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ABSTRACT 

We discuss implementation of wind turbine condition 
monitoring system (CMS) without speed sensor. The main 
method used is based on implementing Hilbert transform to 
extract the instantaneous frequency, where derivative of the 
analytic signal is done in the frequency domain.  We 
analyze how to determine which vibration source, such as 
generator, gearbox high speed stage, or other turbine 
components should be used for speed extraction. The best 
choice of component is evaluated based on how good speed 
is estimated from various components in comparison to 
information from real speed sensor. Data from wind turbines 
collected over the years are used for statistical comparisons 
and selections of proper implementation. Information from 
estimated speed is then used along with an automatic 
diagnosis algorithm to detect different wind turbine faults. 

1. INTRODUCTION 

Condition monitoring of wind turbine requires monitoring 
magnitudes of certain frequencies or harmonics, also known 
as descriptors. These descriptors describe the state of a 
component and are trended for alarming purpose. Some of 
them require speed information of certain shafts to monitor, 
for example, unbalance in a generator and gear-related faults 
in a gearbox as described by Bartelmus and Zimroz, (2009) 
and Taylor (2000). This information is normally obtained 
from a speed sensor, where it measures how many rotations 
a shaft undergoes in a time period, such as revolutions per 
minute (rpm) or per second in unit Hertz (Hz). 

In a wind turbine, the speed sensor is normally attached to 
the generator shaft. Shaft speeds and tooth mesh frequencies 
at various stages can be determined from the generator shaft 
speed using ratios of various shafts in the gearbox. A non-
contacting eddy current displacement sensor is normally 
used for speed reference sensor. This type of sensor needs to 
be adjusted correctly to obtain correct speed measurement.  

The generator shaft rotation often drifts over time, which 

could cause the initial speed sensor setting to be invalid. 
Incorrect speed sensor setting could cause speed reference 
measurement to be invalid, which results in unreliable 
speed-dependent descriptors. As a result, failure modes that 
require speed information for their detection may be missed.  
In reality, majority of failure modes detection require speed 
information, such as generator unbalance, misalignment, 
looseness, determination of inner or outer race bearing 
faults, and gear related faults.  

Considering the criticality of speed information, it is 
imperative to correct a malfunction speed sensor.  However, 
correcting a speed sensor can be costly, especially in 
offshore wind turbines.  This is because a technician has to 
physically visit the turbine to do the correction. Huge saving 
in the cost of wind turbine CMS and operation can be 
achieved if the need of having a speed sensor can be 
eliminated. 

Several works to mitigate the problem of invalid speed 
sensor reading have been presented (Coats, Sawalhi, & 
Randall, 2009), (Urbanek, Zimroz, Barszcz, & Antoni, 
2012), (Zhao, Lin, Wang, Lei, & Cao, 2013), (Zimroz, 
Milioz, & Martin, 2010), (Zimroz, Urbanek, Barszcz, 
Bartelmus, Milioz, & Martin 2011), and (Skrimpas, 
Marhadi, Jensen, Sweeney, Mijatovic, & Holbøll 2015). 
They mostly involve detection of speed information from 
vibration; thus speed sensor is not required. In the work by 
Skrimpas, et al. (2015), speed information is estimated for 
wind turbine applications in case speed sensor becomes 
unavailable. In that paper, prior information from the sensor 
is required before it becomes unavailable for the algorithm 
to work. 

Those works mainly focused on estimating the speed 
information itself rather than using it for faults detection. 
This paper focuses on using estimated speed in combination 
with an algorithm to automatically detect faults in wind 
turbines (automatic diagnosis). The speed is estimated using 
frequency demodulation of response vibration signals using 
Hilbert transformation as presented by Randall and Smith 
(2016 and 2018). Randall and Smith (2018) showed that it is 
the most accurate method to determine instantaneous speed 
of a shaft by frequency demodulation. 
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In estimating speed information, it is often required to know 
a frequency range where the actual speed information is 
present. Determining search frequency correctly will result 
in an accurate estimated speed. However, this requires a 
combination of expert knowledge, machine operating 
condition, and kinematical information of the machine. 
Current paper shows that the search range can be accurately 
defined based on operating condition and kinematic of the 
machine.   

2. HILBERT TRANSFORM TO ESTIMATE SPEED 

Randall and Smith (2018) showed that instantaneous phase 
and amplitude of a vibration signal can be determined by 
Hilbert transform techniques, which result in an analytic 
signal that corresponds to the real signal. This signal can be 
represented as: 

𝑥!(𝑡) = 𝐴(𝑡)exp	(𝑗𝜙(𝑡))                      (1) 

where �̇�(𝑡) = 𝜔(𝑡) = 2𝜋𝑓(𝑡). 

The derivative of the instantaneous phase of an analytic 
signal can be represented as: 

                         𝜔(𝑡) = �̇�(𝑡) = 𝐼𝑚 4"̇!(%)
"!(%)

5                         (2) 

where �̇�!(𝑡)  is the derivative of 𝑥!(𝑡) . As explained by 
Randall and Smith (2016), the exact derivative can be 
obtained by multiplying the spectral values by 𝑗𝜔 over the 
frequency ranges to be demodulated before performing 
inverse transform of the spectrum. 

With Eq. 2, the instantaneous speed of a shaft can be 
determined from vibration signal at all times. However, the 
initial estimated speed needs to be smoothed out because the 
differentiation introduces noise in real vibration signal as 
described in (Randall and Smith, 2018). In the current 
paper, initial estimated speed is smoothed out using a FIR 
filter in the time domain as presented in (Randall and Smith, 
2018). 

A harmonic that is related to a shaft speed may not be the 
most dominant one.  Demodulating a band around this 
particular harmonic must be free from any other 
components. Moreover, a shaft speed can have a big 
variation within a time interval.  Thus it is important to 
ensure that all speed related harmonics, such as tooth mesh 
frequencies are proportionally considered according to 
kinematical data of the machine.  This will ensure that a 
harmonic of interest can be initially estimated within a 
narrow search range without any other components.  

The following is a procedure to determine an initial range of 
a harmonic or speed of interest: 

1. Determine machine operating range where speed 
information is valid, e.g. between 15 and 30 Hz. 

2. Generate the first power spectrum of vibration signal 
from which speed information is extracted. 

3. Identify all possible peaks or harmonics in the 
spectrum. 

4. Find a frequency factor (𝜔') within the speed operating 
range that maximizes the sum of harmonics that match 
machine’s kinematical data, e.g. shaft speed family of 
harmonics and gear tooth mesh frequencies.  The theory 
behind this is that summation of a speed related family 
harmonics will be maximized as opposed to summing 
them with random harmonics that may not have the 
correct speed relation.  

Step 4 above can be expressed as an optimization problem:  

              	max
("

𝑓(𝜔') = ∑ 𝜔'𝑖) +⋯+∑ 𝜔'𝑘* 		,            (3) 

where i to k represent speed related families of harmonics 
identified in the spectrum. Their information should be 
available in the machine’s kinematical data.  

Solving for 𝜔' in the above optimization problem is 
essentially a speed estimation procedure too.  However it 
can be considered computationally more expensive if it is 
performed continuously as opposed to using Eq. (2).  
Moreover, it can only provide an estimated average speed in 
a period of the time waveform length; not at all times of the 
signal length. Thus the above procedure is only used in the 
beginning to determine initial guess range that is guaranteed 
free of other components, which is then demodulated to 
extract the actual speed information. 

To take into account big speed variation, the vibration 
record is divided into overlapping segments.  Solving Eq. 
(3) is only performed in the first segment of the record. 
Once 𝜔'is obtained, a band of ±1 Hz around 𝜔'is used as 
the demodulated range.  Speed information in each segment 
is then determined using the aforementioned Hilbert 
transforms. This follows the method described by Randall 
and Smith (2016).  

3. SPEED ESTIMATION IN WIND TURBINE MONITORING  

In Bruel & Kjær Vibro wind turbine condition monitoring 
applications, time waveforms data are obtained 
approximately every two days. The time waveforms contain 
vibration signals from all components monitored. The 
length of each time waveform is 10.24 seconds with 
sampling rate of 25600 Hz. The types of wind turbines 
analysed in this study are those with gearbox configurations 
of one planetary and two helical stages (1P2H), two 
planetary one helical (2P1H), and three planetary and one 
helical stage (3P1H).  

In a typical wind turbine monitoring, accelerometers are 
installed at various components of the turbine. There could 
be more than one sensor to monitor the same component.  
Designations of sensor locations in a wind turbine are the 
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following: Generator Drive End (GnDe) and Non Drive End 
(GnNDe) Gearbox High Speed Stage Front (GbxHssFr) and 
Rear (GbxHssRr), Gearbox Intermediate Stage (GbxIss), 
Gearbox 1st Planetary Stage (Gbx1Ps), and Main Bearing 
(MnBrg).  Speed information could be extracted from each 
vibration sensor.  However, one sensor is enough to get the 
information.  Thus it is necessary to find the best sensor 
from which to extract speed information from vibration 
signal.   

To determine the best vibration sensor to extract speed 
information, equation (3) is solved for 𝜔'for for the entire 
10.24 seconds time waveform obtained from each channel 
available in a turbine.  The result provides an average speed 
of interest in that period. In this study, speed of interest is 
the generator shaft speed. Speeds of other shafts in the 
turbine can then be calculated based on the kinematical data. 
The results,	𝜔', is then compared with actual average speed 
obtained from a speed sensor.  Sensor that gives the 
minimum error should be used.  

In this study, the choice is also based on statistical analysis. 
Thousands of time waveforms from turbines of the same 
type under various operating conditions are analyzed.  The 
results are summarized in Tables 1, 2, and 3 for turbines 
with gearbox configuration 1P2H, 2P1H, and 3P1H 
respectively. The number of time waveforms for each 
turbine type is 11951, 17392, and 9124, respectively.   

Based on all turbines analysed, it is best to use Generator 
Non Drive End (GnNDe) sensor.  The reason is because 
across different turbine platforms, it gives minimum median 
value.  Moreover, generator non drive end usually only 
contains harmonics of the generator shaft.  Thus vicinity of 
the first harmonic of the running speed is usually free from 
other components. This provides a cleaner speed estimation 
result using Hilbert transform techniques.   

 

 

 

4. FAULT DETECTION USING SPEED ESTIMATION AND 
AUTOMATIC DIAGNOSIS 

The estimated speed is converted in terms of rotation angle 
to perform order analysis, i.e. angular resampling vibration 
signals, and to track the orders of interest. This is done by 
integrating the estimated instantaneous speed over time to 
get the cumulative rotations as a function of time.  

An automatic diagnosis algorithm is used to detect faults.  
This algorithm is based on automatic identification of peaks 
in an order spectrum; generated based on speed information.  
Automatic diagnosis requires that kinematical data of a 
turbine, such as shaft speed ratio at various stages of a 
gearbox, gear number of teeth, and bearing fault 
frequencies/orders, are known beforehand.  With this 
information, peaks related to various failure modes can be 
identified accurately in an order spectrum. The method will 
determine if peaks are present at known orders, e.g. 1st, 2nd, 

Table 1. Error statistical analysis for 1P2H turbines in 
Hertz 

 

 Median Q3 Q1 Mean 
Error 

GnDe 0.062 0.183 0.03 6.87 
GnNDe 0.059 0.160 0.03 0.48 
GbxHssRr 4.98 6.30 0.04 6.47 
GbxHssFr 5.15 6.26 0.06 6.66 
GbxIss 0.140 5.80 0.04 4.97 
Gbx1Ps 0.109 5.31 0.03 5.10 
MnBrgFr 1.84 10.8 0.05 6.32 
MnBrgRr 0.988 10.1 0.05 6.11 

 
 

Table 2. Error statistical analysis for 2P1H turbines in 
Hertz 

 

 Median Q3 Q1 Mean 
Error 

GnDe 0.123 6.30 0.03 5.82 
GnNDe 0.142 6.98 0.03 5.89 
GbxHssRr 0.280 4.53 0.04 5.78 
GbxHssFr 4.16 15.0 0.06 8.29 
GbxIss 0.657 4.89 0.04 6.88 
Gbx2Ps 0.209 4.36 0.04 3.47 
Gbx1Ps 3.95 4.71 0.07 4.72 
GbxRotBrg 4.60 30 0.616 10.8 
MnBrg 4.24 9.72 0.185 8.14 

 
 
 
 
 

Table 3. Error statistical analysis for 3P1H turbines in 
Hertz 

 

 Median Q3 Q1 Mean 
Error 

GnDe 0.038 0.082 0.017 0.752 
GnNDe 0.035 0.068 0.017 0.734 
GbxHssRr 2.473 2.819 2.265 2.502 
GbxHssFr 2.497 2.825 2.340 2.974 
GbxIssFr 2.492 2.826 2.324 2.919 
GbxIssRr 2.492 2.800 2.337 2.709 
Gbx1Ps2 3.014 20.66 2.431 9.898 
Gbx1Ps1 2.645 3.196 2.411 4.612 
MnBrg 2.524 2.927 2.308 3.018 
GbxRotBrg 21.17 24.89 19.81 20.04 
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3rd order running speed, and sidebands around gear or tooth 
mesh frequencies/orders. The determination takes into 
account resolution or the number of order bins in an order 
spectrum.  The finer the resolution of the spectrum, the 
better it is in differentiating various faults.  Maximum 
resolution used in this work is in the order 10-2.   

Identification of peaks is prioritized according to the failure 
modes to be identified, e.g. unbalance, rotating looseness, or 
bearing faults.  For example, on detecting bearing faults, 
running speed harmonics of the shaft are excluded before 
identification of peaks related to the bearing fault 
harmonics, such as inner race (BPFI) and outer race and ball 
pass (BPFO). The automatic diagnosis algorithm produces a 
descriptor that describes a particular failure mode.  The 
descriptor is a square sum or Euclidian norm of the 
identified peaks related to a particular failure mode.  This 
descriptor is then trended over time. 

A failure mode is detected if a descriptor that describes the 
fault crosses an alert level.  This alert level is determined 
statistically based on the same descriptor across many 
turbines over various conditions.  The criterion is 5th 
percentile of the descriptor value among population 
considered.  A danger or breakdown level is also defined 
based on the maximum value of the descriptors across the 
same population considered. Details of this automatic 
diagnosis algorithm can be seen in the work of Saputra and 
Marhadi (2019 and 2020). 

If a speed sensor is available, order spectrums used in 
automatic diagnosis is generated based on information from 
the speed sensor.  In this study, faults detected by automatic 
diagnosis based on estimated speed are compared with the 
results from the one based on real speed information.  The 
main interest is to check whether descriptors generated with 
estimated speed information can detect faults around the 
same time as descriptors generated with real speed 
information. It is also to check if the descriptor produced by 
automatic diagnosis using estimated speed information is 
about the same magnitude as the one using real speed 
information. 

4.1.  Third Stage Rotating Looseness Fault  

To detect rotating looseness, the Euclidean norm of running 
speed harmonics of the shaft of interest was monitored as an 
automatic diagnosis descriptor. Figure 1 displays the trend 
of the descriptor for a 1P2H turbine having a rotating 
looseness problem due to the presence of a bearing fault. 
Both descriptors that are generated using estimated and real 
speed information are shown. 

The figure shows that both descriptors generated using 
estimated and real speed information follow the same trend.  
Both of them detect looseness around the same time in early 
January 2018. This is despite the fact that trend of descriptor 
generated with estimated speed is consistently lower than 
the one generated with real speed before the fault 

occurrence.  Both of them also react at the same time and 
about the same magnitude as the fault got worse and crossed 
the danger level or breakdown threshold.    

After the trend crossed danger level, the turbine went into 
repaired.  Unfortunately speed sensor in the turbine 
experienced problems after repair, and it could not provide 
necessary information. Thus descriptor based on real speed 
could not be generated after the repair.  However, descriptor 
based on estimated speed continued to be produced and 
confirmed that a repair was performed. The descriptor went 
from above 12 m/s2 to almost zero.   

 
Figure 1. Rotating Looseness Fault descriptor trend. 

4.2. Generator Unbalance 

To detect unbalance, the first running speed harmonic of 
generator shaft was trended as an automatic diagnosis 
descriptor.  Figure 2 displays the trend of the descriptor 
from a 2P1H turbine having generator unbalance problem in 
early April of 2020.  It can be seen from the graph that 
trends of both descriptors based on estimated and real speed 
increase rapidly on the 1st of April, 2020. 

Descriptors generated by both estimated and real speed 
information follow each other very closely in this example.  
They detect the fault at the same time, and both indicate 
unacceptable condition as they crossed breakdown 
threshold.  After crossing breakdown threshold, the speed 
sensor was malfunction, thus descriptor based on real speed 
information could not be generated.  However, using 
estimated speed, it can be seen that the trend returns to an 
acceptable level after the turbine was repaired.   
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Figure 2. Generator Unbalance Fault descriptor trend. 

4.3. Pinion Fault on Gearbox 2nd Stage 

A 1P2H turbine type had a broken tooth on the 2nd stage 
pinion.  This fault had been detected as early as beginning 
of August 2015 using Automatic Diagnosis descriptor as 
shown in figure 3. The descriptor is based on Euclidian 
norm of sidebands around the 2nd stage tooth mesh 
frequencies spaced at the running speed of the shaft where 
the pinion was attached. Descriptors based on both real and 
estimated speed information are shown in the figure.  

 
Figure 3. Second Stage Pinion Fault descriptor trend. 

Again in this example, both descriptors based on real and 
estimated speed follow the trend very closely.  Both detect 
the fault around the same time, and show trend returns to an 

acceptable level after repair. As the fault got worse, 
magnitudes of the descriptor based on estimated speed tend 
to be lower than the ones based on real speed.  This is also 
observed in the previous two examples. 

As estimated speed information is used for angular 
resampling, the order spectrum based on this resampled time 
waveform is not very precise. In other words, some peaks 
may move a few order bins to different positions from their 
correct locations. For example, the peak of first order 
harmonic is supposed to be at bin 1.00 for an order spectrum 
with resolution 0.01. With estimated speed, the peak could 
be at bin 1.01. As a consequence, automatic diagnosis 
algorithm may not see a peak at bin 1.00 or detect a lower 
magnitude at this location. This could result in incorrect 
faults identification as shown in the next example.    

4.4. Wheel Fault on Gearbox 3rd Stage 

A 2P1H turbine type operated with a wheel fault on the 3rd 
stage gearbox for an extended period of time as shown in 
figure 4. The descriptor is based on Euclidian norm of 
sidebands around the 3rd stage tooth mesh frequencies 
spaced at the running speed of the shaft where the wheel 
was attached.  The problem had been identified since the 
beginning of 2015 and known by the turbine operator.  
However as the figure shows, only descriptor based on real 
speed information increases over time.  The one based on 
estimated speed is consistently lower than the one based on 
real speed. 

 
Figure 4. Third Stage Wheel Fault descriptor trend. 

On the other hand using estimated speed information, 
automatic diagnosis identified bearing inner race problem at 
the shaft where 3rd stage wheel was attached as shown in 
figure 5.  Similar to wheel fault, the inner race fault 
descriptor is based on Euclidian norm of sidebands around 
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bearing inner race defect orders.  As shown in the figure, the 
magnitude of this descriptor is approximately as high as the 
wheel fault descriptor using real speed information.  In 
contrast, actual inner race fault based on real speed 
information had been low until early 2020.  This example 
shows misidentification of fault when estimated speed 
information is used along with automatic diagnosis 
algorithm.   

 
Figure 5. Inner Race Fault descriptor trend 

Misidentification in this example is because peaks in the 
order spectrum are not at the correct order locations when 
estimated speed information is used. Meanwhile, automatic 
diagnosis algorithm labels those peaks according to various 
specific fault orders. Thus sidebands around 3rd stage gear 
mesh could be mistakenly labeled as sidebands around 
bearing inner race harmonics, and identified as related to 
bearing inner race problem and not gear fault.  For human 
eyes, the order spectrums based on estimated and real speed 
information are quite similar as shown in figures 6 and 7 for 
the case of wheel fault on 3rd stage gearbox. A trained 
diagnostic engineer is more likely to identify the fault 
correctly even when the order spectrum is based on 
estimated speed. Thus there is still work to be done to 
perform automatic diagnosis with order spectrums based on 
estimated speed information.  

5. CONCLUSION 

Along with automatic diagnosis algorithm, estimated speed 
information can be used to compute descriptors for 
detecting failure modes in wind turbines with varying 
gearbox configurations, namely 1P2H, 2P1H, and 3P1H.  
The resulting descriptors can also detect faults at the same 
time as the ones using real speed information. This gives the 
possibility of condition monitoring of wind turbines without 
speed sensor and automatic monitoring, which could 

significantly reduce the overall cost of wind turbine 
condition monitoring.  However, there is still work to be 
done because automatic diagnosis can misidentify fault due 
to imprecise order spectrum based on estimated speed 
information. 

 
Figure 6. Order spectrum based on real speed information 

showing two tooth mesh orders with sidebands 

 
Figure 7. Order spectrum based on estimated speed 

information showing two tooth mesh orders with sidebands 

There are several factors that need to be considered when 
applying wind turbine monitoring without speed sensor: 
availability of kinematical data, selection of vibration source 
for speed information extraction, and selection of frequency 
or harmonic to be demodulated.  Without correct 
kinematical information, speeds at different shafts of the 
turbine cannot be determined correctly.  Selection of the 
vibration source will also determine whether the band 
around the selected frequency to be demodulated is free 
from other components or not, which subsequently 
determine the correctness of the estimated speed. 
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