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ABSTRACT

A lot of studies are nowadays devoted to structbesdlth
monitoring, especially inside the aeronautical esvinent.
In particular, focusing the attention on metalltcustures,
fatigue cracks represent both a design and maintena
issue. The disposal of real time diagnostic teammifpr the
assessment of structural health has led the aitersiso
toward the prognostic assessment of the residedliutife,
trying to develop robust prognostic health manageme
systems to assist the operators in scheduling erence
actions. The work reported inside this paper isualibe
development of a Bayesian patrticle filter to beduserefine
the posterior probability density functions of bothe
damage condition and the residual useful life, giaeprior
knowledge on damage evolution
NASGRO material characterization.

programmed in order to guarantee structural hedlile, to
the uncertainties in the design assumptions for aggm
nucleation and evolution (material non-uniformities
manufacturing tolerances, not easily predictabledlo
spectrum, uncertainty in stress field knowledgéah spots,
etc.). Moreover, maintenance stops often require
dismounting large portions of structure, thus rédgiche
availability of the aircraft and raising the opératcosts.

Real time Structural Health Monitoring (SHM), astpaf a
complete Prognostic Health Management system (PHM),
could potentially reduce the aircraft operativetspsvhile
maintaining a high level of safety (Boller, 2008).lot of
research is thus directed to the development desys for
automatic fault detection, able to perform a camims on-

is available fromboard inference on structural health. The evolutimin
The prognosticDiagnostic Monitoring Systems (DMS) has led to the

algorithm has been applied to two cases. The formerecognition that predictive prognosis is both dsbiand

consists in an off-line application, receiving diagtic
inputs retrieved with manual structure scanning fault
identification. The latter is used on-line to filtthe input
coming from a real-time automatic diagnostic systeim

technically possible. As a matter of fact, the kklity of a
huge amount of data coming from DMS, once statiitic
treated, would allow for a stochastic estimation thé
structure Residual Useful Life (RUL) as well as fibve

massive usage of FEM simulations is used in order testimation of the Probability Density Function (PDF

enhance the algorithm performances.

1. INTRODUCTION

Fatigue crack nucleation and propagation is a miafgue

when considering aeronautical structures, both fram
design (Schmidt & Schmidt-Brandecker,
maintenance points of view (Lazzeri & Mariani, 209
From one hand, a proper design is required in otder
guarantee the structure damage tolerance or thee liaf

depending on the criticality of the selected congrin
From the other hand, a strict inspection schedaketh be

Sharufatti C. et al. This is an opaneess article distributed under the te
of the Creative Commons AttributioB.0 United States License, wh
permits unrestricted use, distribution, and repetidn in any mediun
provided the original author and source are crddite

relative to the current damage state. The approamhld
allow deciding in real time whether a component trhes
substituted or repaired, according to some predéfsafety
parameters.

Bayesian updating methodologies perfectly fit thedMP

2009) andtarget (Arulampalam, Maskell, Gordon & Clapp, 2002)

Their approach consists in updating the a pridorimation

on RUL (based essentially on material charactesti
according to the actual observations (treated ststatally)
taken in real time by the DMS, thus coming to the
estimation of the posterior required distributions,
conditional on the measures. Unfortunately, itipdssible

to analytically evaluate these posterior distribngi apart
from the cases when the degradation process iarliaed
the noise is Gaussian (like happens when using &alm
Filters). Focusing on fatigue damage, being crackution
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not a linear process and all the involved uncetiesn
(comprehending also the measure error) not Gauyssian

numerical approach is suggested. Monte Carlo Sapli i

(MCS) methods are a valid tool to approximate #opired
posterior distributions (Cadini, Zio & Avram, 2009)
Among them, Particle Filters, also known as Sedakent
Importance Sampling (SIS) are a MCS method takieg i
name from the fact that the continuous distribigiaof
interest are approximated by a discrete set of hwedy
particles, each one representing a Markov Procegsctory
of evolution in the state space, being its weighiralex of
probability of the trajectory itself (Arulampalant al.,
2002). It is however important to consider thapubh as

the number of samples becomes very large, the MC

characterization of the PF approaches the optirage8ian
estimate. In addition, Sequential Importance Resiagp
(SIR) algorithm is a similar technique which alloviar
particle resampling when the initially drawn sanspdee not
able to describe with sufficient accuracy the gyste
dynamics. In this case, new particles are usuammed
taking into account the information about the systgined
up to the resampling instant.

It is however important to consider the two maiffedences
raising when considering real time DMS based upon
network of sensors installed over the structurdn wétspect
to classical Non Destructive Technologies (NDT) duse
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/,
~ = — A
-] .

(b)

Figure 1. (a) Test rig for dynamic crack propagatiest
. Starting from a notch artificially initiate on tlduminum
‘panel structure. (b) Typical aeronautical stiffes&h pane
structure with sensor network for diagnosis insthl20
FBG strain sensors)

comprehends an automatic DMS for the real timeuatan
of damage. A real dynamic crack propagation testbeen
executed, with acquisition from a network of 20 FB&in
sensors (Figure 1), with contemporaneous manualkcra
length track. A detailed and validated Finite Elan@odel
of the structure under monitoring has been devel sl
ased in a massive way inside both the DMS and the P
algorithm. PF has been applied separately to twescalrhe
former, namely off-line PHM, consists in providiag input

manually scan the structure during maintenance sstofor the PF the crack lengths manually recordedh(veih

(scheduled or unscheduled). The first point isteglao the
target damage dimension that can be identified. Sllodn
detect cracks at a very early stage of propagatifien
detecting anomalies in the length order of 1mmessl On

hypothesis of the associated distribution). Coriogrrthe
second case, namely on-line PHM, as anticipatedotiput
of the real time DMS (processing the signal from slensor
network) is given as input to the PF algorithm. T

the other hand, the on-board DMS is expected to bepproaches have been compared, providing some coisme

designed for a longer target crack length (typicath order
of magnitude greater, however strictly dependentttom
allowed number and position of sensors as well rashe
geometry of the structure that is going to be nweit), like
reported by Sbarufatti, Manes and Giglio (2011)isTis

however in compliance with actual
requirements for damage tolerance (JSSG, 200@ast for
the aeronautical panel structure which is goinpeaested
inside this framework (Figure 1). The second powricerns
the uncertainty related to the provided measure/iddily,

the variance of damage inference that can be dataiith a
manual scan over the entire structure is by farenpoecise
with respect to the PDF of the damage state estunaith a
smart sensor network, due to the complicated dtgos for
data fusion and damage characteristic evaluation.

The work reported inside this paper
development and testing of a Particle Filteringpatpm for
the prognosis of aeronautical stiffened skin parEe aim
of the work is to appreciate the advantages dué¢héo
application of PF for the estimation of RUL, as
comparison with a classical methodology for théngetion
of fatigue crack evolution. Moreover, this work regents
the final testing of a complete PHM system thatoals

on relative performances. To be noticed that thesemt
article is focused on the prognostic part of thevVskhile
the interested reader could refer to the work odrBtatti,
Manes and Giglio (2012) for a detailed descriptainthe
DMS design and performances (taken as input for the

specification current paper).

In particular, a brief overview of PF theory is yided in
section 2 of the present paper, followed by a detion of
the stochastic crack propagation model and
measurement model, respectively presented in ssct®
and 4. The PF theory has been tested for theradfdnd on-
line PHM, reporting results inside section 5. A cloisive
section is also provided.

the

2. OVERVIEW OF PARTICLE FILTER THEORY

is about the

When modeling the behavior of dynamic systems under
degradation, at least two models are required (Cadial.,
2009). Firstly, a model describing the sequentiall@ion

of the state (or the system model) and, second,odem
relating the noisy measurements to the state (@ th
measurement model). The former consists of a hidden
Markov process describing the health state ,
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or the Transition Density Function (TDFYhat relates the
health state at tim&-1 to the condition at instant. It
consists in a Discrete time State Space (DSS) mddted
latter is the equation describing the distributioh the
observations , or the statistical functioh that
relates the condition of the monitored componentit$o
noised measure at time starkpln a Bayesian framework,
all the relevant information about the state canstibe
inferred from the posterior distribution of thetsta,, given
the history of collected measuremewts,. This is true also
concerning Particle Filters, apart from the facatthhe
posterior distributions are estimated by means GSMrom

f andh. What follow are the basic steps of the matherahtic
formulation of PF theory, while for a deeper dgstion the
interested reader could refer to a tutorial oniglertfilter
theory (Arulampalam et al., 2002).
measurement models will be thoroughly defined iadie
following section.

Given the stochastic damage evolution can be dextri
through the TDF, the aim of the PF is the selectibthe
most probable damage statg at current timek (or in
alternative the entire damage state history up k}p

according to the noisy measurements that have been

collected up to the current discrete tirke This means
estimating the posterior PDF of the health staté, dike
reported in Eq. (1), which is valid for the entistate
sequence up ta

1)

Equation (1) indicates that the posterior PDF &f kiealth
state can be expressed as an integral inside e sy all
possible damage evolutions , where only those
propagations similar to the target evolution give
contribution. According to MCS theory, the integraiuld
be solved by sampling from the true posterior PDF

. Unfortunately, this is not possible, being that

distribution the objective of the inference. Th®&S-SIR
technique is a well-established method to overcdhig
problem. The method allows generating samples fesm
arbitrarily chosen distribution called ImportanceerBity
Function (IDF) , allowing to rewrite Eq. (1) in
the form of Eq. (2), without applying any bias tbet
required .

)

An estimation of Eq. (2) can be derived through MC
(based ong distribution), thus coming to Eq. (3), where
is a set ofNg independent random

samples (particles) drawn from and is the so

called Dirac delta function. Finally, are the importance
weights calculated as the ratio betwegn and q
distributions, each one relative to tH particle (possible
propagation history) and valid for tk8 discrete instant.

g

# $

®)
(

Equation (3) expresses the required posterior PPFaa
combination of the weights associated to eachgartor to
each damage propagation sample). After some matleaina
transformations available in literature (Arulampalat al.,
2002), one could express as a recursive formula
dependent on the weights that have been calculated

The DSS andpPrevious discrete timk-1, as reported inside Eqg. (4), where
are called Bayesian Importance Weights and are

calculated like in Eq. (5).
# 4 (4)

# A

4, 4,8

¢

X

©®)

Inside Eq. (4),#, +) $is the TDF {) indicating the
statistical correlation between two consecutivepst®f

damage evolution. Moreovet* +, $is the probability of
having a certain measure &t given a state sample is
considered among the particles propagated up Tichis is
available once the measurement modsgl i§ statistically
described, like described inside section 4. Finally

#oo+ $is the IDF from which one has to sample
in order to generate particles, or the random MafRkimcess
describing the damage evolution, which can be rantii
selected.

The choice of IDF distribution is a crucial step fbe PF
algorithm design. In fact, the algorithm convergens
mathematically demonstrated to be independent ftioen
choice of IDF given a sufficient number of sampiss
generated. If the allowed number of samples istéichidue
to computational requirements, the algorithm peniamces
are dependent on the choice of the importance tyensi
function. However, as a first approximation, it dften
worth trying to select the IDF equal to the TDF @Birap
approximation (Haug, 2005)). This would allow fostaong
complexity reduction of Eq. (4) as IDF and TDF wlilé
simplified. This means generating particles aceado the
prior knowledge on material properties (however

Sstatistically defined), then updating weights idigitg the

most suitable samples according to the measunebdisbn
and history. Nevertheless, it could happen that ribe
propagation that is measured behaves like an ouwtlith
respect to the stochastic damage propagation, firasg
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almost all the particle weights to zero. When tméppens, Equation (7) allows calculating the crack growirgeras a
resampling of particles is required, from a diffarédDF,  function of the applied load cycle, given the nebdenstant
somehow taking into account the history of measer@m are defined. Some comments arise relative to thek wo
collected up to the resampling instant. presented hereafter. First of all, to develop shaowblogy as
general as possible, SIFs have not been calcublattdd
simple analytical formulas (usually valid for sirapskins).

A large database of FEM simulated damages has been
generated, collecting SIF parameters for each cAse.
Artificial Neural Network has been trained in ordeffit the
function that relates the crack position and din@nso the

Finally, once the health state PDF is approximateigning
an importance weight to each particle, also thé&iligion
of the Failure Cycle Ny) can be updated and refined,
conditioned on the health state, like expresseédqn (6),
thus allowing for the estimation of the updated RUL

distribution. SIF at crack tips. The method would allow evaluatinack
| 56 .. . propagation also for complex geometries, obviogshen a
-# A o9 _1 a( 2,4 .0 (6) validated FEM is available (the subject of current

monitoring is an aluminum skin, stiffened througbme
riveted stringers, with crack propagating on thiask

3. THE DISCRETE TIME STATE SPACE MODEL Moreover, Eq. (7) has been stochastically describgd
means of some experimental data available in titeea

DSS is the model describing the a priori knowlede [Giglio & Manes, 2008]. In particulaiC andm parameter
probabilistic damage evolutions (particles). Inestiwords, distributions have been derived from a crack pratiag

it represents the possibilities for damage evolutigiven test campaign made on aluminum structures. While
the uncertainties in material characterization & ws the ~Simulating crack propagation with Eq. (&, and m are
noise inevitably present inside the operating emrirent), 'andomly sampled at each step of crack evolutibos t

. . ; obtaining a model that relates the health statdistrete
from which the algorithm selects the samples thet it instantk-1 to the condition ak, or the Transition Density

with the measures. The model used inside the durreftnction shown in Eqg. (8). A Gaussian noise has bien
framework for damage propagation is based on theéhtroduced, like described by Cadini at al. (2009).
NASGRO Eg. (7), though other less complicated nedel

such as Forman law or Paris equation (Budynas &eits + (o PCRS ®
2006) have been usually adopted in literature fack

propagation prognosis (Cadini et al., 2009). NASGR® Thus, the probabilistic a priori information on dage

allows describing not only the stable crack propiaga but evolunon_ is shown inside Figure 2, wher_e the_: 'Hﬁk.:k
L ; propagation (over structure presented in Figure isl)

also damage initiation and the unstable crack éwolu It reported together with the random Markov Process

also takes into account the load ratio (R) of tippliad  evolution of the simulated damage. In particullg initial

spectrum, defined as the ratio between the valtely @eak g
values of the load cycle, as well as the crackurl®ffect
induced by plasticity near the crack tips. 120
A 100
E 9..< :9.@ABC. D CéCA:EA\FG 7 E
7 o > ' €CAciy % s o
D =36 g
K o
x 60
Inside Eq. (7),8 is the crack dimension and8W b
represents the crack growth rate per cydlg NOis the 40
variation of the Stress Intensity Factor (SIF) desone load
cycle, calculated as the difference between thes SIF 20 ! — Real crackoropagalion’
evaluated in correspondence of the maximum andnmoirmi - * RN & e
load. Moreover, Ky, is the threshold variation of SIF (crack g1 Siochaste ASBRD propagation (0S5))
shouldn't propagate belowKy,), K. is the critical value of N [eycles] x10°
SIF (fracture toughness) ahik the crack opening function. Figure 2. NASGRO DSS model for off-line PHM.
Finally, C, m, p and q are parameters defined for material Comparison of particles with real crack propagation
characterization. The interested reader could refer measured during experiments. Particles have been
NASGRO reference manual (2005) for a deeper indight generated starting from a 16mm measure, correspgndi
the parameter definition. to the length of the artificially initiated crack.
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Figure 3. NASGRO DSS model for on-line PHM.
Comparison of particles with real crack propagation
measured during experiments. Particles have been
generated starting from a 60mm measure, correspondi
to the length of the crack in correspondence of the
anomaly detection by the automatic diagnostic unit.

crack length has been set to 16mm, correspondinipeo
artificial notch introduced to fasten crack nudeatand to
control crack position. As one could notice, thedam
simulated crack propagation covers a very wide eaofy
possibility, including also the real case measudedng
test. An efficient algorithm (based on probabilitbeory) is
thus needed in order to select which are the pestithat
best fit the reality, given some measures (withsecand
uncertainty) have been taken, thus reducing therntaiaty
on the RUL estimation. The DSS model presentediénsi
Figure 2 will be adopted when considering the aygpion

Off-line PHM simulates the case when the aircraft i
stopped for maintenance and the structure is minual
scanned by operators for crack identification.He tase a
damage tolerant structure is considered, the aintois
identify if it is possible to postpone dismountirand
repairing until the prognostic system declares iicat
condition. In order to statistically characterize toff-line
measure, it has been decided in first approximation
consider the measurement system PDF Gaussianmeitim
value equal to the real crack length (measured avithliber
during the real test). Nevertheless, a standarthtien ( )
has also been selected so that the 95% confidesmue is
inside the £3% range with respect to the measure.

On the other hand, the on-line PHM simulates tlse eghen
the structural health condition is automaticalljeimed by
means of a diagnostic unit that processes datangpfrom

a smart sensor network. The concept consists intaiaing
the aircraft operative until the PHM system deddrather
operations unsafe, given a predefined safety paeameghe
diagnostic unit used inside the current framewak been
thoroughly described by Sbarufatti et al. (2012pdsically
consists of two Artificial Neural Networks (ANN)rained
with FEM simulations in order to understand the ptar
functions that relate the damage parameters (existe
position and length) to the strain field modificets due to
damage. The first ANN (anomaly detection algorithm)
receives strain data as input and generates am aiduien
the damage index (ranging from 0 to 1) falls aboxe The
second algorithm (damage quantification), activaied
series to the anomaly detection, receives agaainsttata
and gives crack length distributibras output (a deeper
explanation about diagnostic unit output is agaioviged
by Sbarufatti et al. (2012)).

of PF to the off-ine PHM system (measurements are

manually collected during maintenance stops). @natier
hand, Figure 3 shows the stochastic simulation ratic
propagation for the on-line case (measures of clacgth
are estimated by a sensor network installed over
structure). Simulated crack propagation has beéiatied
after the anomaly detection is performed by theomatic
diagnostic system (about 60mm for the sensor né&tWwest
damage configuration shown in Figure 1). The finghg to
be noticed is the reduced dispersion of partiakeBigure 3
with respect to Figure 2, being the model initiatied
correspondence of a longer crack length. Moreoties,
random process of simulated crack propagation appea
be centered on the real damage evolution in Figurehere

the randomness of damage evolution from 16mm tatabo

60mm has not been considered.

4. THE MEASUREMENT SYSTEM

Two measurement systems have been adopted, trging
analyze the PF algorithm performances when off-kmel
on-line PHMs are going to be considered (Figure 4).

th

RIS - [EEERESSRT]

Aircraft in-service
Aircraft out of service for
scheduled maintenance
Structure automatically inspected by

-li i i
Structure inspected by maintenance onvline sHM diagnostic system

operators for fault detection
Any detected
faults? No

Yes

Any detected | No
faults?
Real-time on-line

Yes evaluation of RUL with PF

Off-line evaluation of

RUL with PF No  Safety is guaranteed until the next

scheduled maintenance?

Yes
No Safety is guaranteed until the next  Yes

scheduled maintenance? Dynamic updating of required
maintenance schedule
1
o = —
(a) (b)

Figure 4. Comparison between (a) the Off-Line PHM
procedure and (b) the On-Line PHM process. The On-
Line process is based upon the diagnosis performed
through an on-board SHM system that detects and
characterizes structural faults.

[Repair |

%The guantification algorithm is composed by 50 ANNs

trained with randomly selected damage samples (with
random position and length). Each one receivesstran
pattern from the FBG acquisition system and retuans
estimation of crack length.
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measure of longer cracks is due to the fact tredtitabase
of simulated experience used to train the ANN atbors
for diagnosis has been limited up to 100mm cracks.

—Target crack length

----- On-line measure (Average)

140| —On-line measure (95% c-band)

””” Off-line measure (95% oc-band)

120 MAX limit for FE training experience |

""""""""" 5. COMPARISON OF ON-LINE VERSUS OFF-LINE RESULTS

The performances of the PF algorithm when appléethé

two maintenance approaches introduced above are now

deeply investigated. The main output of the PF abdkstic

calculation is the estimation of the health cownditof the

structure, like reported inside Figure 6 relativielyboth off-

line and on-line PHM. In few words, the main adeay& of

the PF technique is that it allows to update thetqrior

PDF for the damage condition, taking into accoum t

% 2 ) %0 m 700 0 e %0 history of all the measures taken up to tHediscrete time
Target crackiiength fmm} instant, as well as the analytical a priori knowgedajiven by

Figure 5. Measurement system uncertainties. Cospari the underlying model for damage evolution. Thisdmees
of the on-line diagnostic system performance watspect ~ Particularly attractive when autonomous diagnosyistems
to the off-line manual structural scan methodoldBye are considered. As a matter of fact, they couldvide
on-line diagnostic system has been trained with FEM continuous information relative to damage existeacel
damage simulations, with crack length up to 100mm. level; nevertheless they are characterized by astoless
and precision inferior with respect to classical ND
The PF algorithm is thus activated after the angnmisl technologies (herein simulated with off-line measjr In
detected and an estimation of the damage statbdiion  Practice, PF could filter the most suitable stazsk"
is provided from the diagnostic algorithm. instant, inside the database of possible damagkitevts
) ] ] (particles) calculated a priori with respect to angasure.
A comparison of the on-line vs. off-line measuremen ppticles relative to the off-line and on-line PHidve been
system is provided in F_|gure 5. It can be_notlcledt the 'shown in Figure 2 and Figure 3 respectively. One t
+2 -band adopted to simulate the behavior of a generigctyal state distribution is updated and refinetle t
system for manual surface scan is by far narroweh w gistribution of the RUL could also be updated, teiray
respect to the uncertainty correlated to the rne@t conditional on the whole history of the monitored

automatic diagnostic system. For instance, conisigea component, and consistent with the analytical angigcal
70mm target crack length, the +Band ranges between ynowledge which is inside the TDF.

63mm and 86mm for the on-line diagnosis, while nagg ) o o

between 67.5mm and 72.5mm for the off-line measurelhe state posterior PDF estimation is shown inBidere 6,
However, it can be noticed that the average valuthe relatively to the off-line (Figure 6(a)) and ondir(Figure
quantification distribution correctly estimate tiaeget crack  6(b)) cases. PF has been applied to a real cragagation

length. The strong degeneracy for theand of the on-line test, with contemporaneous manual acquisition afclcr
140
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=== Crack length estimated === Crack length estimated
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BAS 1{ 1‘,5 é 2%5 é 3‘.5 2‘_5 2‘_6 2:7 2!8 2‘.9 1‘3 3.‘1
N [cycles] %4 05 N [cycles] A4 05
(a) (b)

Figure 6. Filtering of the health state distribati¢a) Posterior PDF of the health state for tHdioé measure and (b)
Posterior PDF of the health state for the on-linectural diagnosis. The real crack propagatioshiswn, as well as the
collected measures. The posterior 95%and is also plotted, to be compared with the@ipr-band reported inside

Figure 5. The instants when the algorithm requpadicle resampling have also been indicated.
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length measures (processed in Figure 6(a)) andretito
estimation of crack measure by means of an on-bsmatt
sensor network based upon strain field (processédgure
6(b)). It is immediately clear that, while the mahu

the fact that the measures are affected by a highrer
(with respect to the off-line system), which is part
confirmed by the evolution of some stochastic phasi.
This means that, if a lot of measures over/undenast the

structure scan would allow to detect and to meashoster
cracks (the inferior limit is imposed herein by tkeagth of
the artificial damage for crack initialization, get 16mm),

real damage condition and their assumptions are als
confirmed by the DSS model, the PF precision will
decrease. However, under the reasonable assumption

the anomaly detection threshold for the sensor owtvand

damage configuration reported in Figure 1 is aro@wchm.

On the other hand, off-line measures are availale
predefined scheduled intervals, while the on-linmalth

assessment is retrieved in continuous every 1084 dycles
through the diagnostic unit developed by Sbarufattial.

(2012). However, on-line measures are affected krge

uncertainty if compared to the off-line case, ldkescribed
into Figure 5.

Concerning the off-line PHM system, the health estat

estimation (Figure 6(a)) appears to characterieeipely the
damage evolution, being the 95%band mostly centered
on the real damage condition. However, it is cléam
Figure 2 that the damage evolution occurred dutfiregtest
is not centered with respect to the stochastic osked to
define the TDF. This resulted in resampling requieat
after few updating iterations, as the availableiplas were
not enough to describe the posterior PDF of thétinetate
(only few patrticles retains a weight which is sfgrantly
different from zero).

Relating to the on-line PHM system, it can be rei¢hat
the posterior PDF of the health condition is byriarrower
with respect to the output of the diagnostic aligyon shown
inside Figure 5. For instance, relatively to a 70rorack,

(Figure 5) that the measure PDF is centered ortdiyet,
the PF inference will converge toward the real dgena
evolution. In other words, PF tends to interpolaie
measures, nevertheless taking into account theiai pr
knowledge which is inside the DSS model. ThoughDBS
model used for the a priori description of the dgena
evolution for the on-line PHM results centered be teal
crack propagation (Figure 3), particle resamplirasvalso
required, due to the fact that the updating prodesssed
on a particular set of particles.

Some specifications are required concerning theptado
resampling technique. As a matter of fact, the DssRlel

used to initialize the algorithm has been kept esegal as
possible (considering the distribution of mategatameters
inside the NASGRO law), in order to be represemtatf

many experimental tests for crack propagation @nsthime
material (aluminium). The resulting DSS spreadindpigh,

thus provoking premature particle degeneracy and
requirement for resampling. Nevertheless, if a isidgfit
number of iterations have been concluded, it issibbes to
generate new particle samples from a different ngnze

density #, + $, taking now the history of

measures into account but preventing from the poggito
adopt Bootstrap approximation. Concerning the waatein

the 95% -band of the quantification algorithm (Figure 5) reported, new particles are generated consideringD&
ranges from 63mm to 86mm, while after the PF upgati With deterministic material parameter€ @nd m are now
process it ranges from 68mm to 72.5mm (Figure 6(b))obtained by fitting the specific measures takeathetly to

However,
comprehend the real state evolution. This is mathlg to

Crac

40

20

Crac

the estimated -band sometimes doesn’t the specimen under monitoring) and random whiteseoi

From one hand, this would allow to reduce the wagety
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Figure 7. Effect of NASGRO parameter dynamic figtid sudden (unpredicted) change in the slope@tthck
propagation curve cannot be described before ihhppened.
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related to prognosis. From the other hand, likecdiesd
into Figure 7 (where the noise has been eliminftedust

consists in evaluating the RUL PDF by performing a
stochastic crack propagation based on the NASGROIta

description purposes), this method is less robust tfew words, given the PDFs of the material relatedstants

unexpected changes in the system dynamics. le& ¢tom

are provided, 3000 crack propagations (particlesetbeen

Figure 7 that, ifC andm are considered to be deterministic, simulated, sampling at each step the material aatsfrom

they cannot take into account for sudden changethén
curve slope (Figure 7(a)), unless a new resampisg
executed fitting the propagation curve with new sueas
(Figure 7(b)). The effect is visible in the RUL iestion,
relative to the off-line PHM case (Figure 9(a))e tarror in

the available distributions. Once the target cririgth is
identified (120mm have been selected as limit cteokth,
due to the limits of the FEM database), the RUL ban
stochastically defined with a PDF. The same promds
repeated each time a new estimation of the crauftheis

RUL estimation with PF increases after resamplisg iprovided either from the on-line or the off-lineagnostic

executed at 250000 load cycles, until a new resagps
executed at about 300000 load cycles, taking ictmant
the unexpected change in the crack evolution slope.

Once the PDF of the health state is filtered by Bie
algorithm, also the RUL of the component under ruitig
can be updated according to Eq. (6). In order forexpate
the advantages and drawbacks of the PF algorithimad

been compared with a second technique. The me thqx_;%

system. To be noticed that this method just dependthe
last measure provided by diagnostic and doesni iato
account the trend of historical measures (whichois,the
contrary, the advantage of PF). Each inferencehiss t
completely uncorrelated to the previous ones. Maggoit
requires simulating many crack propagation evemyetia
new RUL PDF is needed. Stochastic NASGRO (SN) and
Particle Filter RUL evaluations are respectivelgaeed in
gure 8 and 9, again relatively to the on-line afflline

Figure 8. 95% -bancfor RUL estimation with stochastic NASGRO law. Campon of oftline PHM (a) versus ¢line
PHM (b).

Figure 9. 95% -band for RUL estimation with Particle Filteringyatithm. Comparison of off-line PHM (a) versus amel
PHM (b).
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PHM. The estimated RUL (intended hereafter as thdeen compared. The first one consists in applyiadige
remaining number of cycles before reaching the I80m filters to a Condition Based Maintenance where the

long crack) is reported during the component lifs @
function of load cycles). The real RUL is shownveal as
its estimation calculated with SN law (Figure 8)daRF
(Figure 9). In particular, the expected value & RUL PDF
has been reported, as well as the 95B@nd. The first thing
to be pointed out is that SN only depends on thewkedge
of material properties (and applied load); for tléason, if a
discrepancy between the DSS and reality is presethe
beginning, there won't be an updating process enbidisis
of the collected measures, thus maintaining theesaror
during life, as clearly appreciable from Figure )3(b
Moreover, the SN prognosis is very sensitive toghality
of the measure, being an issue especially wheroitHae
PHM is considered, where the inevitable fluctuagiam the
inference on structural condition (due to the highel of
uncertainties) will be reflected in an unstable gmasis
(Figure 8(b)). On the other hand, PF techniquebie &
filter these uncertainties (Figure 9(b)), thus rasting a
RUL which is dependent on the entire trend of messu
that have been collected since the anomaly isiftkht The
variance of the RUL PDF evaluated with the two piagjs
methods appears to be of the same order, unlesspéag
is performed in PF algorithm. As explained abovee t
information retrieved from the collected measuresule
allow decreasing significantly the uncertainty irognosis
(as at least the uncertainty related to materiap@rties can
be by far reduced). This is well reflected in Figud(b)

structural health monitoring (SHM) has been ofklin
performed by maintenance operators. The second one
consists in an automatic SHM performed on-boardaby
diagnostic unit trained with Finite Element damage
simulation to recognize crack damage existencelemgth,
based upon strain field measure. The methodologybkan
tested in laboratory on a specimen representafiaeypical
aeronautical structure, constituted by a skin, festdd
through some riveted stringers. Though the uncextai
related to the on-line structural diagnosis is by farger
than the one associated to the off-line measure, PF
algorithm proved to correctly describe the postefRbJL
distribution (conditional on the measures) in bedéses. The
additional uncertainty in the on-line measures Itegito be
compensated by the availability of a continuous sues
thus allowing the algorithm to reach convergenceain
relatively inferior time. PF algorithm has also bee
compared to a simpler technique based upon stachast
NASGRO (SN) law propagation. The advantage of PR wi
respect to SN is that it takes into account thelavihistory

of measures taken on the monitored component dsawel
the prior knowledge coming from the propagation elod
This results in a more robust and precise estimatiothe
health state as well as of the RUL PDF. Finallye th
adoption of a robust filtering methodology that ges the
information coming from a wide sensor network witie
numerical or analytical knowledge about the phenwne

where an important reduction in the variance of PFsubject of monitoring appears to be a suitablertiegle for

estimation of RUL is obtained. After 275000 loactleg,
only few particles remained with a non-negligibleight,
thus provoking degeneracy of the algorithm. Newtigias

the performance increase of automatic SHM systéims
leading toward the real on-board PHM.

have thus been generated, nevertheless withoutdesimg  NOMENCLATURE

the material uncertainty inside the DSS (C and rampaters e

inside the NASGRO equation are deterministic artdiobd gn’; grpﬁmal Nemal .Net.worg

through a non-linear fitting of the historical dataailable |ggnost|c onitoring System

up to resampling instant). Nevertheless, the refiagp Esg II3|bscreEEe Stage-Space

technique has to be improved in order to avoid $owiin a Iber bragg rating

too narrow region inside the DSS. In fact thishe teason ::DE;VI |F|n|te EIemeDnt Mpdpi:l .

for the deviation of the estimated RUL PDF fromlrie&lL MCS Sg&gaggﬁo ggf:]tglin;nctlon

inside Figure 9(a), like described in Figure 7. NDT Non Destructive Technology

Finally, two comments arise while comparing offdin PDF Probability Density Function

versus on-line PHM. Firstly, the 95%hband of the RUL PF Particle Filter

based on the off-line measure is narrower due ¢oniore  PHM Prognostic Health Management

precise measuring system. Nevertheless, the dispbsa RUL Residual Useful Life

real-time diagnostic tool would increase the avlity of SHM Structural Health Monitoring

data relative to the health state, thus reducirg ttme  SIF Stress Intensity Factor

needed to the PF algorithm to converge on the cbrre SIR Sequential Importance Resampling

estimation. SIS Sequential Importance Sampling
SN Stochastic NASGRO

6. CONCLUSIONS TDF Transition Density Function

A Particle Filtering (PF) Bayesian updating tecluchas
been used inside this framework for the dynamioregton
of component Residual Useful Life. Two applicatidres/e
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