applied model, an UKF
is necessary.

Similar to equation 1, a nonlinear dynamic system in the kth

time step can be described as

xk = g(xk−1) + εk (8)
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Figure 1. Example of dynamic degradation modelling using
Gaussian Process

with the state transition function g, the 1-dimensional degra-
dation x and an additive Gaussian noise term ε drawn from
a zero-mean Gaussian distribution ε ∼ N (0, Qk) with the
process noise Qk as covariance.

The basis of the UKF is the scaled unscented transformation
introduced in (Julier, 2002). Instead of a linearization pro-
cess of the transition function g (as in case of the Extended
Kalman Filter), sigma points χ[i] are defined w.r.t. the covari-
ance Σ and the value of degradation x of the previous time
step

χ
[0]
k = xk−1

χ
[i]
k = xk−1 + (

√
(n+ λ)Σk−1)i i = 1, ..., n (9)

χ
[i]
k = xk−1 − (

√
(n+ λ)Σk−1)i−n i = n+ 1, ..., 2n,

where λ is a scaling parameter to spread the single sigma
points. According to the standard UKF, these sigma points
are transformed by the transition function g. Since the ap-
plied algorithm plans to use the mean function of the GP (see
equation 6), the transformed sigma points are as follows

χ̄
[i]
k = χ

[i]
k +GPµ(χ

[i]
k , D). (10)

The mean and covariance of the next time step are then gen-
erated by

xk =

2n∑
i=0

w[i]
m χ̄

[i]
k (11)

Σk =

2n∑
i=0

w[i]
c (χ̄

[i]
k − xk)(χ̄

[i]
k − xk)T+

+ GPΣ(xk, D) (12)
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with the weights for mean value wm and covariance wc, re-
spectively. Instead of the process noise Qk, the covariance
function of the GP is used. Since this algorithm is only
employed for prognosis, a correction step as in the standard
UKF-algorithm is omitted.

The entire prediction process is sketched in figure 2.

Initial xk−1 and Σk−1

Defining Sigma Points χ[i]
k

State transition of χ[i]
k into

χ̄
[i]
k according to trained GPµ

Entire set of
training data

Calculation of xk and Σk

Threshold?

Determine RUL and
error boundaries

yes

no

k
=
k

+
1

Figure 2. Basic schematic of the GPUKF prognostic ap-
proach

2.3. Extension via a Multiple Model Approach

Instead of training one GP with all available data points the
second algorithm separates the data sets and creates several
trained GPs for degradation prediction. Again, the UKF is
used for uncertainty estimation. The superior algorithm that
connects the different prognostic models is called Interact-
ing Multiple Model (IMM), which was introduced in (Li &
Jilkov, 2003). Since a degradation process is highly stochas-
tic, the prognostic accuracy is expected to increase by the ap-
plication of various models that could be similar to the tested
damage case.

Considering equation 8, the extension to the multiple model
approach follows as

xk = g(xk−1,m
i) + εk, (13)

where additionally mi is the i prognostic model of M avail-
able models. The first steps of the IMM algorithm consist of
a reinitializing step with the calculation of a mode probability

ξik−1 of every ith model

ξik−1 = p(mi
k|y1:k) for i = 1, ...,M

=

M∑
j=1

hijξ
j
k−1 (14)

with the entries hij = p
{
mk = mj |mk−1 = mi

}
of the

transition matrix H. The application of the transition matrix
H prevents the prognostic approach of insisting on one model,
as it offers the possibility of a change in the mode probabil-
ity from model i to j during every time step. Therefore, the
transition matrix H describes a Markov chain, whereupon H
is assumed to be time invariant.

In comparison to other hybrid estimators as the Autonomous
Multiple Model the IMM uses the results of every integrated
filter by the application of a weighting factor according to

ξ
j|i
k−1 = p(mi

k−1|y1:k−1,m
i
k)

=
hj|iξ

j
k−1

ξik−1

. (15)

Herewith an individual reinitializing value for the state for
every filter

x̄ik−1 = E[xk−1|y1:k−1,m
i
k]

=

M∑
j=1

x̂jk−1ξ
j|i
k−1 (16)

and similarly a covariance Σ̄ik−1 is computed. W.r.t. these
initial values the several models mi predict the degradation
state of the next time step, independently. In the end the re-
sults of the i filters are fused w.r.t. the model probability ξik

x̂k =

M∑
i=1

x̂ikξ
i
k (17)

Σk =

M∑
i=1

[Σik + (x̂k − x̂ik)(x̂k − x̂ik)T ]ξik. (18)

The entire algorithm is sketched in figure 3. In comparison
to the first algorithm, the GPMMM requires a previous state
estimation to identify the model probability ξik that remains
constant during each prediction. According to the likelihood
Lik, which depends on the residuum eik = zik− ẑik of the mea-
sured and estimated state, respectively, the probability that i
is the correct model is calculated as

ξik =
ξik−1L

i
k∑M

j=1 ξ
j
k−1L

j
k

(19)

at the beginning of every prediction.
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Figure 3. Basic schematic of the GPMMM prognostic ap-
proach

One major problem that comes along with the application of
the UKF in combination with the model of equation 10 is
an observable drift of the sigma points, which can also be
identified in several plots concerning the position estimation
in (Ko et al., 2007). Consequently, considering equation 12
the covariance of the respective filters rises and the drift is
intensified. Since this process is repeated in every time step,
the covariance diverges especially in case of early predictions
that results in a possible negative degradation, i.e. bettering,
of the examined element.

To counteract the drift of the sigma points, the weighting fac-
torw[i]

c was reduced so that the prediction uncertainty remains
within an acceptable limit.

2.4. Combining GP and a Particle Filter

The particle filter is established as a flexible mathematical
method to represent and manage uncertainties of a long-term
prediction, see (Orchard & Vachtsevanos, 2009) or (Saha,
Goebel, & Christophersen, 2009). The problems of the afore-

mentioned prognosis approaches in handling the uncertainties
of the prediction motivate to combine the GP with a Particle
Filter (GPPF). Likewise, the GPPF approach includes various
degradation behaviors by means of an arbitrary number of dy-
namic degradation models, each represented by an individual
GP.

In this section only a brief introduction of the operating prin-
ciple of the particle filter is given. The reader is encouraged
to follow (Arulampalam, Maskell, Gordon, & Clapp, 2002)
for more detailed information. Differences to the basic filter
and enhancements due to the supporting of multiple progno-
sis models are highlighted.

The essential idea behind the particle filter is to estimate the
Probability Density Function (PDF) of the UUT’s degrada-
tion by means of a weighted set of particles. With an appro-
priate amount of particles the current and future PDF of the
degradation can be estimated. In the suggested approach an
individual particle n is characterized by its level of degrada-
tion xn,k at time k and a parameter jn, which is independent
of the time and assigns a particle to a ith prognostic model.

Figure 4 illustrates the basic schematic of the implemented
prognostic approach. In the initialization step, the degrada-
tion xn,0 and the parameter jn of each particle is defined.
Given a total amount ofN particles andM trained prognostic
models each model is equally represented by N/M particles.

During the prediction step each particle is transferred from
the state xn,k−1 to the state xn,k using the training data set
D of the assigned prognostic model jn. Given the last degra-
dation of a particle xn,k−1, the mean function GPµ and co-
variance function GPΣ the evolution of each particle can be
written as:

xn,k = xn,k−1 +N (µ,Σ) (20)
µ = GPµ(xn,k−1, D)
Σ = GPΣ(xn,k−1, D).

When more information about the degradation of the UUT ac-
cumulates over time, the measured degradation zk is applied
to update the weight of each particle wn,k and to determine
the model probability ξik. The weight of a particle is updated
by using the normal probability density function and the pre-
vious weight:

wn,k = wn,k−1 ·
1√

2πσ2
· e

(
−

(xn,k−zk)2

2σ2

)
, (21)

where σ is a known noise distribution of the measured degra-
dation. After updating all particles the weights are normal-
ized (

∑N
n=1 wn,k = 1). In order to update the model proba-

bilities ξik, the weights of particles assigned to the same model
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Figure 4. Basic schematic of the GPPF prognostic approach

i are summarized and normalized

ξ̂ik = ξik−1 ·
N∑
n=1

a(n)

a(n) =

{
wn,k jn = i
0 jn 6= i

ξik =
ξ̂ik∑M

m=1 ξ̂
m
k

. (22)

One major problem by using a particle filter is that after sev-
eral iterations all but some particle weights are close to zero.
To avoid this situation, the resampling step is executed. A
helpful indicator to test whether a resampling of the particles
is needed or not is the Effective Sample Size (ESS). Regard-
ing (Arulampalam et al., 2002), ESS can be calculated by

ESS =
1∑N

n=1 w
2
n,k

. (23)

If ESS passes a defined threshold, particles with a low prob-
ability are replaced by particles with a high probability.
Thereby, it is assured that each model i is still represented
by the same amount of particle as before. Consequently, par-
ticles of a prognostic model, which inappropriately describes
the current degradation behavior, profit from a well matching

model. As a result the resampling does not only prevent the
degeneration of particles but also the degradation of models.

In cases of long-term prediction is required, the prediction
step is executed iteratively until all particles pass a predefined
failure threshold of the system. Given the prediction equation
20 and a prognosis model (see figure 1) it is obvious that a
particle passes the threshold at some time. In other words,
the predicted PDF of the degradation will always indicate a
deterioration of the UUT. The problem of a possible negative
degradation described in section 2.3 is prevented by using the
GPPF approach.

Considering the estimated EoLn of each particle the ex-
pected RUL and their uncertainty limits are determined. The
probability of a failure at time k is determined by the proba-
bility of the particles, which passed the threshold at this time,
and the probability of the assigned prognosis models. Figure
5 illustrates an obtained distribution of the EoLn using the
particle filter approach trained with three training data sets.
The estimated and real RUL as well as the upper and lower
predicted limits are marked. Since the obtained distribution
cannot be classified as normal distribution, an investigation
by means of the expected value and the standard deviation is
not appropriate. Instead it is preferred to rely on the median
and the percentiles to specify the RUL and uncertainties.
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0.05

0.1
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EoL distribution Estimated RUL
Real RUL Uncertainty limits

Figure 5. Distribution of the predicted EoL and determination
of the estimated RUL including upper and lower limits (GPPF
is trained with three data sets)

3. SIMULATED DATA

For a performance investigation of the presented prognostic
algorithms, a set of training and test data is needed. This sec-
tion introduces the developed mathematical model which is
applied to generate a data pool containing various degrada-
tion courses, each simulating a run-to-failure behavior of an
individual UUT.
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The object of the derived model is to describe an exponen-
tial failure process of a UUT including a stochastic part to
assure an analogy to reality. Moreover, an important require-
ment we set up is to keep the mathematical model as simple
as possible. This should encourage the reader to rebuild the
model and compare the presented results in section 5 with
other prognosis algorithms.

The equation of the mathematical model can be written as
following:

zk = zk−1 +
ln(100)

100
· e(ak−1·k) +N (0, bk−1)

ak = ak−1 +N (0, υa)

bk =
zk−1

bS
. (24)

The course of the degradation zk is subject to several effects.
First, the state a influences the exponential course by vary-
ing each step according to a noise term, defined by a nor-
mal Gaussian distribution with zero mean and variance υa.
Furthermore, the second noise term N (0, bk−1) simulates an
instability of the UUT reasoned by the advanced fault, imple-
mented by the dependency of the variance b on the degrada-
tion.

For the generation of a data pool, the failure threshold is set to
a degradation level of 100, the model was designed to reach
the limit in approximately 100 time steps. The noise values
are defined as υa = 8 · 10−4 and bS = 70, the initial level of
the parameter are y0 = 1, a0 = 5 · 10−2 and b0 = 1 · 10−3.
Figure 6 shows an example of four obtained UUTs.

20 40 60 80 100 120 140
0

20

40

60

80

100

Time

D
eg

ra
da

tio
n

UUT #1 UUT #2 UUT #3
UUT #4 Threshold

Figure 6. Samples of simulated degradation courses gener-
ated by the developed mathematical model

4. EVALUATION CONCEPT

During recent years much effort was put into the definition of
metrics to assess the performance of prognostic methods and
to make them comparable with each other. Since the perfor-
mance of a data-driven prognostic approach depends on the
number of available historical run-to-failure data (Anger et
al., 2012), the evaluation should not only consider the individ-
ual performance metrics but the change of those metrics when
given more training data. It is assumed that not always better
results are achieved, when applying more historical data. In
some cases, a degradation of the metrics is expected, since in-
appropriate training data may irritate a prognosis algorithm.
However, prognostic methods are rarely investigated regard-
ing their ability in handling various training data. The pur-
pose of the following evaluation concept is to analyse the
change of performance metrics according to the number of
training data and to figure out an appropriate way to quantify
this process.

For the evaluation we included four metrics, namely MAPE,
MAD, PH and PP, to cover accuracy as well as precision prop-
erties of the three prognosis methods. A brief description
of the metrics is given in section 4.1. The procedure of the
evaluation is explained in 4.2, whereas a way to quantify the
change of the performance is described in section 4.3.

4.1. Performance Metrics

The applied metrics are based on the suggestions given by
(Saxena et al., 2008) or (Saxena et al., 2009). Some notations
of the metrics domain are given in the following glossary:

P Time of the first prediction
EoL End of Life
i Prediction index i = 1, 2, ..., I
I Total number of predictions
l UUT index l = 1, 2, ..., L
L Total number of UUTs
λ Normed time of the entire range (EoL− P )
rl(i) Estimated RUL of prediction i for the lth UUT
rl∗(i) Real RUL of prediction i for the lth UUT
∆l(i) Error between predicted RUL and true RUL

∆l(i) = rl∗(i)− rl(i)

4.1.1. Mean Average Percentage Error

The Mean Absolute Percentage Error (MAPE) of a prediction
testing the lth UUT is specified by

MAPEl =
1

I

I∑
i=1

∣∣∣∣100 ·∆l(i)

rl∗(i)

∣∣∣∣ . (25)

The value of MAPE determines the predicted error w.r.t the
real RUL.
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4.1.2. Mean Absolute Deviation

The Mean Absolute Deviation (MAD) describes the spread of
the prediction error and quantifies the precision of a method.
The metric can be written as

MADl =
1

I

I∑
i=1

∣∣∆l(i)−M l
∣∣ , (26)

where M is the median of the errors M l = median(∆l).
Using multiple model prognostic methods a high value of
MAD indicates that the method does not show a clear ten-
dency towards a prognosis model. When a method changes
frequently, the favored model for each prediction the error
consequently spreads.

4.1.3. Prognostic Horizon

The Prognostic Horizon (PH) is determined by the time when
the predicted RUL remains stable within a given constant er-
ror bound. The upper and lower accepted error limit depend
on the accuracy value α, therefore, the metric can be written
as

[1− α] · rl∗ ≤ rl(i) ≤ [1 + α] · rl∗. (27)

Figure 7 illustrates the PH. The predicted RUL approaches
the true RUL over the time and finally stabilizes for λ ≥ 0.6.
The PH is defined by the remaining time until the system fail-
ure occurs. In the following evaluation, the PH is expressed
as normalized time range. It is clearly visible that the higher
the PH the better the performance of a method. Throughout
the evaluation the accuracy value was set to α = 0.1.

4.1.4. Prognostic Precision

Whereas the PH observes the estimated RUL the Prognostic
Precision (PP) considers the uncertainty of the RUL, which is
specified by the lower and upper predicted limit of the RUL.
The metric is specified by the time the limits remain stable
within a constant error bound. Figure 7 shows the determina-
tion of PP, the limits of the prediction converge after λ ≥ 0.7.
Consequently, the metric allows a statement about how the
prognosis method is able to reduce the uncertainty of a fore-
cast as more information accumulates over time.

4.2. Evaluation Procedure

In order to investigate the performance change depending on
the number of training data sets, the evaluation of the three
methods was organized as follows: By means of the model
equations presented in section 3 we generated a data pool of
40 UUTs, which was subdivided in training and test data. The
training data contains 15 degradation courses, whereas the
test data consists of 25 UUTs.
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Figure 7. Illustration of the prognosis horizon and prognosis
precision

As a first step, we trained each prognosis method by the first
training data set and determined the presented metrics for all
25 test data sets by using the estimated RUL and uncertainties
of nine predictions at the time λ = 0.1, 0.2, ..., 0.9. Then we
included the next training data set and tested again all 25 data
sets. This procedure was repeated until all 15 training data
sets were available for the three prognostic methods. The ob-
tained results for a specific metric, e.g. MAPE, can be sum-
marized as shown in diagram 8.
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Figure 8. Course of the MAPE at an increasing number of
training data sets (comparison of two prognostic methods)

The results lead to a distribution of the MAPE metric, since
the performance naturally varies from one tested UUT to an-
other. The figure illustrates the evolution of this distribution
for two prognostic methods. The distribution cannot be con-
sidered as a Gaussian distribution. It is helpful to rely on the

8
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median and percentiles when discussing the distribution. In
the following analysis the 10th and 90th percentile are used.
Accordingly, the displayed distribution in the figure covers
80 percent of all predictions or in other words it presents the
results of 20 UUTs.

4.3. Enhancement of Metrics

By comparing the courses of the medians in figure 8, method
1 reveals a better performance using less training data sets
but is easily outperformed by the second method. Whereas
method 2 improves the metrics as more historical data is
available, the performance of the first method even deteri-
orates at the beginning and benefits later from the training
data. This deterioration indicates difficulties of method 1 in
handling the trained run-to-failure data and selecting the ap-
propriate model for the prediction. According to the course
of the median, one tends to rely on the second method since
a better performance is reached even with less training data.
Involving the distribution in the decision shows that method 2
has a higher range in which the performance is located. This
means that the second method reached more often worse per-
formance values by the prediction of the RUL. This motivates
to involve the course of the median as well as the distribution
in order to assess the performance of prognostic methods.

For further discussion we enhance the aforementioned nota-
tions by the following:

N Total number of training data sets
n Number of applied data sets for the prediction
MAPE(n)m Median of the distribution (testing L UUTs)
MAPE(n)d Difference between the upper and lower

percentile of the distribution (testing L UUTs)
MAPEm,N Rating of MAPE(n)m n = 1, 2, ..., N
MAPEd,N Rating of MAPE(n)d n = 1, 2, ..., N

This is done by the example of the performance met-
rics MAPE. Of course, this notation can be transferred to
other metrics. Instead of taking the MAPE metrics to as-
sess the performance, we examine the obtained values for
MAPEm,N and MAPEd,N . Thereby, the change of MAPE
over the number of training data is taken into account. More-
over, the range within the performance value varies over the
number UUTs is considered. In the following, we introduce a
straight-forward method to quantify both values. Again, this
approach is assignable to other metrics.

In a first attempt to determine the values appropriately, the
mean values of MAPE(n)m and MAPE(n)d are consid-
ered. In this way, all reached performance values are indepen-
dently of the number of used training data. Thus, deteriora-
tion or improvements of the observed metric are not covered
by this method. To include the course of the metric, we sug-
gest to calculate the values by means of the weighted mean

value w.r.t the number of training data sets. The equations
can be written as:

MAPEm,N =

∑N
i=1(i ·MAPE(i)m)∑N

i=1 i
(28)

MAPEd,N =

∑N
i=1(i ·MAPE(i)d)∑N

i=1 i
. (29)

Weighting the performance by the number of training data
has several effects: First, the performance using less data has
a lower influence on the final result. Since the performance
at the beginning strongly depends on the order of trained data
sets this is a desired consequence. A change in the training
order would have a high impact on the determined values.
Additionally, with an increasing number of used training data
sets a prognosis method should exhibit an improvement or
at least a stable behavior of the performance. Therefore, the
weighted mean downgrades occurred deterioration in case of
more historical data.

Figure 9 illustrates the difference of the results for PHm,N

obtained by the mean value and weighted mean value. In the
diagram the course of the median PH(n)m of two progno-
sis methods is displayed. Whereas the PHm,15 value deter-
mined by the mean assesses both methods almost similarly,
the weighted mean leads to a better distinctness, as the sec-
ond method shows no stable improvement of the prognosis
horizon.
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Figure 9. Course of the PH at an increasing number of train-
ing data sets (comparison of two prognostic methods)
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5. RESULTS AND DISCUSSION

Table 1 summarizes the obtained results of the three prog-
nostic approaches. The performance values are determined
by the weighted mean according to the introduced evaluation
concept. As we expected, the results show similar values in
most categories which is explained by the fact that the three
prognostic methods are based on the same regression mod-
elling tool and training data sets. However, since the prog-
nostic approaches manage the trained prognosis models in a
different way, it is worth investigating the evolution of the
performance according to the available training data sets.

Performance GPUKF GPMMM GPPF

MAPEm,15 12.07 13.12 11.80
MADm,15 1.91 3.41 2.34
PHm,15 0.88 0.62 0.89
PPm,15 0.34 0.66 0.45

MAPEd,15 31.60 28.62 27.68
MADd,15 10.21 12.94 11.16
PHd,15 0.71 0.71 0.68
PPd,15 0.80 0.73 0.64

Table 1. Enhanced performance metrics of the three progno-
sis algorithms

Figure 10 shows the improvement of the MAPE(n)m value
over the training data. All prognostic algorithms strongly
benefit from the first training data sets and settle down at a
similar mean absolute error. It is interesting to note that in-
stead of remaining stable on the achieved performance level,
the three methods behave differently with a rising knowledge
about the system. Whereas the GPPF is able to further im-
prove the metric, the performance of the GPMMM approach
deteriorates. Regarding table 1, this leads to a reduction of
MAPEm,15 value. The GPMMM also reveals a weakness
w.r.t the MAD metric displayed in figure 11. In contrast
to the other approaches, the GPMMM exhibits less preci-
sion with a raising number of historical data. Given that the
MAD value can be considered as an indicator of a prognos-
tic method’s tendency towards models, the GPMMM seems
to struggle with the selection of a correct prognostic model.
Consequently, the MAPE and MAD value of the GPMMM
increase. Furthermore, this impact is also observable by look-
ing at the dissatisfactory PH value. One explanation is the
applied transition matrix H that - in the case at hand - per-
mits a fast transition from model i to another model j so that
GPMMM alternates between several models. The increased
system knowledge has less influence on the GPUKF, which is
reasoned by the manner the training data is stored. Including
an additional training data set does not essentially change the
basic orientation of the one applied prognosis model.
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Figure 10. Course of the MAPE at an increasing number of
training data sets
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Figure 11. Course of the MAD at an increasing number of
training data sets

It is evident that the GPMMM reveals the best PP value,
which indicates that the predicted lower and upper RUL limit
enter the defined error bound earlier. This is reasoned by the
fact that the variance of the forecast is limited artificially (see
section 2.3). Thus, the predicted lower and upper limit of the
RUL are close. Hence, we learned that the used evaluation
concept lacks of a metric which specifies the quality of the
predicted error bound. In the current concept, keeping the
variance as low as possible will always end in a good perfor-
mance. A metric which assesses the meaningfulness of the
variance is not implemented.

Another aspect of the evaluation is the investigation of the
distribution values in Table 1. As described in section 4.3
the values indicate the range within the corresponding metric
over the 25 tested UUTs is spreaded. GPPF reaches better
results than the other approaches in three of the four criteria.
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Nevertheless, there is no noticeable difference to the other
methods and all values show that a considerable part of the
tested UUTs is predicted with a deviating performance than
indicated by the weighted means of the median’s course. In
other words, whereas the PHm,15 values point to a high accu-
racy of the methods, the PHd,15 values reveal that this perfor-
mance is not always achieved. Especially considering safety
relevant systems, this issue should not be neglected.

6. CONCLUSION AND OUTLOOK

In this paper we have presented three data-driven prognosis
algorithms. Each algorithm is based on the Gaussian Process
to generate prognosis models by means of training data sets.
Nevertheless, the way they rate and select suitable models for
the estimation of the RUL differs.

One purpose of this paper was to suggest a method to include
the training process of a prognosis algorithm in the evalua-
tion process. A simple way is presented to assess the trend
of performance metrics at an increasing number of provided
training data sets. Moreover, the presented evaluation con-
cept considers the fact that a prognosis method does not con-
stantly reach the same accuracy and precision by testing sev-
eral UUTs.

Another purpose was to investigate the training process of
three data-driven prognosis methods. The results show that
the prognosis methods do not automatically benefit from
more knowledge about the degradation processes of a system.
A particularly motivation was, whether a single GP approach
or a Multiple Model Method is preferable when training an
arbitrary number of training data sets. The obtained results
indicate that GPUKF reaches slightly better performance, es-
pecially since the applied GPMMM approach reveals a weak-
ness by managing a high number of prognosis models. In
contrast, the single GP approach converges towards a constant
performance. Combining the Gaussian Process with a Parti-
cle Filter shows the best results and provides a more straight
forward possibility to handle the model uncertainties in com-
parison to the UKF. Of course, the conclusion are strongly
depending on the chosen data pool and evaluation concept.

As a result effort is going to put to an enhancement of the
mathematical degradation model and thus to generate various
data pools to obtain a more comprehensive fundament for the
evaluation. We plan to enhance the presented model by an
additional load input and to replace the fixed failure thresh-
old by a hazard model, which simulates varying failure limits
of UUTs. Furthermore, in order to increase the informative
value of the results, other regression modelling concepts like
Relevance Vector Machines etc. will be examined under same
conditions.

We do not claim the presented evaluation concept near com-
plete, since there is still enough room for improvement. Fo-

cus of future work is to include more performance metrics.
Especially, a metric to determine the quality of the predicted
uncertainty is required. An emerged drawback is that the as-
sessment of a prognosis method suffers from the increased
number of available performance indicators, since one met-
ric value is replaced by two. A further bottleneck of the de-
scribed evaluation concept is that a comprehensive data pool
is necessary. Using simulated data this should be no problem.
However, generating such a data pool by means of real data
is a long and costly work.

ABBREVIATIONS

CBM Condition Based Maintenance
ESS Effective Sample Size
GP Gaussian Process
IMM Interacting Multiple Model
MAD Mean Absolute Deviation
MAPE Mean Average Percentage Error
MMM Multiple Model Method
PDF Probability Density Function
PF Particle Filter
PH Prognosis Horizon
PP Prognosis Precision
RUL Remaining Useful Lifetime
UKF Unscented Kalman Filter
UUT Unit Under Test
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