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ABSTRACT

This article presents prognosis implementation from an in-
dustrial perspective. From the description of a use-case
(available information, data, expertise, objective, expected
performance indicators, etc.), an engineer should be able to
select easily, among the large variety of prognosis methods,
the ones that are compatible with his objectives and means.
Many classifications of prognosis methods have already been
published but they focus more on the techniques that are in-
volved (physical model, statistical model, data-based model,
...) than on the necessary inputs to build/learn the model
and/or run it and the expected outputs.

This paper presents the different strategies of maintenance
and the place of prognostics in these strategies. The life cycle
of a prognosis function is described, which helps to define
relevant, yet certainly not complete, characteristics of prog-
nosis problems and methods. Depending on the maintenance
strategy, the prognosis function will not be used at the same
step and with different objectives. Two different steps of use
are defined when using the prognosis function: evaluation of
the current state and prediction of the prognosis output.

This paper gives also some elements of classification that will
help an engineer choose the appropriate class of methods to
use to solve a prognosis problem.

The paper also illustrates on one example the fact that, de-
pending on the information at hand, the prognosis method
chosen is different.

1. INTRODUCTION

Condition-Based Maintenance (CBM) and Predictive Main-
tenance seems to be attractive for the civil aeronautical in-
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dustry which bases its maintenance strategies mainly on Pre-
determined Maintenance (see (ISO 13306, 2010) for defini-
tions). The possible outcomes of CBM in comparison to the
existing maintenance strategies are:

1. increasing of the availability
• avoid Operational Interruptions (OI)thanks to early

detection capabilities;
• reduce maintenance times by a better scheduling

with less (or no) unscheduled maintenances;
2. reduction of Direct Maintenance Costs (DMC)

• optimization of the use of each component, replac-
ing it when it has reached almost all its full poten-
tial;

• better control on the maintenance scheduling: air-
craft (A/C) at the right place, at the right moment
with associated resources to conduct the mainte-
nance actions

Of course, all these potential benefits must have the same
level of safety or with a better level if possible.

In this context, the implementation of a prognosis function
on a component or system becomes a subject of high interest
for an engineer, as an important brick to build a better main-
tenance strategy. The implementation process of the mainte-
nance strategy is composed of two main phases: the set-up of
the maintenance strategy (choice of the maintenance strategy
and associated parameters) and the application of this main-
tenance strategy on the component or system of an A/C. The
question of when the implementation of the prognosis func-
tion is done is not as simple as it seems and we will show in a
first part the link between maintenance strategy and prognosis
implementation.

The main question, from the engineer point of view, remains
the choice of an approach to implement the prognosis func-
tion of a component or system.
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Literature gives a very large variety of methods, using
very different techniques from knowledge-based to physical
degradation models ((Vachtsevanos, Lewis, Roemer, Hess, &
Wu, 2006), (Jardine, Lin, & Banjevic, 2006), (Schwabacher
& Goebel, 2007) or (Sikorska, Hodkiewicz, & Ma, 2011)).
But practice does not show that a single method will be the
optimal solution for all systems/components in an A/C. The
question becomes, for the industrial, how to choose the ”best”
approach to solve one prognosis problem?

To answer this question, the engineer designing the prognosis
function has mainly two elements:

1. the available information (knowledge, expertise, data,...);
Among this information, the knowledge on failure mode
and associated degradation modes is essential, yet not al-
ways available;

2. the expected performance of the prognosis (prognosis
horizon, precision, maintenance cost reduction...); it is
related to the use of the prognosis output (dispatch, main-
tenance optimization, spare management, ...);

On the method part, the type, quantity and quality of the in-
formation required to build/identify/learn the model is not
always clearly defined and most of the time assumed to be
available both in quantity and quality. It is quite the same
with the observations, the data measured on the component
or system, required for the on-line stage. Depending on the
inputs, a certain level of performance (prognosis horizon, pre-
cision, access to a confidence in the results,...) can be defined
for each method.

Our aim, which goes far beyond this article, is thus to de-
scribe classes of methods proposed in the literature with the
point of view of the design engineer in order to help him un-
derstand which methods are usable with the available infor-
mation and performance objectives and when to use them in
the prognosis life cycle. As most classification attempts were
made with another goal, we expect to get a slightly different
result. Sikorska et al. (2011) and Vachtsevanos et al. (2006)
are the sources that are the closest to what is expected but the
main driver of their classification remains the mathematical
techniques used by the method.

This paper is divided into four parts. First, the different main-
tenance strategies are briefly presented in relation with the
modelling assumptions that are hidden behind them. The
place of the prognosis function in the life cycle of the main-
tenance is also discussed. Then, a first draft of classification
of prognosis methods is proposed which aim is to ease the
choice of the design engineer depending on the available in-
formation. Then, a simple functional description of the prog-
nosis implementation is done. Each method is to be described
in that context, stating how it is built, used and updated with
in-service data. Finally, on a the same component, a valve,
three configurations are described:

• one with only reliability type information;
• one with access to a physical model and measures of dif-

ferent stresses;
• one with access to measures of a performance indicator

of the valve.

The aim of these three examples is to roughly show how the
available information and performance objectives drive the
choice of possible methods. Needless to say that this paper is
only a first step towards a more general approach.

2. PROGNOSIS USED IN DIFFERENT MAINTENANCE
PHASES

This section explains when prognosis is used for different
maintenance strategies. Moreover, it highlights the modeling
assumptions of the system for these strategies.

2.1. Prognosis usage depends on maintenance types

The different maintenance types are defined in the ISO norm
13306 on maintenance terminology (ISO 13306, 2010).

However, in aeronautical context, the Maintenance Review
Board (MRB) process, supported by the Maintenance Steer-
ing Group-3 (MSG-3) methodology, provides the reference
maintenance overview.

Two maintenance types are mainly used in aeronautical in-
dustry. The first one is corrective maintenance: mainte-
nance is done or scheduled once an item failure has been de-
tected. The second one is predetermined (or planned) main-
tenance. Maintenance tasks are planned during design (even-
tually adapted during in operations). The maintenance tasks
and intervals are defined using MSG-3 methodology.

Predetermined maintenance is non specific, i.e. it is adapted
to a population of items, making decisions based on statistical
concerns and do not take into account the specific use of each
item.

When relevant, a more specific maintenance type, called
Condition-Based Maintenance (CBM), is introduced in the
norm ISO 13306 (2010). Although it is not considered in it,
we propose to consider two kinds of CBM :

• one based on the current-state of the item, called current-
state CBM,

• one based on some specific forecast on the item, called
predictive maintenance.

This addition to the norm is described in figure 1.

The maintenance decision in current-state CBM is based on
the estimation of the current state of the item (degradation in-
dicator for instance), the current state being assessed to be in
a maintenance region (scalar threshold or more complex for
state vector). This threshold is defined during design, tak-
ing into account characteristics of the maintenance (time to

2



European Conference of the Prognostics and Health Management Society, 2012

Figure 1. Different strategies of maintenance in industry

detect, plan and operate maintenance), future conditions and
the prognosis function. On the other hand, predictive main-
tenance decision requires the computation of a future char-
acteristic of the item at a certain time horizon, using future
conditions that could be specific for the item under study.

All preventive maintenance strategies require the prediction
of a remaining time before failure and thus require a progno-
sis function.

2.2. Prognostics for maintenance

The main concept used in prognosis is the Remaining Use-
ful Life (RUL), which is the remaining time before a fail-
ure occurs, also denoted estimated time to failure (see
(Vachtsevanos et al., 2006) or (ISO 13381, 2004)). Prognosis
is often defined as the estimation of the RUL (see (Sikorska et
al., 2011) for an overview of prognosis definitions in the liter-
ature), or more generally of a quantity of interest based on the
RUL. Because of the multiple uncertainty sources (unknown
degradation process, future conditions, etc), RUL is funda-
mentally a random variable. As this concept is not easily us-
able to make decisions, the output of the prognosis should be
a quantity based on this random variable:

• the estimation of the mean of the RUL with confidence
bounds;

• the estimation of operational reliability at a given time
horizon;

• a quantile of RUL for a given risk (the RUL value for
which the probability to over this value is equal to the
risk);

• the probability density function of the RUL...

A maintenance decision in current-state CBM is made by
comparing an output with some thresholds, defined tak-
ing into account maintenance constraints, knowledge on the
degradation, risk analysis and/or cost criteria.

In predictive maintenance, the output is the prognosis output
(quantity of interest based on the RUL), computed using fu-
ture assumption on the item. A prognosis function is thus
required for the on-line phase.

In current-state CBM, the degradation indicator is the esti-
mation of the current state of the item. The maintenance
thresholds on the state of the item are determined during the
off-line stage by aggregating all the possible futures and con-
sequences of such a state. A prognosis result is needed in
the design of the maintenance strategy to set the maintenance
thresholds.

This argument is also true for predetermined maintenance.
The maintenance tasks are scheduled according to risk and
cost criteria which require a prognosis function during the
design of the maintenance strategy. The prognosis function is
not required for the on-line stage.

Eventually, a prognosis is required for every preventive main-
tenance. However, the prognosis is not used at the same
phase. It is done on-line only for predictive maintenance, as it
uses specific future assumption that cannot be pre-processed.
This difference can be explained also by the different levels
of modeling behind each maintenance type.

2.3. Associated modeling assumptions

This section focuses on preventive maintenance, the associ-
ated information used to build the different preventive strate-
gies and the modeling assumptions that are done.

Concerning the modeling assumptions, they concern the eval-
uation of the present state (pres. in table 1) and the prediction
of the future (fut. in table 1). For each of these steps, the
item can be considered as unique (spec. in table 1) or part of
a population of similar items (glob. in table 1).

One can distinguish:

• predetermined maintenance: The associated models are
built using only information, knowledge and/or data of
similar items, called historical information. It can be
previous run-to-failure, experts or engineers knowledge,
historical data, etc. For this maintenance strategy, no spe-
cific evaluation of the current state is done and no specific
prediction is made on the item. The item is considered
as one item among a population of similar items.

• current state CBM: Compared to the previous one, this
maintenance also requires a modeling of the specific
present condition of the item. This is done using specific
data, which are online monitoring, inspections, built-in
tests directly made on the item. For this strategy, the
present state of the item is estimated individually. The
same component in another A/C would not have endured
the same conditions and its present state would be dif-
ferent. However, the future of the item is not studied
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Maintenance type Data used Modeling

Predetermined

Maintenance
Historical information

spec. glob.

Pres. x
Fut. x

Current State

Condition-Based

Maintenance

Historical information

Specific data

spec. glob.

Pres. x
Fut. x

Predictive

Maintenance

Historical information

Specific data

Future conditions

spec. glob.

Pres. x
Fut. x

Table 1. Different levels of modeling associated to mainte-
nance types

specifically and a treatment has been done during design
to select thresholds that account for all the possible fu-
tures, missions, that the item might endure.

• predictive maintenance: This last maintenance implies a
modeling of the specific future of the item, using specific
future conditions. For this strategy, both present state
and future of the item are specific. The same item would
have different RUL if different future conditions would
be met.

This comparison is summarized in table 1.

3. FIRST ELEMENTS OF A CLASSIFICATION OF PROG-
NOSIS METHODS FOR A DESIGN ENGINEER

The choice of a prognosis method is not an easy task. Each
method has its advantages and drawbacks and its performance
depends strongly on the quality of the inputs used. The avail-
able information being different for each case, the best meth-
ods will potentially be different for two different cases. How
can a design engineer find its way through the large diversity
of methods proposed in the literature?

The approach presented in this section is still in development
and will continue to be refined in the future. The starting point
is the available information. Different situations are described
depending on the level of insight on the degradation process.
A class of methods that can be used are associated to each
situation.

Figure 2 describes the different situations.

The different cases are detailed in the following. No methods
are detailed here but families of methods are given for each
case.

Figure 2. First elements of classification

Case 1: no specific data In this situation, the design engi-
neer has no access to specific data and works only with his-
torical data, when available, and reliability studies. This con-
straint makes it impossible to implement CBM. In this case,
the methods that can be used are reliability based methods,
with constant or variable failure rates.

Case 2: for a system, access to the fault state of the compo-
nents The failure information of a component is useful only
for a system. When available, it allows to update the failure
rate of the system (through the reliability diagram) and thus
update the RUL of the system. In this case, the methods that
can be used are conditional reliability based methods, with
constant or variable failure rates.
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Case 3: no degradation indicator In this situation, spe-
cific data is collected on the item but no degradation indicator
has been identified. Prognosis requires to learn a model that
links the observables to the time of failure, for instance using
a database of history of observables and the associated time
of failure. In this case, the methods that can be used are data-
based techniques to identify the features and learn the link
between the features and the time of failure.

Case 4: direct access to the indicator The building of
a degradation indicator requires a lot of knowledge of the
degradation process or, at least, of its consequences in terms
of performance. The simplest situation is when the degrada-
tion indicator is directly observable. In this case, the methods
that can be used are methods to build the evolution of the in-
dicator with future mission assumptions.

Case 5: indirect access to the indicator In this case, the
degradation indicator is not directly observable but has to be
computed from other specific data. Two models are to be
built and validated. The first model links the specific data
with the degradation indicator. This model can be built using,
for instance:

• stress models based on the physics of degradation (envi-
ronmental and operational conditions are monitored and
a physics-based model computes the damage increment),

• a deviation from a nominal behaviour (both inputs and
outputs of the item are monitored and the deviation be-
tween the monitored output and the nominal output com-
puted from the monitored inputs is computed)...

For the prediction of the future of the indicator, two choices
are possible. The first is to use the values of the degradation
indicator previously computed as can be done in case 4 with
the monitored degradation indicator. The second is to build a
model of the monitored parameters (with ARMA models for
instance) to simulate them in the future and use the first model
to compute the future values of the degradation indicator.

Each case needs to be described with much more details. The
next section gives a way to describe the implementation of the
prognosis function, that could be used to refine the descrip-
tion of each of the previous cases.

4. PROCESS OF A PROGNOSIS FUNCTION IMPLEMENTA-
TION

This section focuses on the description of the life cycle of a
prognosis function implementation. As already mentioned,
this implementation will be used during different phases (de-
sign or in service). We will highlight in particular the type of
information used at each step. This description is dedicated
to a basic prognosis function where there is no fusion done
between different prognosis functions implementations. This

is the case for components or for systems where the prog-
nosis function is not modeled as a logical aggregation of the
prognosis functions at component level.

We assume that the analysis of the component or system has
already been done. Thus, we are in the situation where:

• the item is selected based on economical and risk criteria;
• its failure modes are selected using safety analysis and

MSG-3 analysis (occurrence, criticality and cost crite-
ria);

• associated degradation processes of the item are identi-
fied;

• parameters to monitor in order to define the health status
of the item have been defined (called observables in the
following).

4.1. Phase 1: Design of the prognosis function implemen-
tation

This phase corresponds to the design of the prognosis imple-
mentation. In this step, the aim is to build models that rep-
resent both the current state of the component or system and
its evolution. It means choosing, developing and tuning the
models from the available information.

The only information that can be used at that stage is his-
torical knowledge. This consists in domain expertise, histori-
cal data (A/C, fleet), run-to-failures on test benches, feedback
from previous programs, etc.

The evaluation of the current state of the component or sys-
tem can be direct or indirect. It is called direct if the current
state is computed from the observables only by a data treat-
ment, like filtering for instance. It is called indirect if it is
computed through a model with observables as inputs. The
characterization of the current state could be as different as
a scalar health indicator, a performance of a function or the
complete history of the observables from the last maintenance
action.

The evolution of the component/system can be either done
by:

• a state model: the evolution of the state of the item is thus
resulting from an evolution of the observables, character-
izing the future conditions undergone by the item;

• an incremental model: at each time step or cycle, an in-
crement is computed and added to the current state.

During this phase, the different models are trained, selected
or identified. A way to validate them during the operations of
the A/C has to be defined.

Another element that has to be defined during this step is a
model for the different mission conditions.

Finally, the Verification and Validation (V&V) process has
to be done. A first validation with historical data has to be
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performed. The performance of the prognosis (see (Saxena,
Celaya, Saha, Saha, & K., 2010) for examples of performance
indicators) has to be compatible with the usage of prognosis
outputs.

4.2. Phase 2: on-line execution

The on-line execution is the execution of the previous models
during the A/C usage.

4.2.1. Step A: Evaluation of the current state

The current state of the item can be defined as the minimal in-
formation that characterizes the state of the item. It can take
many different forms, from the simple scalar health indica-
tor, through a state vector that characterizes the state of the
component (includes internal variables of a physical model
for instance), to the complete history of observables from the
last maintenance action (if no other knowledge is available).

The evaluation of the current state of the item is direct if mon-
itored and indirect if a model is used to compute it from the
monitored parameters.

4.2.2. Step B: Prediction of the prognosis result

This step consists in the computation of the quantity of inter-
est based on the RUL (quantile of the RUL, reliability over
a time interval, etc.) As already stated in the first step, the
modeling of the future missions has to be introduced. Differ-
ent cases are possible. The following gives some examples:

• the state of the item is computed by a model, building a
modeling of the future inputs is a way to define future
conditions;

• the conditions in the future are the same as they were
in the past, if the evolution of the current state of the
item is regular, the previous evaluations of current state
in the past can be used to build a trend that can be post-
processed to compute a prognosis result;

4.3. Phase 3: Update and V&V

4.3.1. Update of historical data

The first element of this step is the update of historical data
done by collecting the run-to-maintenance of each item and
adding them to the historical data.

This update of historical data might lead to an update of the
different models that are used in the prognosis implementa-
tion.

4.3.2. Validation all along the life cycle of the A/C

The different models used in the prognosis implementation
have been validated using test-bench results, historical data,
scenarios of use that are a model of the reality the item will
have to face after EIS.

Right after EIS, the priority is to validate the implementation
with in-service data to measure the effect of the modeling
error of real conditions done in the first validation done in
4.1.

All along the life cycle of the A/C, that could last forty to fifty
years, the validation has to continue, maybe with a different
time scale, to detect potential drift due to an evolution of the
use of the A/C.

This simple description of the process of implementation
gives an idea on how the methods can be used, how they can
collaborate. Moreover, the same methods can be used at dif-
ferent steps with different objectives.

5. EXAMPLE OF DIFFERENT PROGNOSIS FUNCTIONS ON
THE BLEED SYSTEM

This section aims at describing an industrial prognostics case,
and at illustrating the process described on section 4. Three
prognostics cases will be considered. In each case, the com-
ponent under study and the expected prognosis output remain
identical, but the available inputs are different and the prog-
nosis performance will be different. Thus, different prognosis
methods must be implemented, and the prognosis expected
performance may not be reachable. As this paper focuses
on the prognosis process definition and its characteristics, the
prognosis results are not provided here. Moreover, the vali-
dation phase is not described in the following.

5.1. Description of the initial example

The component under study here is a pneumatic valve within
the Bleed air system. This system is part of ATA-36. It pro-
vides air to the cabin at an admissible pressure. Basically, it
takes air at high pressure from the engines or auxiliary power
unit (APU), then regulates its pressure and provides this reg-
ulated air to the rest of the bleed system. Figure 3 illustrates
a Bleed system on a CFM56-5B.

The component under study participates in the pressure reg-
ulation. During this process, the air pressure needs to be
reduced, which is done by the Pressure Regulating Valve
(PRV). There are different kinds of PRV, and we consider here
a pneumatic valve (see figure 4). This particular example was
previously studied in (Daigle & Goebel, 2010).

Due to different kinds of constraints, a performance objective
is set. For instance, the prognosis horizon must be at least five
hundreds flight-hours.

5.2. At system level: reliability type information

In this example, the bleed system is represented in a very sim-
plified way as a set of valves, one per engine, and a com-
ponent representing the pipes. In this case, the information
available is the constant failure rates of each component of
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Figure 3. Scheme of bleed system on CFM-56B

Figure 4. Scheme of the pneumatic valve, from (Daigle &
Goebel, 2010)

the system.

The only online information is the fault status of each com-
ponent. This case corresponds to Case 2 in figure 2.

The best use of the available information to compute a quan-
tity of interest based on the RUL is to use the same model as
in classic reliability where the bleed system can be considered
in its logical view, as shown in Figure 5.

The improvement that is done is to take into account the cur-
rent state of each component, here the fault status. The dif-

Figure 5. (Very) Simplified view of a bleed system

ference between failure rates when one PRV valve is in fault
is due to the change of operational condition, the remaining
valves being overstressed to maintain the bleed performance.

Using a Pure Jump Markovian Process, the RUL conditional
to the current state of the system can be computed as well
as all quantities based on the RUL. Despite the fact that the
variance of the RUL will be smaller than the RUL that would
be computed without any information, the added information
is rather poor and the added value may not be sufficient to
meet the objectives of the prognosis function.

Concerning the update phase, the constant failure rates of
each component could be updated using the real constant fail-
ure rates rebuilt from the in-service data.

5.3. At component level: using physics based model

For this case, physical knowledge of the degradation behav-
ior of the valve is available, along with experiments to iden-
tify and validate the parameters of the physical model. The
scheme of the valve on which the model is built is shown in
Figure 4 and is taken from (Daigle & Goebel, 2010).

The only monitored parameter is the pneumatic pressure
command.

The current state evaluation is done by incrementing the phys-
ical degradation caused by the variation of the pneumatic
pressure command. This corresponds to Case 5 in figure 2.

The computation of the quantity of interest based on the RUL
is done by computing the future state of the valve and post-
process it to compute the RUL. This can be done at least in
two different ways:

• Model the future conditions that will undergo the valve
by modeling the future pneumatic pressure command.
Use this command as input of the physical model, ini-
tialized by the current state, compute future states of the
valve,

• Assume that future conditions will be the same as previ-
ous conditions and make a statistical model of the degra-

7



European Conference of the Prognostics and Health Management Society, 2012

dation indicator using the past values of the degradation
indicator, for instance using a linear regression model
over use time, or cycles. Use this model to compute fu-
ture states of the model.

The future degradation state is then post-processed to com-
pute the quantity of interest based on the RUL.

For the second way of the prediction step, the update phase
could be done by capitalizing the models built by the linear
regression and study whether they are always the same or are
very different from a component to another or from a mission
to another. The history of degradation indicator for one com-
ponent could also be added to the historical knowledge as a
run-to-maintenance test.

5.4. At component level: using a performance indicator

For this case, the available information is that the degradation
of the valve can be characterized by the time of opening and
closing of the valve. Historical knowledge shows also that
this degradation is relatively smooth and progressive. The
valve is considered useful as long as the opening and closing
time are smaller than a threshold value.

The available online information consists in the measure of
the position of the valve from which one can derive the open-
ing and closing time.

The current state of the valve is characterized by the history
of closing and opening time monitored since the last replace-
ment of the valve.

For the prediction step, the opening and closing time data is
used to build a data model, a regression model for instance,
which is used to predict future performance of the valve. The
prediction of performance is then post-processed to compute
the quantity of interest based on the RUL.

As in the previous case, the update phase consists in the cap-
italization of runs-to-maintenance once the component is re-
placed and a capitalization of the different models built with
the .

6. CONCLUSION

In this paper, the implementation of prognostics has been pre-
sented from a design engineer point of view. The questions
to be addressed are:

• What information is available?

• What method or set of methods can be used to compute
the prognosis output?

• If the prognosis built does not reach the expected perfor-
mance, what information should be added to reach the
expected performance with the same method or with a
different one?

In the literature, the classifications of prognosis methods are
mostly driven by the mathematical techniques used. In this
paper, a simple classification is presented. This classification
is based on the available knowledge (historical knowledge,
expertise, run-to-failures, already existing online monitoring,
future mission profiles, etc.) and defines different situations.
This classification has been illustrated by describing different
ways to build a prognosis on a bleed valve and relating each
example to one of the situation previously described.

Methods have been associated to each of these situations but
this work will continue in the future. The process of progno-
sis implementation is the way proposed to describe more in
details the use the methods in the different cases. It should
highlight:

• the type of information and data needed to build the dif-
ferent models used by each method, both for the eval-
uation of the current state and for the prediction of the
RUL;

• the verification and validation process both during design
and after the EIS.

A lot of work is still to be done.

NOMENCLATURE

RUL Remaining Useful Life
CBM Condition Based Maintenance
PRV Pressure Regulating Valve
DMC Direct Maintenance Cost
V&V Verification and Validation
EIS Entry Into Service
APU Auxiliary Power Unit
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