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ABSTRACT

In all fields, the significance of a reliable and accurate pre-

dictive model is almost unquantifiable. With deep domain

knowledge, models derived from first principles typically out-

performs other models in terms of reliability and accuracy.

When it may become a cumbersome or an unachievable task

to build or validate such models of complex (non-linear) sys-

tems, machine learning techniques are employed to build pre-

dictive models. However, the accuracy of such techniques is

not only dependent on the hyper-parameters of the chosen al-

gorithm, but also on the amount and quality of data. This

paper investigates the application of classical time series fo-

recasting approaches for the reliable prognostics of technical

systems, where black box machine learning techniques might

not successfully be employed given insufficient amount of

data and where first principles models are infeasible due to

lack of domain specific data. Forecasting by analogy, forecas-

ting by analytical function fitting, an exponential smoothing

forecasting method and the long short-term memory (LSTM)

are evaluated and compared against the ground truth data. As

a case study, the methods are applied to predict future crack

lengths of riveted aluminium plates under cyclic loading. The

performance of the predictive models is evaluated based on

error metrics leading to a proposal of when to apply which

forecasting approach.

1. INTRODUCTION

Where a crack size with a dimension of 1/32 Inch (≈ 0.79
mm) is negligible in an eggshell according to Hen-

dron (Hendron, 1963), the same crack size can result in

catastrophic failure of other technical systems such as a roc-

ket. Such failures are not only economically devastating but
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could lead to injury and loss of lives. To avert sudden failures

of increasingly complex technical components or systems,

and thereby improve the reliability and availability of such

systems through their life-cycle, prognostics and health ma-

nagement (PHM) has evolved as an enabling engineering

discipline. Hereinafter, a system refers to a single component

or a system of components. PHM generally encompasses a

diagnostics and prognostics module, where the former is car-

ried out a posteriori, that is after a fault or failure as occurred,

to detect, isolate and identify system fault(s) or failure. Given

current condition monitoring data, the prognostics module

involves the future state prediction of an health indicator

or condition(s) relating to the degradation of such system.

The prognostics module also facilitates the estimation of the

remaining useful life (RUL) of technical systems when the

health indicator or degradation-related condition(s) is propa-

gated to the a priori known end of life (EOL). Over the years,

several diagnostics and prognostics techniques have been

developed and published in scholarly literature, ranging from

physics-of-failure (PoF)-based methods to application of ar-

tificial intelligence methods. The goal is to improve accuracy

and efficiency, while striving for application-independent

solutions and domain expert independence. With deep dom-

ain knowledge, PoF models derived from first principles

are typically reliable and accurate. When it may become

a cumbersome or an unachievable task to build or validate

such models of complex (non-linear) systems, artificial in-

telligence methods, such as machine learning techniques

are employed to derive models from condition monitoring

data acquired over time. Under the assumption that the data

reflects several fault modes and possibly failure, degradation

trends are learned from data with these techniques. However,

the accuracy of such techniques is not only dependent on

the hyper-parameters of the chosen algorithm, but also on

the amount and quality of data. When neither a physical

model nor sufficient amount of run-to-failure data is availa-

ble, several methods that lay between these two extrema are
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adopted to tackle these challenges. They leverage the ad-

vantages of both approaches (Elattar, Elminir, & Riad, 2016;

Atamuradov, Medjaher, Dersin, Lamoureux, & Zerhouni,

2017).

The following literature review gives an overview of PoF-

based through artificial intelligence based prognostics met-

hods, while highlighting the data source, data size and appli-

cation domain.

Most PoF-based methods are built upon fatigue crack growth

equations such as the Paris–Erdogan law (Paris & Erdogan,

1963) which are incorporated in Bayesian-based algorithms

such as widely employed Kalman or particle filter for prog-

nostics. For example, Ray and Tangirala (Ray & Tangirala,

1996) employed the Kalman filter with the Newman mo-

del for micro-cracks to predict the RUL of aluminium spe-

cimen under varying amplitude loading based on the statis-

tical Virkler fatigue crack growth data with a sample size of

68 specimens (Virkler, Hillberry, & Goel, 1979). A major li-

mitation of the application of such crack growth equations is

that the parameters are often geometry-dependent, material-

dependent and experimentally acquired with sufficient speci-

mens.

In cases where the underlying physics or failure mecha-

nism may be unknown or difficult to model, analytical

functions can be fitted to acquired run-to-failure data or

to features extracted from such data. To estimate the

RUL of the gearbox of an SH-60 helicopter, Engel et

al. (Engel, Gilmartin, Bongort, & Hess, 2000) applied a po-

lynomial function to model the temporal evolution of nor-

malized kurtosis, root mean square (RMS), variance and the

proportional energy feature value of the time synchronous

average residue signal. The accelerometer data set consis-

ted of 36 recordings of a total duration of 548 minutes from

healthy to developed gear tooth crack condition.

A general path model as proposed by Lu and Mee-

ker (Lu & Meeker, 1993) or variations thereof can be em-

ployed to derive a general model when the parameters of the

analytical functions may vary for each degradation trajectory.

The artificial neural network (ANN) or its variations are one

of the most applied machine learning techniques in all dom-

ains to model more complex non-linear relations or multi-

variate features. For fault classification and prognostics of

a bearing with an inner race crack, Wang and Vachtseva-

nos (P. Wang & Vachtsevanos, 2001) utilized (dynamic) wa-

velet neural networks. Input data for the network were sig-

nal peak values and the maximum power spectral densities

(PSDs) of windowed triaxial accelerometer data with 100
data points each. At the time, with eight hidden neurons and

two output neurons, the model training took several hours to

complete.

Javed et al.(Javed, Gouriveau, Zemouri, & Zerhouni, 2011,

2012) performed a comparative analysis of features as in-

put to an adaptive neuro-fuzzy inference system (ANFIS) for

long term prediction and estimation of the RUL based on

the CMAPPS data set (Saxena, Goebel, Simon, & Eklund,

2008). 40 data sets each with 8 out of 21 features were se-

lected from the multivariate data set for model training. In

the test phase, predictions were performed over different ho-

rizons with five data sets.

There is founded research and scholarly literature in the

PHM-field for the estimation of the current health state or the

estimation of the RUL of technical systems from condition

monitoring data. However, there is little scholarly literature

pertaining to the h−step, that is, one-step- or multi-step ahead

prediction of an health indicator or degradation-related condi-

tion, while particularly considering condition monitoring data

with very small sample size and little or no system-specific

or domain information. Here, h denotes the prediction ho-

rizon. Nowadays, condition monitoring data or specifically

run-to-failure data can be scarce for safety-critical systems or

prototype systems, which poses challenges while developing

diagnostics and prognostics modules.

This paper attempts to highlight some possibilities in tackling

h−step ahead prediction tasks based on past and current re-

corded data. The prediction task is formulated as a time

series forecasting problem which opens up more possibili-

ties. Time series forecasting methods are a group of manifold

methods that aim at predicting future times based on mea-

surements detected in the past (Hyndman & Athanasopoulos,

2018). In this paper, classical time series forecasting appro-

aches are employed for the reliable prognostics of technical

systems, where black box machine learning techniques might

not successfully be employed given insufficient amount of

data and where first principles models are infeasible due to

lack of domain specific data.

Considering the general PHM-steps (Elattar et al., 2016;

Atamuradov et al., 2017), the next section begins by briefly

describing the experiment involved in generating the case

study data. Given that the raw data are inherently noisy,

the data are thereafter preprocessed. In the following sub-

section, characteristic features are extracted in the time-,

frequency-, and time-frequency domain from the preproces-

sed data. The extracted and selected features are then map-

ped to crack lengths by three carefully selected machine lear-

ning techniques, to conclude this subsection. The estimated

crack lengths are propagated in the future via four forecas-

ting techniques in the penultimate subsection. Finally, perfor-

mance evaluation metrics are laid out and employed to evalu-

ate the presented forecasting techniques.

2. METHODOLOGY

The methods described in this paper are exemplarily demon-

strated on the data set provided by the PHM-society at the

conference’s 2019 data challenge (PHM Society, 2019).
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2.1. Data Description

The data set consists of wave signals from lead zirconate ti-

tanate (PZT)-based piezeoelectric sensors mounted on rive-

ted aluminium specimens under cyclic loading as exemplarily

shown in Figure 2. Experiments were obtained with a hydrau-

lic material testing machine working at 5 Hz at room tempe-

rature. Tension-tension fatigue test with constant amplitude

as well as low-high block loading were studied as shown in

Figure 1. In order to reduce the statistical uncertainty, mea-

surements were acquired twice.

Edges of rivet holes are critical regions of high

stress concentration that promote fatigue crack initia-

tion and propagation which subsequently leads to fai-

lure (Harris, Piascik, & Newman Jr, 1999). For the non-

destructive monitoring of the evolution of the edge cracks, a

piezoelectric actuator-sensor pair was installed at a distance

of 161 mm on opposite sides each of the the rivet holes along

the lap joints as exemplarily illustrated in Figure 2. The

actuator was excited with a 200 kHz Hanning-windowed sine

wave signal which propagated through the rivet holes and

was sensed by the sensor. The idea was that as crack de-

velops along the wave propagation path, the received signal

will reflect this change, thus acting as an health indicator for

diagnostics and prognostics. Eight specimens, subsequently

referred to as T1 through T8 were investigated. T1 − T7
were tested under constant amplitude, while T8 was tes-

ted under low-high fatigue loading. EOL of the specimen

was declared when an undisclosed critical crack length was

reached. During testing, crack length was also measured

intermittently with an optical microscope. In the algorithm

training phase, measured crack lengths were only available

for specimens T1 through T6 as depicted in Figure 3. As

can be seen in this figure, the cycle at crack initiation and the

cycle at critical crack length are not necessarily the same for

all data sets. Data sets were recorded sporadically, that is not

periodically and continuously and only actuator-sensor pairs

that registered a crack were made available. Actuator-sensor

data sets, loading profile, as well as measured crack lengths

were available up to EOL for 6 specimens, that is T1 through

T6. Actuator-sensor data sets up to half of the EOL as well

as loading profile were also made available for T7 and T8.

The wave signal was 200 µs long and consists of 4000 data

points.

161mm
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Propagation

σ(t) σ(t)

Figure 2. Section of the aluminum specimen with actuator-
sensor placement

The task of the data challenge was two-fold. Firstly, crack

length estimation for the specimens T7 and T8 given the

aforementioned data sets. Secondly, crack length prediction

for both specimens, where only number of cycles for the pre-

diction horizon was given.

2.2. Crack Length Estimation

This section gives a breakdown of the process followed to

obtain crack length estimates for the provided specimens and

exemplarily for specimen T4.

2.2.1. Data Preprocessing

As with most sensor measurements, the provided wave signal

measurements were inherently noisy and hence could not be

used in the raw form to extract useful information pertaining

to the condition of the system. Figure 4(a) depicts the noisy

raw sensor signals exemplarily for specimen T4. The raw

signals were filtered with the morlet wavelet family of the

scaled continuous wavelet transform (CWT), given that the
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Figure 1: (a) constant amplitude loading and (b) low-high block loading
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Figure 3: Actual measured crack lengths and respective cy-
cles for specimens T1− T6

shape of the mother wavelet is consistent with the shape of

the excitation. The extracted scales correspond to the signal

frequency range 160kHz - 235kHz. Apart from signal denoi-

sing, other preprocessing steps included outlier removal and

mean normalization of the sensor signal.

2.2.2. Feature extraction and selection

The presence of a crack in a structure generally affects the vi-

bration properties of the structure, that is modal and/or struc-

tural properties. The structural properties include the mass,

stiffness and the damping. The modal properties include the

natural frequencies and the mode shapes (Kindova-Petrova,

2014). To analyse these influences, a total of 24 characteris-

tic features were extracted in the time-, frequency- and time-

frequency domain from the preprocessed wave signals.

Time domain

Statistical features were extracted in the time domain of the

200 µs sensor wave signal. A majority of the extracted fea-

tures from the preprocessed 200 µs sensor wave signal did

not show distinctive monotonic trends reflecting crack ini-

tiation and propagation. Considering the wave propagation

velocity and subsequently the time of flight of the wave, only

a section of the signal was thereafter considered. Concretely

only about 20 µs time signal segment as exemplarily depicted

in Figure 4(b) was then employed to extract the undermenti-

oned features. Some of the extracted features are briefly des-

cribed below.

Peak value: as evident from Figure 4(b), the peak value de-

creases as the crack size increases. Two phenomena can ex-

plain the decrease in maximum amplitude of the signal, na-

mely, the attenuation effect of crack development on the wave

propagation and scattering and the stiffness reduction as a re-

sult of crack growth, which implies higher damping.

Peak-to-peak: also known as peak-to-valley value is defined

as the difference between the maximum and minimum ampli-

tude value. For a symmetric wave signal with a zero mean,

it is twice the peak value. It was considered because the ana-

lysed wave was not symmetric for all provided specimens,

particularly as crack developed.

The RMS has often been employed for diagnosis of various

technical systems such as a gearbox (Večeř, Kreidl, & Šmı́d,

2005). It is said to describe the energy content of a signal.

Its value decreased as the crack size increases, also due to

the effect of crack development on the wave propagation and

scattering.

Relative time at peak value: to capture the phase shift, the re-

lative time at peak value, that is the time difference between

the actuator and sensor signal was evaluated. As can be seen

in Figure 4(b), there is a slight shift of the maximum ampli-

tude to the right as the crack size increases, which implies a

(a) (b)

No. of Cycles : Crack length

Figure 4: Specimen T4 (a) raw wave signal (b) analysed preprocessed time segment
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retardation of the wave propagation velocity through the crac-

ked aluminium material and thus leading to an increase in the

time of flight. However, this feature was not robust because

this trend was not clear and consistent in all considered spe-

cimens.

Statistical moments: the variance, skewness and kurtosis are

the second, third and fourth centralized moment of a signal re-

spectively. They are measures to describe distributions. The

skewness describes the shape, while the kurtosis describes the

peakedness or flatness of a distribution. These measures and

particularly the kurtosis has been found to be a useful condi-

tion indicator (Večeř et al., 2005).

Mean absolute deviation (MAD): as the name implies, it gi-

ves the absolute deviation around the mean of a signal. It

was found to pronounce the similarity characteristics between

specimens as highlighted in Table 1. The values within the ta-

ble are normalized in the range [−1, 1].

Frequency domain

In the frequency domain, the presence or appearance of high

resonant frequencies as crack develops as well as possible

change in amplitude and frequency shifts were analysed. The

analysis of high resonant frequencies did not yield any discer-

nible feature. This is possibly attributable to sensor charac-

teristics, such as measurement frequency range. There was

noticeable decrease in amplitude in certain frequencies. Ho-

wever, to reduce possible feature redundancy, this feature was

not further considered given that it has been considered in the

time domain.

Time-frequency domain

In the time-frequency domain, the bior3.7 mother wavelet of

the wavelet packet decomposition (WPD) was employed to

decompose the signal up to three levels. The wavelet energy

was thereafter obtained from the wavelet coefficients.

2.2.3. Mapping features to crack length

The mapping of features to crack length is considered here

as a supervised machine learning task. That is, machine lear-

ning algorithms are fed the aforementioned features as inputs

and actual crack lengths as targets in the training phase to

learn the underlying relationship between features and crack

lengths. This learned model is employed in the test and vali-

dation phase to output crack lengths given features as inputs.

The training, test and validation phase implies data partitio-

ning. Thus, the extracted features and actual crack lengths

of the specimens T1, T3 and T4 were utilised for algorithm

training and testing. The extracted features and actual crack

lengths of the specimens T2, T5 and T6 were used for algo-

rithm validation, given that T2 and T5 only had three to four

data points, with two non-zero crack length values as evident

from Figure 3. The inputs were min-max normalized, such

that the inputs fall within the range [−1, 1]. Three algorithms

were employed for this task because they have successfully

found application to other problems (Kimotho, 2017), each

with its strengths. These algorithms are briefly described be-

low:

Extreme Learning Machines (ELM)

The ELM is a learning algorithm for a special class of neural

networks, that is the single hidden layer feed-forward neu-

ral network. Only the output weights are adjusted while

the input weights and hidden nodes are randomly genera-

ted. Thus eliminating the need for exhaustive search of the

optimal amount of neurons, which makes the ELM extre-

mely fast. Given data samples, the number of hidden no-

des Ñ and activation function g(x). The weight matrix β

connecting the Ñ hidden nodes to the output nodes, is cal-

culated while minimizing the error: min
β

‖Hβ − T ‖, where

H is the hidden layer output matrix and ‖·‖ is the Frobe-

nius norm. The optimal solution is achieved by β = H†T ,

where H† is the Moore-Penrose generalized inverse of H

(Huang, Huang, Song, & You, 2015). The activation function

g(x) employed here is the radial basis function (RBF) be-

cause it was found to yield the best performance according

to Kimotho (Kimotho, 2017). Other activation functions in-

clude sigmoid function and hard limit function (Huang et al.,

2015).

The hyper-parameters initialised during the training of the al-

gorithm were the free parameter of the RBF, and the regula-

rization coefficient, which regularizes the output weights to

improve generalization.

Support Vector Regression (SVR)

SVR is an adaptation of the Support Vector Ma-

chine (SVM), which was originally developed for

classification problems, to solve regression pro-

blems (V. Vapnik, Golowich, & Smola, 1997; V. N. Vapnik,

1998). The underlying theory of SVR is finding the weig-

hts w and bias b that minimizes the so-called risk with an

ε-insensitive loss function, which accepts deviations within

an ε-bound and penalises error otherwise. SVMs adopts the

structural risk minimization principle, that is the simultane-

ous minimization of the empirical risk as well the so-called

Vapnik–Cervonenkis (VC)-dimension, leading to better ge-

neralization performance (L. Wang, 2005). Kernel functions

are typically employed to map possibly non-linear inputs to

higher dimensional feature space (V. N. Vapnik, 1998). The

RBF kernel and LIBSVM MATLAB® toolbox as implemen-

ted by Chang and Lin (Chang & Lin, 2011) was adopted

in this paper. Other kernel functions are a linear kernel, a

polynomial kernel of degree d and a sigmoid kernel, etc. each

with kernel-specific parameters.

The LIBSVM MATLAB® toolbox requires a set of hyper-
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parameters, such as the type of SVM, kernel type, kernel pa-

rameters and cost C. There are two SVM types implemented

for regression, the epsilon-SVR (ε-SVR) and the nu-SVR

(ν-SVR). The ε-SVR implementation utilises an ε-parameter,

which is the aforementioned error tolerance ε. On the con-

trary, in the ν-SVR implementation, the ν-parameter not only

places a bound on the admissible errors and support vectors,

but also finds optimal ε (Chang & Lin, 2011). Its value ran-

ges from zero to one, that is ν ∈ (0, 1].

Random Forest (RF)

A RF as introduced by Leo Breiman (Breiman, 2001) is an

ensemble of decision trees, each consisting of an independent

and identically distributed (i.i.d.) random vector, for classi-

fication and regression. Each tree of the ensemble is con-

structed from a bootstrap sample (Efron & Tibshirani, 1991),

that is a random sample drawn with replacement from the

original data, and each non-leaf node of the tree is split by

randomly selecting a subset of the features as best split. The

trees are recursively grown till a predefined number of data

points per leaf or a maximum number of leaf nodes is rea-

ched. The predictions of each tree are averaged to obtain a

global prediction (Breiman, 2001; Cutler, Cutler, & Stevens,

2012).

The MATLAB® implementation of the random forest1 by

Jaiantilal (Jaiantilal, 2010) was adopted in this paper. The

hyper-parameters includes but are not limited to the number

of random samples mtry and the number of trees ntree. Also

adapted was the nodesize, which gives a lower bound on the

amount of terminal nodes. During training, min-max norma-

lization had a rather negative impact on the predictions, so the

inputs were not normalized contrary to the previous techni-

ques.

The hyper-parameters for all described techniques were tu-

ned with the differential evolution and particle swarm opti-

mization successively (Kimotho, 2017). After training the

aforementioned algorithms, the validated models were then

employed as an ensemble to estimate the crack lengths for

specimens T7 and T8 . The results of the estimation appen-

ded with the results of the next task can be found exemplarily

in Figure 5.

2.3. Crack Length Prediction

After estimating the crack lengths for specimens T7 and T8,

the next task is the crack length prediction for both specimens

where only number of cycles for the prediction horizon was

given. Several techniques ranging from naive to sophisticated

methods are employed in comparison for this task. They are

presented in the following subsections.

1Originally implemented by Leo Breiman and Adele Cutler in For-
tran (Breiman & Cutler, 2004) and ported in R by Andy Liaw and Matthew
Wiener (Liaw, Wiener, et al., 2002)

2.3.1. Forecasting by Analogy

Forecasting by analogy or forecasting through similarity me-

asures implies that a new specimen, that is, T7 or T8 is si-

milar to some extent or follows the same crack length growth

trend as previous specimens, that is, T1 − T6. This forecas-

ting approach finds application where there is little data sets

and data points and where there is not a common model that

covers the historical data sets. Several characteristics were

compared such as the extracted features as well as the sam-

pling interval, which suggests same crack propagation rate.

For example, it was found that the specimens T7 share simi-

lar characteristics with T4 not only because their sampling

intervals were similar but also because several features and

most especially the value of MAD were similar as seen in Ta-

ble 1. Figure 5 depicts the result of T4 to forecast the crack

lengths for T7 for the prediction horizon under the assump-

tion of the same rate of change. The result could be minimally

improved by considering the mean of T1 and T4.

2.3.2. Forecasting by Analytical Function Fitting

Several analytical functions such as linear, polynomial, expo-

nential, etc. were fitted to historical data to describe the crack

growth trend. An analytical function that relates the cycles

to crack length can be evaluated for arbitrary points. For the

prediction horizon, the analytical function can then be extra-

polated beyond available data points, that is cycles outside

the fitted range. Given the variability in the presented his-

torical data sets, a general path model that describes all the

crack growth trends could not be adopted. However, with the

already highlighted similarity between T7 and T4, the crack

lengths for T7 could be predicted with the five parameter ex-

ponential model as in equation 1 fitted with T4.

f(cycle) = α+ β · e(γ·cycle) + δ · e(κ·cycle) (1)

The parameters α, β, γ, δ and κ were found through optimi-

zation by minimizing the sum of squared deviations. The re-

sult of the application of this forecasting method can be found

in Figure 6.

2.3.3. Exponential Smoothing

The exponential smoothing as the name suggests is a smoo-

thing function. It has mostly found application in PHM-

related literature as a data smoothing or noise filtering techni-

que. Beyond noise filtering, it is a well-established time

series forecasting approach. The underlying principle of

the exponential smoothing forecasting approach is that ne-

wer data points of a time series are more relevant than ol-

der points of the series, thus more weights are assigned to

newer points (Hyndman & Athanasopoulos, 2018). There

are three main types of exponential smoothing methods, na-

mely single, double and triple exponential smoothing met-

hod, depending on the time series components been model-
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Table 1. Mean absolute deviation (MAD) over all specimens

T1 T2 T3 T4 T5 T6 T7 T8

Cycle MAD Cycle MAD Cycle MAD Cycle MAD Cycle MAD Cycle MAD Cycle MAD Cycle MAD

50000 n/a 50000 0.00 14000 n/a 55900 0.88 42000 −0.60 55000 0.93 36001 0.89 40000 1.00

60000 0.30 70033 −0.58 50000 0.65 60200 0.77 46000 n/a 60078 0.71 40167 0.79 50000 0.93

62500 0.33 72000 −0.94 57038 0.61 65001 0.57 51000 −0.82 68091 0.59 44054 0.54 70000 0.68

65500 0.50 60035 0.57 67054 0.30 56000 −1.00 69018 0.30 47022 0.37 74883 0.69

69025 −0.04 62017 0.34 70016 0.02 72516 0.20 49026 76931 0.59

70026 −0.20 64019 0.07 71130 −0.33 73211 0.04 51030 89237

70766 −0.61 65029 −0.09 73210 −0.61 53019 92315

66012 −0.32 75045 −0.75 55031 96475

66510 −0.44 98492

100774

led. The single exponential smoothing method applies a

single smoothing parameter. It is best employed when the

data does not have a trend. The double exponential smoo-

thing method, also known as Holt’s linear method, is an

extension of the foregoing method to account for multipli-

cative or additive trend, which can be damped. This met-

hod was further extended by Holt and Winter to account

for seasonality, leading to the triple exponential smoothing

method. The exponential smoothing is also coined ETS,

from the initials of the three time series components that is

Error or residual component, T rend and Seasonal compo-

nent (Hyndman & Athanasopoulos, 2018).

As with most time series forecasting method, exponential

smoothing is formulated for forecasting evenly spaced time

series. The presented data did not possess a constant sam-

pling interval as previously mentioned. Several techniques

exist for dealing with unevenly spaced time series data. Ho-

wever, the transformation from unevenly- to evenly-spaced

time series via interpolation was employed here. Several in-

terpolation schemes such as cubic and linear scheme were

evaluated. Linear interpolation was chosen because there

was not a noticeable advantage of any other scheme over

this scheme for the short time series with 4 or 5 data points

for T7 and T8 respectively. The Holt Winters exponential

smoothing method as implemented in the time series analy-

sis Python package (statsmodels.tsa) was employed in

this paper. The function input parameters were found through

grid search as proposed by Brownlee (Brownlee, 2018). The

hyper-parameters smoothing level α, smoothing slope β, and

smoothing seasonal γ all in the interval (0, 1] were found via

the Limited-memory Broyden-Fletcher-Goldfarb-Shanno op-

timization algorithm (L-BFGS) in the scipy optimization Py-

thon package (scipy.optimize.minimize) while minimi-

zing the mean squared logarithmic error. Figure 7 depicts the

results obtained by applying this forecasting approach.

2.3.4. Long Short-Term Memory

Long short-term memory (LSTM) is a widely employed type

of recurrent neural network (RNN) for processing sequential

data and particularly for time series forecasting. It was de-

veloped to overcome the drawback of the traditional RNN,

that is, its inability to handle long time dependencies. The

network topology consists of an input layer, a hidden and an

output layer. As opposed to the traditional neurons, the hid-

den layers contain so-called memory cells and corresponding

input and output gates. Long- or short-term information are

stored in memory cells. The input and output gates deter-

mine what information is stored or removed from the memory

cells and controls the access to and from connected memory

cells (Hochreiter & Schmidhuber, 1997).

According to Brownlee (Brownlee, 2018), there are four clas-

ses of LSTM models for time series forecasting, depending

on the number of time dependent variables and the forecas-

ting task. They are univariate, multivariate, multi-step and

multivariate multi-step LSTM models. The task at hand is

a multi-step ahead prediction task, thus the multi-step LSTM

model and specifically the Stacked LSTM was used here. The

linearly interpolated data was split in train and test data sets

and formatted accordingly as input and output for the net-

work. The employed Python’s Keras sequential LSTM model

was optimized with the adaptive moment estimation (Adam)

optimizer while minimizing the mean squared error. The re-

sults obtained by applying this forecasting approach can be

found in Figure 8.

2.4. Performance Evaluation

There are several measures to evaluate the perfor-

mance of predictive methods. For the 2019 data chal-

lenge (PHM Society, 2019), the cumulative penalty score

was formulated to evaluate the performance of the presented

methods. It is the sum of the products of the time, asym-

7



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

metric and monotonicity penalty functions, which are briefly

described below.

Time penalty function: because of the dire consequences

that a critical crack length might have, prediction error incur-

red at the end of life are heavily penalized than error incurred

at the initial stages of crack growth. It is mathematically ex-

pressed as:

T (i) = α+ β · ãi, (2)

where i = 1, · · · , n and n is the cardinality of the set of all

predictions. α = 2 and β = 10 are arbitrary constants and ã
is the normalized crack length and it is given as:

ã =
actual crack length, a

critical crack length, acrit.
. (3)

Although the predictions are not explicitly considered in the

formulation, the time penalty function produces multiplica-

tive weights that have impact on the cumulative penalty score.

Asymmetric penalty function: crack length underestimation

implies a conservative estimate. For safety critical systems,

such conservative estimates could lead to catastrophic events.

Thus, this function penalizes crack length underestimation

more than overestimation. It is formulated as:

A(i) =





exp

{
|ãpi − ãi|

γ

}
− 1, if (ãpi − ãi) ≥ 0

exp

{
|ãpi − ãi|

δ

}
− 1, otherwise

(4)

where ãi and ãpi are actual and predicted crack lengths nor-

malized as in equation 3, γ > δ > 0. γ = 0.5 and δ = 0.2
are arbitrary constants. i = 1, · · · , n and n is the cardinality

of the set of all predictions.

Monotonicity penalty function: given that degradation typi-

cally follows a monotonic trend, this function penalizes cases

which deviates from this trend. It is given as:

M(i) =

{
1 + ω · (|ãpi − ãpi−1|), if (ãpi − ãpi−1) < 0

1, otherwise
(5)

where ãp is the predicted crack length normalized as in equa-

tion 3, ω = 10 is an arbitrary constant. i = 1, · · · , n and n is

the cardinality of the set of all predictions.

The cumulative penalty score CPS with the range [0,∞)
then becomes:

CPS =

n∑

i=1

T (i) ·A(i) ·M(i). (6)

Given that the components of the cumulative penalty score all

have arbitrary constants that impose the weights on the score,

it is difficult to interpret the results and also to apply this me-

tric to other problems. Thus, among other known measures,

the mean absolute error (MAE) metric was also employed to

evaluate the performance of the methods. MAE is a metric

employed to evaluate the average absolute deviation of the

predicted from the actual crack length over the prediction ho-

rizon. It is calculated as:

MAE =
1

n

n∑

i=1

|api − ai|, (7)

where ai and api are actual and predicted crack lengths re-

spectively. i = 1, · · · , n and n is the cardinality of the set

of all predictions. Table 2 shows the results of the perfor-

mance evaluation based on the cumulative penalty score and

the MAE for the presented forecasting methods.

2.5. Results and Discussion

As can be deducted from Table 2, the forecasting method

via analytical function fitting outperforms the other methods

for T7. However, this method is deterministic and not ea-

sily transferable for new unseen cases as in the case for T8.

It should be adopted if viable historical data sets, consisting

possible degradation modes and trends exist. Forecasting by

analogy and specifically the rate of change method is the first-

choice forecasting method when presented with very little

data sets. It is computationally inexpensive, and it produ-

ces reasonable results and for T8 even the best cumulative

penalty score. Exponential smoothing method builds on past,

possibly evenly spaced data points and produces conserva-

tive predictions. The training of the LSTM method was time

consuming and as a machine learning technique, it could be

computationally expensive. However, it outperforms the ot-

Table 2. Performance of the proposed forecasting approaches
based on CPS and MAE for specimens T7 and T8.

T7 T8

Forecast by Analogy / rate of change
CPS 9.58 25.76

MAE 0.48 0.76

Forecast by Analytical Function Fitting
CPS 5.50 147.55

MAE 0.28 0.94

Exponential Smoothing
CPS 16.87 35.93

MAE 0.34 0.62

LSTM
CPS 9.73 27.58

MAE 0.46 0.58
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Figure 5: Results obtained via forecasting by analogy for (a) T7 and (b) T8
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Figure 6: Results obtained via analytical function fitting for (a) T7 and (b) T8
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Figure 7: Results obtained with Holt Winters exponential smoothing method for (a) T7 and (b) T8
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Figure 8: Results obtained with long short-term memory LSTM for (a) T7 and (b) T8
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her methods for T8 while considering the MAE. As can cle-

arly be seen, the presented methods underperform for T8 in

comparison to T7. This is attributable to the loading con-

dition variation, that is, the low-high amplitude loading si-

tuation as opposed to the constant amplitude loading for the

presented test data sets T1 through T6 and also specifically

for T7. In summary, the choice of the method depends on the

goal to be achieved, the amount and quality of data and the

amount of variability.

3. CONCLUSION

Several time series forecasting methods were presented in

this paper. As a case study, these methods were success-

fully employed to predict the crack lengths of riveted alu-

minium specimens given limited historical data and lack of

domain specific data. The case study data set was provi-

ded by the PHM-society at the conference’s 2019 data chal-

lenge (PHM Society, 2019), where the tasks were to estimate

and predict the crack lengths for the specimens T7 and T8
based on specimens T1 through T6.

From the presented results in Section 2.5 and specifically Ta-

ble 2, it can be concluded that forecasting by analogy and via

rate of change method outperforms the other presented met-

hods, while considering the combined CPS for both speci-

mens T7 and T8. Although only evaluated on the case study

data set, the presented methods are easily transferable to other

prediction problems.

As a future outlook, the presented exponential model can be

incorporated in Bayesian-based algorithms such as widely

employed Kalman or particle filter (Bender & Sextro, 2018)

to account for uncertainties and model variations, provided

more knowledge about the data generating processes is avai-

lable. Further case studies also based on real-world data sets

are required and planned to further evaluate the application

of the presented methods for reliable prognostics of technical

systems.
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Večeř, P., Kreidl, M., & Šmı́d, R. (2005). Condition indi-
cators for gearbox condition monitoring systems. Acta
Polytechnica, 45(6).

Virkler, D. A., Hillberry, B. M., & Goel, P. K. (1979, 04). The
Statistical Nature of Fatigue Crack Propagation. Jour-
nal of Engineering Materials and Technology, 101(2),
148-153. doi: 10.1115/1.3443666

Wang, L. (2005). Support vector machines: Theory and ap-
plications (Vol. 177). Heidelberg, Germany: Springer
Berlin.

Wang, P., & Vachtsevanos, G. (2001). Fault prognos-
tics using dynamic wavelet neural networks. Arti-
ficial Intelligence for Engineering Design, Analysis

and Manufacturing, 15(4), 349–365. doi: 10.1017/
S0890060401154089

BIOGRAPHIES

Osarenren Kennedy Aimiyekagbon holds a bachelor’s de-
gree in engineering informatics with a major in mechanical
engineering and a master’s degree in mechanical engineering
with a major in computer science both from Paderborn Uni-
versity. Since 2018, he is with the Chair of Dynamics and
Mechatronics, Paderborn University. His research focuses on
prognostic and health management of mechatronic systems.

Amelie Bender studied mechanical engineering at RWTH
Aachen University and Newcastle University, Australia.
Since 2015, she is with the Chair of Dynamics and Me-
chatronics, Paderborn University. Her research focuses on
prognostic methods, especially PoF-based methods.

Walter Sextro studied mechanical engineering at the Leibniz
University of Hanover and at the Imperial College in Lon-
don. After his studies, he was development engineer at Baker
Hughes Inteq in Celle, Germany and Houston, Texas. He
was awarded the academic degree Dr.-Ing. as a research as-
sistant at the University of Hanover in 1997. Afterward he
habilitated in the domain of mechanics under the topic Dy-
namical contact problems with friction: Models, Methods,
Experiments and Applications. From 2004 till 2009 he was
professor for mechanical engineering at the Technical Univer-
sity of Graz, Austria. Since March 2009 he is professor for
mechanical engineering and head of the Chair of Dynamics
and Mechatronics, Paderborn University.

11

https://www.phmdata.org/2019datachallenge/
https://www.phmdata.org/2019datachallenge/

	Introduction
	Methodology
	Data Description
	Crack Length Estimation
	Data Preprocessing
	Feature extraction and selection
	Mapping features to crack length

	Crack Length Prediction
	Forecasting by Analogy
	Forecasting by Analytical Function Fitting
	Exponential Smoothing
	Long Short-Term Memory

	Performance Evaluation
	Results and Discussion

	Conclusion
	References

