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ABSTRACT

Multi-stacks proton exchange membrane fuel cell (PEMFC)
system has been applied to combined heat and power system
(CHP), and serves as an alternative energy device due to its
high efficiency and zero emission. Owing to the limited dura-
bility and larger power supply demand, the management of
multi-stacks PEMFC system to obtain a longer service time
has received recently growing attention. From the prognos-
tics and health management (PHM) point of view, a post-
prognostics decision making for multi-stacks PEMFC system
is addressed in this work. Firstly, a load-dependent stochas-
tic deterioration model is proposed for PEMFC. The overall
ohmic resistance is chosen as the health indicator of PEMFC.
Then the resistance is modeled using a Gamma process whose
shape parameter is taken as a function of the current load ap-
plied to the stack. Finally, for the post-prognostics decision
making phase, a decision probability based load repartition
criterion is built to identify the optimal load split between the
two stacks. The decision probability is calculated based on
the system lifetime results (EoL) in each decision step. The
EoL results of the decision phase are further compared with
the system EoL that calculated without decision making strat-
egy. The comparison result shows that extended service time
can be achieved using the proposed post-prognostics decision
making method.

Jian Zuo et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. INTRODUCTION

Facing with a growing challenge of environmental pollution
and the threat of a fossil energy shortage, fuel cell technol-
ogy emerged as an alternative energy device that is able to
apply renewable and clean hydrogen to produce electricity,
which has received intense attention for the last two decades
(Pandey, 2019) (Dekel, 2018). Among all different types of
fuel cells, one of the most widely used fuel cell technolo-
gies is proton exchange membrane fuel cell (PEMFC). Re-
cently, with the rapid progress in fuel cell technology, multi-
stacks PEMFC system has drawn an increasing attention of
researchers due to the high power demands in the application
fields like combined heat and power system (CHP) (Marx,
Boulon, Gustin, Hissel, & Agbossou, 2014). However, de-
spite the promising research interest, challenges like reliabil-
ity and durability of PEMFC technology remains to hinder its
larger-scale commercialization.

Among the proposed approaches in the published literature,
research works on PHM appears to be of great interest to-
wards the health state assessment and lifetime prediction of
PEMFC. PHM approaches mainly focus on the early detec-
tion of system deterioration to avoid early failure and decide
for mitigation actions, and therefore increase the reliability
and durability of PEMFC (Jouin, Gouriveau, Hissel, Péra, &
Zerhouni, 2016) (Jouin, Gouriveau, Hissel, Péra, & Zerhouni,
2013). Generally, the implementation of a PHM approach
consists of seven layers: data acquisition, data processing,
condition assessment, diagnostic, prognostics, decision sup-
port and human-machine interface. Several research works
have been addressed explicitly and specifically the issue of
resorting to a PHM framework to solve the reliability and
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durability challenges of PEMFC (Herr et al., 2017) (Rama,
Chen, & Andrews, 2008) (Jouin et al., 2013).

An increasing number of works are being focused on RUL
prognostics considered as a key component of PHM chain.
Zhang et al. (D. Zhang, Cadet, Yousfi-Steiner, & Bérenguer,
2018) developed a particle filtering based prognostics ap-
proach which considering degradation recovery phenomena.
Zhou et al. (Zhou, Al-Durra, Zhang, Ravey, & Gao, 2018)
proposed a novel robust prognostic approach that contains
three phases for PEMFC degradation prediction and RUL es-
timation. An adaptive data-driven prognostic strategy is pro-
posed for PEMFC by Li et al. (Li, Zheng, & Outbib, 2019).
As can be seen in these works, various approaches have been
developed to achieve a high RUL prediction accuracy. How-
ever, the RUL prediction remains of limited interest if it is not
used to make a decision, and its performance can be sensibly
assessed only at the level of the whole processing chain, i.e.
from prediction to decision-making.

In order to forge a more comprehensive implementation of
PHM framework for PEMFC to extend its useful lifetime, this
work proposes a post-prognostics decision making strategy
for a multi-stacks fuel cell system. Whenever a prognostics
method has been developed to predict the RUL of PEMFC,
decisions have to be made for the system to achieve a useful
lifetime extension. Firstly, the problem formulation, includ-
ing fuel cell deterioration model and decision making prob-
lem are presented. The methodology is then detailed, given
the RUL determination and the decision strategy. Finally,
simulations are carried out and the results are compared with
deterioration calculated without decision making procedure.

2. PROBLEM FORMULATION

2.1. Fuel cell deterioration model

Until now, the deterioration mechanisms of PEMFC are not
fully known yet, because of the complex electrochemical
mechanical, and thermal degradations are involved in dif-
ferent components of a PEMFC stack (Jouin et al., 2016)
(Rama et al., 2008) (Ous & Arcoumanis, 2013) (X. Yu & Ye,
2007). These degradations tend to be highly dependent on the
PEMFC operating conditions. For example, when a PEMFC
is operated through an automotive cycle, it may suffer from
more serious degradation. Thus, in this work, the degradation
of fuel cells is modeled as a function of the load.

A usual tool used to characterize fuel cells is the polarisation
curve, which illustrates the cell voltage with respect to the
current density. As depicted in Fig.1, there are mainly four
types of voltage losses in PEMFC, fuel crossover loss, acti-
vation loss, ohmic loss and concentration loss. In this work,
the output voltage of PEMFC is calculated using an empirical
model (Kim, Lee, Srinivasan, & Chamberlin, 1995) as:

Vst = n(E0 −RJ −A ln(J)−m1 exp(m2J)) (1)

where n is the number of cells in one PEMFC stack, J
represents the current density, R is the overall resistance
of PEMFC, A is the Tafel parameter for oxygen reduction,
m1,m2 represent the constant related to the mass transport
overpotential. E0 is the voltage term related to reversible po-
tential of PEMFC.

Eq.(1) involves the parameter set Q= {E0, R, A, m1,m2}.
The parameter values vary with the degradation of the fuel
cell. As indicated by recently published investigations,
(D. Zhang et al., 2018) (D. Zhang, Cadet, Yousfi-Steiner,
Druart, & Bérenguer, 2017) (Jouin et al., 2016), the resis-
tance R is representative of the global state of health of the
fuel cell. It is therefore chosen as the degradation indicator of
the fuel cell in this work. The deterioration model of R will
be explained in next section.
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Figure 1. Polarization curve and corresponding power curve
of PEMFC.

2.2. Decision making problem

The objective of the decision making phase is to decide the
optimal load repartition for two-stacks system at each deci-
sion step in order to obtain the maximum system service time.
The idea of the management of the system lifetime through
the post-prognostics decision making process is due to the
deterioration of the PEMFC is directly affected by its opera-
tion load level (Herr et al., 2017) (X. Zhang, Yang, Luo, &
Dong, 2017).

The following assumptions are made on the proposed two-
stacks fuel cell system:

• Constant load demand is defined for the two-stacks
PEMFC system, denoted as Iload.

• The two PEMFC stacks in the system are identical. The
output power of each PEMFC stack ranges from the
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Figure 2. Schematic of the post-prognostics decision making
strategy.

minimal output power Pmin to maximum output power
Pmax, as shown in Fig. 1.

• This work only focused on the management of fuel cell,
the management of the auxiliary systems is not con-
cerned here.

• The two PEMFC stacks in the system are connected in
parallel.

• The value of the fuel cell resistance is considered to be
measured in this work. The resistance value can be fur-
ther estimated thanks to an observer.

The block function scheme of the problem studied in this
work is shown in Fig.2. The variables (current density, volt-
age, lifetime and so on) are represented by arrows, and the
block in the figure represents the fuel cell or the calculation to
be done in the work. The problem is to estimate the PEMFC
degradation, then to estimate the EoLs and at last to define a
way to decide the load repartition to satisfy the global load
demand.

3. POST-PROGNOSTICS DECISION MAKING

3.1. Gamma process deterioration modeling

In order to simulate the deterioration path of R, a Gamma
process was adapted to calculate the deterioration value
which increases with time. In the previous section 2.1, the
basic knowledge about fuel cell deterioration and the influ-
ence of the operating load have already been introduced. Fur-
thermore, the global resistance R has been chosen as a dete-
rioration indicator that is supposed to be measured. In this
subsection, the deterioration level is modeled as a stochastic
Gamma process, and the dependency on time and load de-
mand is explicitly expressed.

A Gamma process is a stochastic process with independent,
positive increments that obey a Gamma distribution Γ(α, β)
characterized by two key parameters: its shape parameter
α and scale parameter β. Gamma processes are suitable
for continuous and monotonous deterioration modelling, (van
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Figure 3. Deterioration path of a Gamma process.

Noortwijk, 2009). By definition, for a Gamma process x(t)
with shape parameter α(t) and β, we have the following prop-
erties, see Fig.3:

• x(0) = 0, with probability equal to 1 ;

• the deterioration increment ∆x(t1, t2) = x(t2) − x(t1)
between t1 and t2 is characterized by

∆x(t1, t2) ∼ Γ (α(t2)− α(t1), β) (2)

On a unit time interval ∆t = 1, the mean and variance of the
degradation increment ∆x are given by:

Mean(∆x) = α · β ·∆t = α · β (3)

Var(∆x) = α · β2 ·∆t = α · β2 (4)

Using Gamma processes, various deterioration behaviors can
be simulated by resorting to different α and β values. In this
work, one of the key process is to properly choose the pa-
rameters for the Gamma process so that a deterioration path
with sufficient variance can be achieved. This specific setting
obeys the intrinsic aspect of PEMFC deterioration, for it is
a stochastic process with uncertainty involved in it. More-
over, for a Gamma process given with a known parameters,
when a failure threshold (FT) of the deterioration is defined,
the average end of life (EoL) can be calculated by:

EoL =
FT

α · β
(5)

Finally, in order to introduce the dependence of the deteri-
oration process to the load applied to the system, the shape
parameter of the Gamma law is assumed to be a function
of the current load I , i.e. α(I).The form of this function is
detailed in the next section. The parameter β is taken as a
constant. The proposed Gamma process-based deterioration
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model is stochastic and not deterministic, this makes the mod-
eling work and following decision making approach more
challenging and suitable for real fuel cell lifetime manage-
ment.

3.2. PEMFC load dependent deterioration modeling

As already mentioned, we have to consider that the deteriora-
tion rate changes with the current load. The shape parameter
α in Gamma process Eq.(2) is set by referring to a real fuel
cell deterioration rate, whereas the scaling parameter β is de-
fined as a constant value. An asymmetric quadratic function
is defined to describe the relationship between the deterio-
ration rate and the current density (load level), as shown in
Fig.4. The current density represents the operating load de-
mand level of a PEMFC.

The deterioration rates are defined based on the deterioration
mechanism of PEMFC. When PEMFC is operated at lower
current density load, the output voltage of the fuel cell is rel-
atively high, this will causing great damage to the PEMFC
membrane (Endoh, Terazono, Widjaja, & Takimoto, 2004).
Besides, high voltage may also cause deterioration to other
key components of PEMFC, like catalyst layer (CL), gas dif-
fusion layer (GDL), further causing a performance decreasing
(Chung, Kim, Sung, Lee, & Chung, 2009) (Y. Yu et al., 2012).
As the deterioration of PEMFC is dependent on its operating
load level, different deterioration rate can be set with respect
to the current load level.

In this work, it is assumed that the average EoL of PEMFC
operating at the minimal current density Imin is EoL1. Sim-
ilarly, for the nominal current density Inom and maximum
current density Imax, the average EoL are EoL2 and EoL3

respectively, with EoL1 < EoL3 < EoL2. The average
deterioration rate r̄i can then be calculated for these three dif-
ferent cases as:

r̄i = αi · β =
FT −R0

EoLi

(6)

where i = 1, 2 and 3 corresponding to the minimal, nominal
and maximum current density respectively. R0 represents the
initial deterioration level. The calculated deterioration rate is
further used to define the parabola function as shown in Fig.4.

The deterioration path can be simulated with an identified
model. For a given realization of the deterioration path, the
failure time of the PEMFC is defined as the first time when
the deterioration level exceeds the failure threshold FT . The
specific application and simulation results will be further de-
scribed in the results and discussion section.
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Figure 4. Deterioration rate vs current density.

3.3. Decision making for the load repartition for a two-
stackssystem

The developed model is then used for the post-prognostics de-
cision making phase to decide the optimal load split between
two PEMFC stacks so that the maximum system service life
can be achieved. This decision making procedure is made
periodically, at fixed decision time interval ν.

For each decision period, the decision probability is noted as
Pd and the decision threshold FTd. As shown in Fig.5, A
system with two PEMFCs has been running for t0. FC1 and
FC2 are two PEMFC stacks in the system. For these two
PEMFCs, the failure occurs due to an excess of deterioration
threshold, and the distribution law of the failure time T can
be calculated analytically as (Wenjia Xu & Wenbin Wang,
2012):

F (t) = P (T ≤ t) =
Γ(αt, FTd · β)

Γ(αt)
(7)

where T is the first hitting time of the level FTd by the
stochastic process x(t).

According to the previous discussion, the threshold used for
the decision making at each decision step can be set as:

FTd = α · β · ν +Dinit (8)

where the parameter ν plays a role similar to EoL in Eq.(5).
Dinit represents the initial deterioration level at the beginning
of each decision interval ; for decision step 1, its value equals
to R0.

Eq.(7) defined an analytical approach to calculate the decision
probability Pd. Considering the decision time interval ν, Pd

is decided by:
Pd = F (ν) (9)
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This approach is sketched in Fig.5: the red and black solid
curves above the decision threshold represent the predicted
lifetime distribution for FC1 and FC2 that are calculated at
time t0. P1 is the probability that the deterioration level of
FC1 exceeds the decision threshold before (t0 + ν) hours ;
similarly, the decision probability of FC2 is P2. In this work,
the decision criterion is then defined as (1 − P1) · (1 − P2),
and we seek to maximize the criterion to obtain the longest
system lifetime. This is realized by searching the optimal
load split between the two stacks. The solid line below FTd
is the corresponding deterioration trajectories simulated for
FC1 and FC2 after the decision.

A Gamma process based simulation was performed. Two
types of deterioration trajectories are simulated :

• Trajectories developed with decision making, for FC1
and FC2, denoted as R1 and R2 respectively

• Trajectories developed without decision making, used as
comparison group, the corresponding trajectories are de-
noted as R1c and R2c for FC1 and FC2 respectively.

In order to justify the efficiency of the proposed decision
making strategy, the lifetime of two stacks system are cal-
culated based on the simulated trajectories. For system life-
time calculated based one single deterioration trajectory, the
simulation was denoted as one time running simulation; for
system lifetime calculated based on N deterioration trajecto-
ries (average system lifetime), the simulation was denoted as
N times running simulation. The lifetime for one time simu-
lation (EoL1) was calculated by:

EoL1 = min{EoLR1, EoLR2} (10)

where EoLR1 represents the lifetime of FC1, EoLR2 repre-
sents the lifetime of FC2.

The lifetime of the system can then be estimated by averaging
the results over the N simulations (ÊoLN ):

ÊoLN =
1

N

N∑
i=1

(min {EoLR1i, EoLR2i}) (11)

where EoLR1i represents the lifetime results of FC1 calcu-
lated by the ith deterioration trajectory, EoLR2i represents
the lifetime results of FC2 calculated by the ith deterioration
trajectory.

In this work, the EoL calculated from R1 and R2 (with
the decision making algorithm implemented) are denoted as
EoL1d and EoL2d, the results that are calculated from R1c
and R2c are denoted as EoL1c and EoL2c. Similarly, at the
system level, for EoLN , we have EoLNd and EoLNc.
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Figure 5. Principle of decision making strategy

4. RESULTS AND DISCUSSION

4.1. load-dependent deterioration simulation

As described in Section 2,R0 is identified by fitting the polar-
ization curve model to the measured data of an actual PEMFC
stack. The fitting results were summarized in Table 1. The
load-dependent modeling results were presented in Fig.6. For
the Gamma process, the scaling parameter β is defined as
constant value 0.32. R0 represents the initial overall resis-
tance of the PEMFC stack, and is further used in the deterio-
ration simulation part.

The shape parameter was modeled as a function of the current
load, and was calculated based on Eq.(6) and Fig.4, as intro-
duced in section 3.2. In this work, the FT for one PEMFC
stack is defined as 1.9. The desired average EoL and the
corresponding values for the average deterioration rates un-
der the different possible load conditions based on Eq.(6) are
summarised in Table 2 . The values for Imin, Inom and Imax

are calculated as 0.214, 0.7 and 1.6 Acm−2 respectively,
based on the knowledge of the concerned PEMFC. In Fig.6,

Table 1. Parameters fitting results for Polarization equation

E0 R0 A m1 m2

0.8034 0.1797 0.0236 2.692e−5 0.0092

it is clearly seen that the resistance deterioration path is di-
rectly influenced by the current load. At the beginning, from
0 to 200h, the current density J equals to Inom, according
to the function defined in Fig.4, the deterioration rate is the
lowest; then J increase to Imax, deterioration rate increased
accordingly; next J decrease to the nominal value, deterio-
ration rate decreased; and next period, the deterioration rate
reaches the maximum level for the current density decreased
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to Imin; and finally when the current density level recovers to
Inom, then deterioration rate decreases. These results prove
that the PEMFC deterioration is dependent on the operating
current load and the proposed load-dependent deterioration
model works.

0 200 400 600 800 1000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (h)

 Current density

C
ur

re
nt

 d
en

sit
y 

(A
 cm

-2
)

0.2

0.25

0.3 Stack resistance

St
ac

k 
re

sis
ta

nc
e 

(W
 cm

2 )

Figure 6. Load-dependent deterioration model results for one
stack.

Table 2. Parameter calculation results for Gamma process
simulation

Imin Inom Imax

EoL (h) 200 2800 300
r (e−4) 128 9.15 85

4.2. Results for post-prognostics decision making

This subsection presents the main results of the proposed
post-prognostics decision making strategies for the two-
stacks system. As introduced in Section 3.3, a load repartition
decision is performed every ν (decision time interval), formu-
lating a multi-step decision making strategy. In this work, the
decision time interval ν is defined as 150 h. The first step is
based on the PEMFC deterioration model combine with the
Gamma process to simulate the deterioration path for each
PEMFC. The current load demand in this work is defined as
a constant value, Iload = 1.8 Acm−2.

Based on Eq.(8), the FTd corresponding to the maximum
deterioration rate r1 which used in this work is calculated for
each decision step. The scheduled simulation horizon in this
work is 3900 h, Therefore, the decision steps equals to 26.
The FTd for the first decision step was calculated by Eq.(8),
its value is 0.5899. Due to the limits in Eq.(7), the FTd in
each step should no less than the initial deterioration level,
therefore, an adaptive decision threshold were calculated for
the follow step, with 35% increment of the initial deteriora-
tion level. Then based on the analytical method proposed in

section 3.3, the decision probability for current density rang-
ing from Imin to 1.5 A cm−2 with 1287 groups was investi-
gated. The load repartition results were summarized in Fig.7,
8, 9, 10, and Table 3.

Fig.7 shows the post-prognostics decision making results of
one time running the simulated deterioration trajectories were
compared with the curves obtained without decision making
strategy. Besides, for the comparison group, the current den-
sity of both stack was set as 0.9 A cm−2. From Fig.7(a), it
is clear seen that for the deterioration trajectories with deci-
sion making strategy, its deterioration is much smaller. Be-
sides, the deterioration level of R1 and R2 changes during
the operating time, this is due to the mitigating effects of the
proposed decision making strategy. Combining with the load
repartition results in Fig.7(b), FC1 and FC2 both begins at
0.9 A cm−2, but in the following periods, their current load
changes at each decision step, this helps to investigate the
health state of each fuel cell stack and thus extend the system
lifetime. Finally, the system lifetime results were calculated
based on Fig.7, summarized in Table 3. For one time running
simulation, EoL1d is 2916 h, much high than EoL1c (1049
h).

However, because of the stochastic nature of the system evo-
lution, the EoL results on a single simulation run are not
enough to prove the efficiency of the proposed decision strat-
egy. Therefore, the average deterioration trajectories and me-
dian EoLs are further discussed, see Fig.8. Fig.8 shows that
the trajectories of R1, R2 and R1c, R2c are very close and the
load repartition strategy does not show obvious effects on the
mean deterioration path compared with Fig.7(a). However,
the active load repartition reduces the variance between the
deterioration trajectories of both stacks within the same fuel
cell stack : they are synchronized which increases the sys-
tem lifetime and a fast deterioration behavior of one stack is
compensated and balanced with the deterioration of the other
stack. Without the decision making strategy, the deterioration
paths remain desynchronized and there is high risk that one
of the two FC stacks fails early, hence reducing the lifetime
of the system.

Moreover, for a set of 100 simulations, histograms of the
system lifetimes with and without decision are shown in
Fig.9. By comparing Fig.9(a) and Fig.9(b), the system life-
time results with decision are mostly distributed in the range
(2500, 4000) h, with a median lifetime of 3018.5 h. The life-
times without decision are mainly distributed in (1500, 3000)
h with a median lifetime value equal to only 2662 h. The
specific deterioration trajectories from a set of 10 simulations
are presented in Fig.10. The overall results in Fig.10 show
that the trajectories that developed with decision are more
grouped together with a low variance and that the deterio-
ration tends to be lower than that without decision, which
proves that the proposed decision making strategy can help
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to mitigate the system deterioration, improving its lifetime.
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5. CONCLUSION

A post-prognostics decision making strategy was proposed to
decide the optimal load split between the two stacks in order
to maximize the system lifetime. In this work, two PEMFC
stacks need working simultaneously to provide the desired
system load demand, the decision criterion is then constructed
to further calculate the optimal load repartition for two stacks.
To well demonstrate the efficiency of the proposed decision
making strategy, results based on one time running simu-
lation and multi-times running simulation (100 times) were
both discussed in this work. For one time running simulation,
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Figure 8. Average deterioration results (100 times running)

Table 3. Examples of EoL results for a single simulation and
for 100 simulations (median and average values).

EoL1 (h) EoL100 (h) EoL100 (h)
EoL1 (h) Median Mean

with decision 2916 3018.5 2908.8
without decision 1049 2662 2615.1

the system lifetime results after decision making strategy is
2234 h, much higher than the results calculated without a de-
cision (1029 h). For average simulation results EoL100d is
2908.8 h, higher than EOL100c (2615.1 h), besides, the tra-
jectories and system lifetime statistic results prove that the
proposed post-prognostics decision making strategy can help
to mitigate the deterioration and to improve the system life-
time. Based on the proposed post-prognostic decision making
framework, future work will be focused on the combination
with real fuel cell test data to further study its application on
multi-stacks fuel cell system.
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