
Data Management Backbone for Embedded and PC-based Systems

Using OSA-CBM and OSA-EAI

Andreas Löhr
1
, Conor Haines

2
, and Matthias Buderath

3

1,2
Linova Software GmbH, Garching b. München, 85748, Germany

andreas.loehr@linova.de

conor.haines@linova.de

3
 Cassidian, Manching, 85077, Germany

matthias.buderath@cassidian.com

ABSTRACT

Cassidian is in the process of developing a comprehensive

simulation framework for integrated system health

monitoring and management research and development.

One significant building block is to invite 1st class

technology providers, e.g. Universities and SMIs, to provide

innovative technologies and support their integration into

the simulation framework. This paper is a joint presentation

of Cassidian and Linova Software GmbH, a Cassidian

preferred software provider.

Prognostic Health Management (PHM) systems are

commonly composed of disparate and distributed hard- and

software components. Further, these components exchange

vast amounts of data over a heterogeneous collection of

communication channels. Any such system’s success

depends upon an open, uniform, and performance-optimized

solution for data management. A solution that includes: data

definition, data communication, and data storage. The Open

System Architecture for Condition-based Maintenance

(OSA-CBM) and Open System Architecture for Enterprise

Application Integration (OSA-EAI) are complementary

reference architectures and represent an emerging standard

for application domain-independent asset and condition data

management. Herein, we will report on our experiences

while implementing a data management backbone based on

OSA-CBM and OSA-EAI for a simulation environment

supporting PHM systems in the aerospace domain. Our

work encompasses both airborne embedded systems and

ground-based PC systems. While we can generally confirm

the feasibility of OSA-CBM and OSA-EAI, we found

several implementation recommendations unsuited to real-

time operating conditions. To address these issues, we

propose work towards standardizing non-XML-based

transportation formats for OSA-CBM data packets. Further,

we discovered issues specific to implementing the OSA-EAI

data model in the aerospace domain. These issues drove our

proposal to extend the OSA-EAI database model, where we

seek to optimize its usability for analytical tasks. To

underline the feasibility of our solutions, we provide

empirical evidence drawn from our work. The conclusion is

a summary of our experience and the direction of future

work in the area of PHM system design for aircraft

maintenance. In total, our contribution to the community is

best seen from a practitioner’s perspective. We aim to

establish best practices for and contribute to the evolution of

OSA-CBM and OSA-EAI.

1. SIMULATION ENVIRONMENT

The aerospace industry is a core application domain and

development driver for PHM systems. The paradigm shift

towards predictive maintenance which PHM systems

impose to maintenance and overhaul processes promises

higher aircraft availability coupled with lower overall

maintenance costs. As in any other domain, challenges in

introducing PHM systems to the aerospace domain are

twofold. On the one hand, there are individual challenges in

developing sensor technology, state detection, and health

assessment methodologies/models for determining the

future life span of a (possibly deteriorated) component. On

the other hand, there are distinct challenges when

integrating heterogeneous data from disparate and

distributed sources into consolidated information and

dependable decision support. This applies at both the

aircraft and fleet level. It has therefore been recognized in

the community that standardized and open data management

solutions are crucial to the success of PHM. Such a standard

should introduce a commonly accepted framework for data

representation, data communication, and data storage.

Andreas Loehr et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License,

which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

European Conference of Prognostics and Health Management Society 2012

2

EADS Deutschland GmbH, Cassidian, is developing a

comprehensive simulation framework for research in the

areas of condition monitoring and prognostic health

management. The framework includes airborne functions

hosted on embedded systems, as well as ground-based

functions hosted on PC-based systems. The primary

objective is to interconnect both airborne and ground-based

systems using a uniform data management philosophy and,

as far as possible, uniform communication protocols. In this

paper, we report on experience from our task to define and

implement the data management backbone for such a

simulation framework. The backbone is based on the Open

System Architecture for Condition-based Maintenance

(OSA-CBM) and the Open System Architecture for

Enterprise Application Integration (OSA-EAI).

1.1. OSA-CBM

The OSA-CBM reference architecture has become the de

facto standard for exchanging data in a condition monitoring

system. Being an implementation of the ISO-13374

functional specification, the architecture defines six

functional layers. Each layer is allocated different and

unique functions of the data processing chain in a condition

monitoring system.(see Figure 1).

Figure 1.OSA-CBM Reference Architecture

This architecture focuses on the definition and

communication of data. Specifically, on the question as to

which data entities and events can be exchanged between

the layers during operation and the communication

interfaces used for this purpose. The format by which the

data is exchanged between the layers remains unspecified;

however, the usage of XML messages, which are

transported over HTTP, is recommended. For this purpose,

the standard provides a thorough collection of specifications

for XML messages.

1.2. OSA-EAI

The reference architecture OSA-EAI is complementary to

OSA-CBM. It specifies a comprehensive data storage

architecture for asset management systems. This

architecture consists of: a physical relational data model

(Common Relational Information Schema, CRIS), a

corresponding logical object model (Common Conceptual

Object Model), and CRUD interfaces (Create, Retrieve,

Update, Delete) for all defined entities in the data model, as

depicted in Figure 2. In the course of harmonizing OSA-

EAI with OSA-CBM, the data model defines entities that

are capable of storing data originating from all six OSA-

CBM layers. Analogously to OSA-CBM, it is recommended

that clients interact with an OSA-EAI database via XML

messages transported via HTTP. For this purpose, the

authors of the OSA-EAI standard provide a multitude of

CRUD XML message specifications. These specifications

define how to manage data contained in the database and

how to make the data available to any other stakeholder or

application within a PHM system.

Figure 2. OSA-EAI Reference Architecture

A link to the MIMOSA organization, which maintains the

reference architectures, can be found in the references

section.

2. SIMULATION ENVIRONMENT

The simulation environment consists of an air segment and a

ground segment, (inter-)connected by a data management

backbone that relies on OSA-CBM and OSA-EAI. In the

following section, we introduce the high level architecture

of our simulation framework.

2.1. Air Segment

The air segment of the simulation framework models those

systems and associated sensors for which we intend to

develop IVHM capabilities. At the core of the framework is

a central IVHM data processor. Sensors push their data to

this IVHM data processor via an OSA-CBM compliant

implementation. As a reflection of the working

environment, the underlying message protocol is optimized

for embedded systems (detailed in section 3). The IVHM

data processor calculates IVHM information according to

the OSA-CBM layer specifications, up to the health

assessment layer (refer to Figure 3).

Figure 3. Air Segment of Simulation Framework

European Conference of Prognostics and Health Management Society 2012

3

2.2. Ground Segment

The central data processor supports the downloading of

data, which has been collected and calculated on board the

aircraft, to the ground-based environment for further

processing (e.g. during the aircraft’s turnaround). Once

downloaded, the data is stored in a central data management

component, which we call the CBM data warehouse (refer

to Figure 4).

Figure 4. CBM Data Warehouse

The CBM data warehouse is based on the OSA-CBM/OSA-

EAI reference architectures and it serves two major

purposes: first, it hosts all current (i.e. short timeframe) and

historical (i.e. long timeframe) condition data. Second, it

provides services to distributed client applications that are

involved in the PHM process. Such services include the

CRUD interfaces as defined by OSA-EAI (e.g. for asset

configuration management), high layer functions as defined

by OSA-CBM (prognostic assessment and advisory

generation), and other services relevant for a PHM system.

In our context, data management includes the entire data set

life cycle: from initial instantiation of a sensor value,

transportation to the IVHM data processor, downloading to

the ground-based environment, on through to storage and

further processing. In section 3 we discuss aspects of OSA-

CBM-based data management in an embedded system.

Section 4 derives from experience gained while realizing the

CBM data warehouse.

3. OSA-CBM IN AN EMBEDDED SYSTEM

Following an initial implementation of OSA-CBM using

XML messages transported via HTTP/TCP, we decided to

use binary messages transported via a UDP/IP stack. This

significant departure from the MIMOSA recommendations

was driven by requirements that arose from our intended use

of OSA-CBM in the context of embedded systems certified

for in-flight usage. Our focus of interest for on-board

implementation ranges from data acquisition layer up to

health assessment and the following sections report about

our experience in implementing these classes using the C

programming language.

3.1. Environment

When fielding OSA-CBM compliant applications on

embedded systems certified for in-flight usage, several

issues are brought to the fore. Ultimately, two aspects

defined the unique structure of our solution: resource

limitation and non-dynamism. Computing hardware for

avionics, due to qualification requirements, are generations

behind present off the shelf computing hardware.

Implementation rules for applications hosted on real-time

operating systems (such as VxWorks) typically forbid

dynamically allocating memory resources, as these

operations are potentially non-deterministic and lead to

memory leaks if not used carefully. This environment

imposes further constraints on the solution space: due to

qualification or certification requirements (depending on the

risk class of the final system) all embedded code must be

written in the C programming language. Furthermore, UDP

must be used as the sole protocol for network

communication.

3.2. Use Case and Design Considerations

We want to transmit a heavy load data event set which

contains four heterogeneous OSA-CBM DMDataSeq

events at individual sample rates of 160Hz, 360Hz and 1

kHz. Additionally, we want to transmit a light load data

event set, containing a single DMDataSeq event recorded

at 20Hz; both data event sets will be transmitted with a

frequency of 1Hz.

Generating OSA-CBM compliant XML representing our

two event sets and packaging the XML into UDP packages

as ASCII code was a straight-forward implementation

approach as it has been performed by others (Swearingen,

Kajkowski, Bruggeman, Gilbertson &Dunsdon, 2007).

Generally, it involves the following three steps:

1. Sender: assemble the XML from an internal data

representation in memory

2. Sender: marshal the XML into a UDP package and

send

3. Receiver: Unmarshal and parse the received XML

and populate an internal data representation in

memory

As we will show later on, in Table 1, using XML generates

a structure in which 75% of the transmitted data is

apportioned to meta-data defining the XML structure.

Additionally, due to its absolute size, the heavy load data

event set exceeds the maximum size of a UDP packet.

While it would have been possible to split up its data into

several UDP packages, we consider the ratio between meta-

data and payload to be unsuited to the constrained allocation

of computing resources. We acknowledge that if we assume

our heavy and light load data event sets would be the only

loads on the communication channel (e.g., ethernet), there is

European Conference of Prognostics and Health Management Society 2012

4

no risk that it will exceed transmission capacity; but this

assumption may not hold in a real aircraft design where

communication is channeled and, due to the availability of

qualified or certified hardware, the transmission capacity

might be drastically limited. We also researched XML

parsers that are written in C, and therefore compile for

embedded environments, (e.g., Mini-XML, Expat, RXP) but

we found them incompatible with internal programming

policies (static memory allocation). Additionally, the high

risk involved in the certification or qualification of an XML

parser for an embedded system finally drove our decision

towards a non-XML-based binary solution for marshalling

and unmarshalling OSA-CBM data.

3.3. Design and Implementation

OSA-CBM is an object-oriented specification and therefore

makes use of polymorphism, which is the ability to create

object attributes, object functions or even an entire object

that has more than one form. Our implementation of OSA-

CBM is based upon the representation of OSA-CBM classes

by a set of C structures. The C programming language is

procedural and does not offer native polymorphism. After

analyzing data manipulation through health assessment

layer communication classes of the OSA-CBM object

model, we concluded that a mapping of OSA-CBM classes

to C structures is possible. We will next explain our

rationale in supporting this approach.

The C programming language decouples data from

functionality, therefore we did not have to map

polymorphism of functions (OSA-CBM does not define

behavior of the classes, anyway). We also could not identify

polymorphism of attributes for the classes of our interest.

However, there is polymorphism of objects, i.e., specific

derived classes inherit part of their structure from one or

more base classes. We mapped this kind of polymorphism

by initially modeling C structures for each root class (i.e.,

classes that do not have a base class in the OSA-CBM

model). For all non-root classes we modeled a member in

the derived class which is of the type of the respective super

class. As an example, the structure for the data sequence

event of the DM layer (DMDataSeq) is shown in Figure

5(c). The corresponding base class structures are shown in

parts (b) and (a), respectively.

Within specific limits our approach is also able to emulate

multiple inheritance by including more than one base class

member; however, the part of the OSA-CBM data model

that we focused on does not involve multiple inheritance.

For transmission, multiple data event instances are bound

together into a data event set. Regarding a single instance of

an OSA-CBM base class, its actual subtype at runtime can

be anything. This is critical to the C implementation as the

DataEventSet class acts as a transportation container for

any DataEvent instances. We solved this problem by

introducing a constraint: an OSA-CBM data event set may

only include data events of the same type. This allowed us

to introduce a non-standard member on the

DataEventSet class which is of enumerated type

OsacbmDataType and which indicates the type of

included events.

Figure 5. Exemplary Payload OSA-CBM Structures

The received byte stream can therefore be interpreted

correctly on the receiver side. For the transmission itself, we

copy a structure’s memory image into a temporary buffer.

Additionally, as required by the event type, the buffer

memory is appended with a data block for each reference

from a structure’s pointer members (here: values and

xAxisDeltas). Finally, the buffer is sent as a UDP

packet to the receiver, where is reconstructed into a set of

OSA-CBM compliant data. Consequently, we support both

static data types (such as DMReal) and dynamic types (such

as DMDataSeq). Though, as a necessary overhead,

complex data sequences require recipient side remapping of

pointers at run time and a maximum payload size must be

defined for real time operation.

3.4. Evaluation

Quantitative evaluation will be accomplished here with a

comparison between the data required for an ASCII XML

data transmission versus that of our custom binary

transmission protocol. We used Ubuntu 10.0.4 (32bit) as

sender and VxWorks on Power PC (32bit) bit as recipient.

Table 1 outlines the data characteristics of two

representative communication samples.

Figure 6. Data Event Set as C Structure

European Conference of Prognostics and Health Management Society 2012

5

The first sample is a heavy load data event set. It contains

four heterogeneous OSA-CBM DMDataSeq events at

individual sample rates of 160Hz, 360Hz and 1 kHz. The

overall data event set has a frequency of 1Hz. The resulting

data push represents 2,520 individual measurements being

sent across the system every second. The second sample is a

light load data event set, containing a single DMDataSeq

event recorded at 20Hz; the corresponding overall data

event set has a frequency of 1Hz.

 XML Binary Ratio

Heavy Load 165 345 bytes 40 792 bytes 4.1

Light Load 1 827 bytes 576 bytes 3.2

Table 1. Data Transmission Size Comparison

As seen in Table 1, there is a significant reduction in the

volume of data transmissions achieved by our approach,

ranging up to a factor of four. An additional effect of our

approach, as compared to sending XML messages via UDP

instead of via HTPP/TCP (Swearingen, Kajkowski,

Bruggeman, Gilbertson & Dunsdon, 2007) is a significant

reduction in the processing overhead required by XML

structural parsing; this reduction is beyond the scope of our

present analysis.

However, there are drawbacks of our approach. As UDP is a

stateless protocol, there is a cap on the amount of data that

can be transmitted per event set. It is limited to the

maximum allowed size of a UDP Data package (UDP

specifies a maximum allowed size). Depending on platform

specific settings the maximum available size can be

significantly less.

We believe that this size limitation is best addressed by

splitting the data set into a series of discrete packets, as

opposed to introducing additional limitations and overheads

on the binary transmission format. Data management within

a closed on-board real-time environment a priori requires

that the overall data communication is well designed

regarding timing and loads. In such a closed and well

controlled environment the likelihood of UDP packet loss is

minimized, however, it may happen. Therefore, we propose

the usage of UDP-based transmission only for functions

which can cope with temporary gaps in their data input,

such as our diagnostics algorithm. For functions which are

not robust to data losses, a confirmation and resend protocol

could be invented, but that would negate the usage of UDP

and TCP would be the transmission protocol of choice.

Our current implementation is highly platform dependent as

it is patched to meet the characteristics of our environment

(sender 32bit Ubuntu, recipient 32bit VxWorks). To

overcome platform differences we introduced artificial

padding bytes (see C structure members in Figure 5) so that

the internal in-memory arrangement is equal on both

platforms and performed byte-swapping on the receiving

platform. This allowed us to easily case the UDP package

payload into the required structures (including pointer

remapping).

Finally, XML messages can be read by humans more easily

than binary messages. This may impose complications to

the debugging cycles during software development;

however, from our experience, software developers tend to

develop the ability to “read” binary content over time, in

particular if sophisticated Hex editor tools are being used. A

steeper learning curve certainly is worth the performance

gains. As for the generation of test data for certification or

qualification, binary protocols do not impose significant

overhead, as also with XML a generative approach will

have to be used to deal with the large amount of test cases.

3.5. Outlook

Our initial implementation, transmitting the memory image

of structures, is not optimal when communication must take

place between heterogeneous platforms and only allows for

a homogenous data event set payload. Yet, it yields

significant performance gains, reduces the consumption of

memory, and simplifies certification or qualification. As

shown above, issues related to padding and regarding the

arrangement of data in RAM may arise. While these issues

can be mitigated if the characteristics of the platforms are

known, the scalability in general remains limited. To

address these issues, we started the development of a

custom binary OSA-CBM protocol. The vision was to

evolve this protocol as a generic and platform-independent

means for transporting OSA-CBM events over the network

in a binary fashion. In Figure 7 we provide an excerpt from

our initial work to illustrate the proposed design approach.

Based on preliminary low level definitions (such as big or

little endian, widths of primitive data types) all OSA-CBM

classes are modeled as a sequence of 16 Bit words. In our

example, an ID consists of two words, i.e. it represents a

32bit integer value.

Analogously, the OsacbmTime class is represented as a

sequence of five words (our customized implementation

only required the time_type and time_binary

attribute). With every class having such a specific

representation, data events and entire heterogeneous data

event sets can be assembled. For dynamic structures, upper

bounds for the allowed amount of dynamic data must be

defined (possibly implementation specific) in order to meet

the requirements of real-time operating systems. To avoid

sending spare data, the binary representation of such

dynamic portions requires that one includes a member that

defines the actually allocated amount of data (up to a

maximum dictated by the data size allowed in a UDP

packet). An example is the member

DMDataSeq.dataSize, which is not part of the OSA-

CBM specification but which is required for correctly

interpreting the words. Checksums to detect transmission

failures were foreseen as well. By standardizing the binary

European Conference of Prognostics and Health Management Society 2012

6

representation for the network format, senders as well as

recipients have to translate between their platform specific

representation and the network format. Although there is

marshalling and un-marshalling to be done, we hypothesize

that the CPU load for this process can be neglected

compared to XML parsing.

Figure 7. Exemplary binary representation of
DataEventSet

Based upon results shown in the previous section, the size

of data structures in this new network format will be in the

area of 25% of a corresponding XML representation.

3.6. Binary Message Format in OSA-CBM 3.3.1

The most recent version of OSA-CBM, Version 3.3.1,

includes a specification for a binary transmission format for

OSA-CBM messages. We see our work confirmed by this

addition to the OSA-CBM standard. Following an initial

design and trade study, we decided to adopt MIMOSA’s

specification as the network layer format amongst our

subsystems. Though this choice rendered our custom

protocol design work moot, it is implementation that has

been and remains the focus of our work. Furthermore, the

compatibility of our systems with the rest of the community

will be ensured by following a standard which is now part

of that community. That is to say, our optimizations in the

marshalling/un-marshalling of data within and amongst real

time embedded systems and in the creation of an API/library

for OSA-CBM transmission is just as critical while using

the MIMOSA standard as with our custom message format.

Our aim is to create a fully C coded, statically allocated

implementation of the OSA-CBM Binary message

specification for embedded systems.

4. CBM DATA WAREHOUSE

The ground segment of our simulation framework includes a

central repository for data and information, called the CBM

data warehouse.

4.1. High Level Requirements

Design of the CBM data warehouse was driven by the

following high-level requirements.

1. The CBM data warehouse shall act as a central

information system for all applications involved in

the PHM process.

2. The CBM data warehouse shall provide a uniform

and standardized interface for managing and

querying its data.

3. The CBM data warehouse shall maintain full

traceability for any in-service data item regarding

origin, allocation (to assets, aircraft and flights) and

changes.

Given the need to meet these requirements across a large

fleet of aircraft, the design of the CBM data warehouse

faces two core challenges. First, it must process a large

number of transactions originating from daily maintenance

tasks, such as asset installation/removal and storing newly

available IVHM-data from performed flights. Second, it

must process and store a large amount of historical data for

performing diagnostics and prognostics, as well as their

continual improvement as more in-service data becomes

available.

4.2. Realization

The OSA-EAI and OSA-CBM reference architectures

define a uniform data management philosophy that allows

for full traceability of virtually any sensor value and its

derived information. Earlier work (Gorinevsky, Smotrich,

Mah, Srivastava, Keller & Felke, 2010, and others)

demonstrated the feasibility of using these architectures as a

reference to build a comprehensive information system and

associated service interface across multiple domains,

including aerospace. We consequently considered the

selection of OSA-EAI and OSA-CBM as guidelines for the

design of our CBM data warehouse as a promising approach

to satisfy our high level requirements.

4.2.1. Scope

We have implemented a subset of the OSA-EAI standard for

our initial version of the CBM data warehouse. The subset

was derived with the aim of providing data management for

diagnostics and prognostics on our candidate systems.

Confirming reports from other researchers, we found the

documentation of OSA-EAI to be rather sparse, especially

when mapping its generic universe of entities to a specific

application domain. We concentrated on the ability to

European Conference of Prognostics and Health Management Society 2012

7

express system breakdowns (Assets, Segments, and

Parent/Child relations) and the ability to associate data from

the data acquisition, data manipulation, and state detection

layers. Additionally, each asset was to have an active history

of health assessments and remaining useful life estimates.

We expected that this would lead to an implementation of

tables exclusively from the REG, DIAG, DYN and TREND

groups of entities; however, with the exception of the

TRACK group, we had to implement at least one table from

all other entity groups in order to satisfy mandatory

connections between tables. We consider this a symptom of

the complexity of the OSA-EAI standard, and strongly

encourage the maintainers of the standard to establish a

sample or reference application for OSA-EAI (and OSA-

CBM), similar to the SCOTT database example of Oracle.

4.2.2. Customization

We customized the remaining OSA-EAI tables in a way that

would simplify the generation of test and reference data, but

still allow for the drawing of general conclusions (congruent

customization) from our experience. We made further

customizations to map specific features of the aerospace

domain (domain customizations). Many tables of OSA-EAI

have a composite primary key (i.e. 2 or more columns) due

to the fact that the database model is designed for data

exchange or integration amongst different database

instances. For this purpose OSA-EAI introduces the Site

concept, which uniquely identifies the stakeholder of a

specific dataset. In combination with the dataset ID, any

dataset can thus be uniquely identified. Since our simulation

framework is currently a closed system, the maintainer

remains constant. Therefore, we stripped the composite

primary keys of each entity down to a single dataset id,

allowing us to strip down foreign keys as well. This

approach was shown to be feasible by Mathew, Zhang,

Zhang and Ma Lin (2006).

We further recognized that OSA-EAI does not have the

specific notion of a flight, or a mission. This was not

unexpected, as OSA-EAI is generic; however, analyses in

the aerospace domain are often flight/mission centered. Per

definition, OSA-EAI measurements can only be related to

assets/agents and time. Additions were necessary to relate

measurements with a specific flight/mission entity under

which they occurred. These updates allow the system to

couple flight/mission characteristics and degradation. While

OSA-EAI foresees enough meta-data to perform a

chronological mapping to an external flight/mission

database, our experience from other projects shows that a

direct mapping of information to a flight (or at least a power

cycle) is inevitable.

In the aerospace domain, segments represent virtual

“placeholders” for assets and these placeholders have

unique logistic control numbers. Such features can be

represented by OSA-EAI using the attributive tables for

each segment (Segment Numeric Data or Segment

Character Data). However, being modeled as an explicit

attribute of a segment, the evaluation of logistic control

numbers is more efficient. We recognize that one could

come up with many such contra arguments, as OSA-EAI is

a domain independent and generic standard.

4.2.3. Performance Considerations

Coping with a large number of transactions and handling

large volumes of data at the same time, the CBM data

warehouse has both the role of an Online Transaction

Processing (OLTP) system and that of an Online Analytical

Processing (OLAP) system. These two requirements seem

to contradict each other at first glance.

The database model of an OLTP system is normalized, that

is, it consists of many interconnected tables and each table

describes a fine granular bit of the application domain. The

number of tables that contain redundant information

(possibly in different representations) is minimized so that

the risk of a transaction leaving the database in an

inconsistent state is low. Due to its appearance from a bird’s

eye view, a normalized schema is referred to as a snowflake

schema. For an OLTP system, normalization is a

prerequisite, as it supports CRUD operations with optimal

performance and data integrity. The downside of a

snowflake schema is that information retrieval and analysis

result in complex queries involving many tables, which

results in bad performance.

The database model of an OLAP system is de-normalized,

which means that it consists of few tables, which contain

redundant information for the sake of reduced query

complexity and minimal join operations. Due to its

appearance from a bird’s eye view, a de-normalized OLAP

schema is referred to as a star schema. Snowflake and star

schema are depicted in Figure 8. The information of interest

is marked as grey boxes. The OSA-EAI database model in

its current state is heavily normalized and therefore clearly

OLTP-centered. Others have confirmed this statement using

formal methods (Mathew and Ma, 2007). Although we

could confirm specific issues regarding modeling and

documentation (Mathew et al., 2006), we still consider

OSA-EAI as well defined for transactional tasks. In contrast

to criticism that has been raised by industry, we consider the

normalization of OSA-EAI as essential, whereas Mathew

and Ma (2007) argue that the normalized character of OSA-

EAI is one of its weaknesses.

Applying standard modeling techniques to selected subsets

of interconnected OSA-EAI tables, they propose OLAP-

centered alterations for OSA-EAI according to star schema

design. These show that, at least for selected subsets of

coherent CRIS tables (so called data marts), the OLAP-

centered model holds equivalent information. Not

surprisingly, Mathew and Ma (2007) acknowledged that

their redesign optimizes analytics, but has significant

European Conference of Prognostics and Health Management Society 2012

8

drawbacks for transactional use. They conclude with a

discussion of their motivation for further work towards a

compromise.

Figure 8. Snowflake (OLTP) vs. Star Schema (OLAP)

We argue that such a compromise cannot manifest as a

single data model that features characteristics from both

OLTP and OLAP-centered models. Such an approach would

fit neither side. Instead, motivated from our findings during

the realization of the CBM data warehouse and the

experience from our other projects that deal with large data

volumes (which go beyond the scope of this document), we

propose an extension to OSA-EAI to specifically support

analytical tasks on large volumes of historical data.

4.3. “Common Relational Analytics Schema”

The characteristics of OLTP and OLAP are too distinct to

be merged into a single database model. The database model

that is defined by OSA-EAI is called Common Relational

Information Schema (CRIS). Instead of redesigning CRIS to

include OLAP-specific features, we propose a new

standardized database model named Common Relational

Analytics Schema (CRAS). Our proposed database model

lives under the umbrella of OSA-EAI and coexists with

CRIS. Since an OLAP-centered database is primarily

designed for reading (not writing), the CRAS portion of

OSA-EAI will be populated on a regular basis from the

content stored in the CRIS portion. Both portions hold an

equivalent informational content – however, CRIS is

optimized for transactional purposes while CRAS is

optimized for analytical purposes.

4.3.1. Motivation

For a PHM system, it is necessary that prognosis be

performed in a short timeframe, e.g. during the turnaround

phase of an aircraft. However, this is different from actually

performing analytics. At least the prognostics algorithms

that we were utilizing require neither the entirety of all

recorded historical data, nor any preprocessed results

requiring filtering or aggregation (which are typical tasks of

OLAP systems). A limited set of data, say from the last N

flights, was sufficient. We found that with the standard

CRIS queries these limited historical datasets could be

retrieved reasonably fast. We draw this conclusion from our

direct experience with the tools we created. Our sample

database did not contain fleet condition data from several

aircraft over several years. And with such huge amounts of

data the performance will degrade. We hypothesize,

however, that using table partitioning techniques, which

have become available with today’s relational database

management system (such as Oracle’s Enterprise Edition), it

is possible to set an upper limit for the amount of data that

has to be searched by a query to identify the prognostics raw

data from the last N flights. An apparent partition key is

time, but Site is also a promising candidate.

We further suggest that analysis tasks that would require an

OLAP-centered database model be conducted on a regular

basis, but decoupled from the daily operational (i.e.

transactional) business. We claim that it is therefore suitable

to populate the CRAS on demand (e.g. once a month) in

order to perform retrospective analyses (e.g. for the

continuous improvement of diagnosis and prognosis).

4.3.2. Architecture

A high level overview of our proposed architectural

extensions of OSA-EAI is given in Figure 9. The elements

drawn in grey represent the current state of the art of OSA-

EAI. The OLTP-centered database model, CRIS, stores the

operational data in a relational database (the corresponding

object model has been omitted). Furthermore, the OSA-EAI

standard defines a comprehensive service interface for

accessing and modifying the operational data. We propose

to extend OSA-EAI according to the following three aspects

(corresponding to the black-marked items in Figure 9):

1. Database model that is optimized for analytical

purposes (OLAP), which is able to store a

congruent informational content as CRIS. We call

this database model the Common Relational

Analytics Schema (CRAS). It is organized

according to the star schema approach.

2. A standardized interface for issuing

multidimensional queries against CRAS.

3. Standardized Extraction, Transformation and

Loading (ETL) process populating tables in the

CRAS schema with operational data from CRIS.

4.3.3. Performance and Operational Considerations

Our work regarding CRAS suggests an a priori hybrid

approach for database modeling. We are currently refining

the concept and have just begun prototype implementations.

Therefore, we cannot yet provide empirical results; in

particular, when it comes to handling data volumes in the

magnitude of terrabytes. For these volumes, the concept has

yet to be proven. While the idea of CRAS as a complement

to CRIS is clearly new, the methodology that it is based on,

i.e., the star schema, has been available for years and is well

understood. The star schema yields excellent performance

results even with large data volumes. We have gained

European Conference of Prognostics and Health Management Society 2012

9

empirical knowledge from another work area which requires

queries that involve both filters and aggregation. Results

indicate a boost, due to the star schema approach, in the

magnitude of 10 to 100 with respect to response time when

handling millions of data sets.

Figure 9. CRAS Extension of OSA-EAI (shown in black)

with an optional data model which is optimized for analytics

To ensure scalability for the joint operation of CRIS and

CRAS, we propose the following methodology. It is known

that the performance of both the CRIS and CRAS schemas

degrade with a growing amount of data. However, we

believe the CRIS schema will degrade faster than the CRAS

schema. Once a fresh system has been set up, the CRIS

portion will be constantly populated with new data, and, in

reasonably short intervals, the CRAS schema will be

constantly recreated from the current data in CRIS by the

ETL process. The CRAS schema is stateless at this phase, as

it can always be recreated from CRIS. Operational tasks will

be carried out in the CRIS, while analytical tasks run on the

CRAS. Provided that suitable hardware segmentation is

available (e.g., dedicated CPUs, dedicated RAID volumes)

operations on both schemas should not influence each other.

Once specific hot spots of the CRIS schema have degraded

to a stage where performance is no longer acceptable, old

data must be archived in the CRAS schema. We assume that

one can define data as being old simply by its date of

creation or other criteria. We further assume that such old

data will not be altered due to operational processes; which

certainly applies to sensor data. Therefore the ETL can

move (instead of just transform) old data to CRAS where it

will then permanently reside – just not in the CRIS form.

Since there is no need to alter the old data, it can be

removed from CRIS completely, mitigating the performance

degradation. However, the old data is still available for

analysis in CRAS. From this point on, the CRAS schema

becomes stateful, as it cannot be entirely recreated from

CRIS.

From a high level point of view, the CRIS schema’s data

volume will grow up to a specific limit and then shrink

again, so there is a worst case performance for operational

tasks. In contrast, the CRAS schema will constantly grow

with each new archival process. However, the growth will

take place in a database schema that is designed for

performance and large volumes; nevertheless, without

suitable measures the CRAS cannot grow indefinitely.

There are scaling measures to ensure performance of

database schemas in general that can be applied to our

situation. For data archived in CRAS which still needs to be

considered during online analyses, so called partitions

should be maintained. A partition influences the way a

database physically stores a database table on the storage

device but keeps this storage strategy transparent to the

application (programmer). Partitions can be created during

maintenance phases of the PHM system. Depending on

specific criteria of the data set, such as the date of creation

(the so called partition key) it will be assigned to one

partition or the other. Partitions can be assigned a separate

storage device, i.e., one disk for each partition. Therefore,

even specific tables can be scaled independently from

others. While the further discussion goes beyond the scope

of this writing, the effect is that the search space for queries

can be significantly reduced. Operational data that the ETL

transforms from CRIS will have its own partition(s),

whereas all archived data will have separate partitions. We

believe therefore that the effects of a growing CRAS on the

continuous ETL transformation of operational data can be

mitigated. However, if the amount of data in CRAS

significantly degrades the online analysis performance, one

has to consider moving the oldest data from CRAS into

offline storage. Here, we assume that this data no longer

contributes to an operational PHM (e.g., data from assets

that have been moved out of service) and can be analyzed

offline (or e.g., in a separate database).

4.3.4. Challenges and Future Work

There are two core challenges involved in our work. First,

the concept of joint operations between CRIS and CRAS

needs to be proven. We have to derive enough sample data

and set a representative database configuration and

environment to prove our claim. In its current stage, this

approach is merely a concept. While the methodologies and

technology it is built upon have proven to be feasible in

other domains, the risk of not being able to implement it as

proposed is non-negligible. In the previous section we

mention the introduction of offline storage for the oldest

data in the system. We want to point out here a new aspect

of performance research for OSA-EAI by combining it with

Hadoop, an emerging technology for distributed storage and

query of huge volumes of data. Second will be the

derivation of a generic CRAS schema that fits the needs of

analytical tasks for PHM in a domain-independent manner.

This must be accomplished while maintaining the same

European Conference of Prognostics and Health Management Society 2012

10

level of quality as CRIS does in fitting the needs of

transactional usage in a generic way. Mathew et al. (2007)

have applied a formal process for attempting to derive an

initial OLAP-centered database model from CRIS. They

identified so called data marts (fact tables and

corresponding dimensional tables) for the areas of

configuration data, measurements, health and alarms, events

and work management. However, they give no reason as to

why no data mart for remaining useful life was identified.

As such, the actual details of the generic ETL process are

left open for future work.

5. CONCLUSION

We presented our experience from the realization of a data

management backbone for a simulation framework for PHM

systems in the aerospace domain. For the airborne segment

OSA-CBM-based communication was chosen. We

encountered issues relating to the recommended

transportation protocol for OSA-CBM when implementing

the standard under the conditions of a real-time operating

system. From our findings, we are motivated to use a binary

transportation format for OSA-CBM data events that

address embedded systems. This standard is to be both

binary and lean. In the process, we hope to avoid the

inherent overhead in processing power and memory

consumption of an XML-based transportation over HTTP.

Our preliminary results are promising. They amount of raw

data to represent specific OSA-CBM messages could be

reduced to 25% of the XML-based size (overhead for HTTP

and TCP not included). As our approach lacks platform

independence we outline a path for future work towards a

platform-independent binary representation for OSA-CBM

messages. The ground-based part of our data management

backbone is centered on an information system, which we

call the CBM data warehouse. It is designed according to

the OSA-EAI reference architecture. Confirming the

feasibility of OSA-EAI in conjunction with OSA-CBM, we

encountered minor issues in mapping aerospace domain

concepts to the generic entities and could confirm issues

reported by others. To answer the necessity of a PHM

system to perform both transactional and analytical

interaction with the CBM data warehouse, we recommend

extensions to OSA-EAI. We propose an optional and

complementary database model called CRAS (in analogy to

CRIS) that is optimized for analytical queries and follows

OLAP principles. It coexists with CRIS and is populated, on

demand, by CRIS transactional data. We close by pressing

for future work in this area in the form of field studies.

REFERENCES

Gorinevsky, D., Smotrich, A., Mah, R., Srivastava A.,

Keller, K., &Felke, T. (2010). Open Architecture for

Integrated Vehicle Health Management. AAIA

Infotech@Aerospace Conference, April20-22

Mathew, A. D., &Ma, L. (2007). Multidimensional schemas

for engineering asset management. Proceedings World

Congress on Engineering Asset Management,

Harrogate, England

Mathew, A. D., Zhang, L., Zhang, S., & Ma Lin (2006).A

review of the MIMOSA OSA-EAI database for

condition monitoring systems. Proceedings World

Congress on Engineering Asset Management, Gold

Coast, Australia

MIMOSA. Mimosa Organization Website.

http://www.mimosa.org

Swearingen, K., Kajkowski, W., Bruggeman, B., Gilbertson,

D., &Dunsdon, J. (2007). Multidimensional schemas

for engineering asset management. Proceedings IEEE

Aerospace Conference

BIOGRAPHIES

Matthias Buderath Aeronautical Engineer with more than

25 years of experience in structural design, system

engineering and product- and service support. Main

expertise and competence is related to system integrity

management, service solution architecture and integrated

system health monitoring and management. Today he is

head of technology development at Cassidian. He is member

of international Working Groups covering Through Life

Cycle Management, Integrated System Health Management

and Structural Health Management. He has published more

than 50 papers in the field of Structural Health

Management, Integrated Health Monitoring and

Management, Structural Integrity Programme Management

and Maintenance- and Fleet Information Management

Systems.

Conor Haines received his B.Sc. degree in Aerospace

Engineering from Virginia Polytechnic Institute and State

University in 2003 and his M.Sc. degree in Computational

Science from the Technical University of Munich in 2011.

For 3 years Conor was a test engineer supporting the NASA

Near Earth Network, providing simulation support used to

guide system development. At his current post, he is

focused on developing IVHM and Computer Vision

technologies as a Software Engineer for Linova Software

GmbH.

Andreas Löhr received his M.Sc. degree in Computer

Science from the Technical University of Munich in 2001

(Informatics, Diplom) and earned his PhD degree in

Computer Science from Technical University of Munich in

2006. For 6 years he worked as a software engineer at

Inmedius Europa GmbH in the area of interactive technical

publications and researched in the field of wearable

computing. He founded Linova Software GmbH in 2008

and at his current post as managing director he focuses on

development of maintenance information systems and data

management architectures.

