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ABSTRACT 

As relevant aspects of PHM, feature extraction and 
diagnostics represent the focus of many paper related to 
predictive maintenance. Feature extraction is a fundamental 
part in PHM, as the accuracy of diagnostic models strongly 
depends on the goodness of the features. In particular, it is 
performed when components or systems are provided with 
many sensors, in order to extract relevant and non-redundant 
information from the raw dataset. Diagnostic is a typical 
pattern recognition problem, in which the data are classified 
according to the operating or fault condition they refer. Thus, 
to obtain the Remaining Useful Life (RUL) of the 
component, usually an offline analysis, including feature 
extraction and diagnostics, is performed, whose results are 
then used for degradation modelling and finally RUL 
prediction. However, when systems do not operate in strictly 
controlled environments, as in case of industrial contexts, it 
is very challenging to obtain information about the operating 
condition at the moment of signal acquisition. This results in 
unlabeled datasets, which cannot be used by supervised 
learning algorithms, as ANNs and SVMs. In addition, 
operating conditions change over time and it is not always 
possible to know a priori all possible conditions. These 
considerations suggest to resort to streaming applications, in 
which models can directly learn from new incoming data. As 
the degradation rate may vary according to the operating 
condition, influencing the RUL prediction, one should 
always know in which condition the machinery is operating, 
or should recognize if a new condition is occurring. In 
addition, it is not possible to extract good features that 
distinguish different conditions, if a condition is not known. 
Therefore, features should be extracted in an unsupervised 
manner and incrementally, so that if a new condition occurs, 

eventually better features can be extracted. Furthermore, an 
incremental clustering should be conducted so to always 
recognize the condition under which the system is operating, 
if known, or to detect a new condition.  
In this paper, a streaming-based procedure for feature 
extraction and clustering is proposed, which is validated on a 
real industrial case study. A batch and supervised feature 
extraction and diagnostics are also performed on the same 
dataset, to demonstrate that the two approaches have similar 
results, in terms of accuracy with respect to the known 
conditions. In addition, thanks to the incremental clustering, 
the proposed approach is also able to detect and automatically 
label new machinery operating conditions.  
 

1. INTRODUCTION 

Maintenance of equipment in manufacturing companies is 
assuming a more and more crucial role in the minimization 
of the life-cycle cost of their systems. Contrary to the past, 
the role of maintenance is not only to repair failed assets, but 
also to achieve the optimum availability, the optimum 
operating conditions, the maximum utilization of resources, 
the optimum equipment life, the minimum spares inventory 
and last but not least the ability to react quickly (Mobley, 
2002). For more critical components, preventive strategies, 
like Condition-Based Maintenance (CBM) could be replaced 
by Predictive Maintenance (PM) strategies, that not only aim 
to isolate and identify a certain failure, as CBM, but also aim 
to know when a system will fail in advance, so to plan 
maintenance interventions and spare parts supplying with 
sufficient time (Nguyen & Medjaher, 2019). Thus, PM can 
be viewed as an evolution of CBM, that adds to the typical 
activity of CBM, i.e., data acquisition, feature extraction and 
diagnostic, also the prognostic task, whose aim is to predict 
the Remaining Useful Life (RUL) of monitored components 
(Jardine, Lin & Banjevic, 2006).  
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As one of the pillars of the fourth industrial revolution, PM 
also experiences the adoption of technologies from different 
domains, including Internet of Things (IoT), Edge 
Computing and Cloud Computing (Katona & Panfilov, 
2018). The Industrial Internet of Things (IIoT) let each asset 
in the industrial plant be connected and communicate with 
other assets. Sensors installed on equipment can send the data 
to a cloud, where Machine Learning  (ML)-based software 
are run  in order to provide information about the health status 
of connected equipment. Basically, Cloud Computing, as a 
centralized service provider, makes possible to gather in a 
unique “place” data from all sensors spread in the industrial 
plant, enabling the sharing of information among the assets 
and the construction of an integrated knowledge of the entire 
plant. However, the high number of sensors increases the 
amount of the generated data, the transmission bandwidths 
and consumed power, the storage spaces and computation 
resources of cloud services (Qian, Lu, Pan, Tang, Liu & 
Wang, 2019). In addition, the data transmission from devices 
to the cloud put not trivial challenges from the privacy point 
a view. These reasons make attractive to perform data storage 
and processing directly at the edge of the network. Edge 
Computing allows to reduce the peaks in traffic flows, the 
bandwidth requirements of the centralized network and the 
transmission latency during data computing and storage, 
enabling real-time collection and analysis of the information 
and providing short upload time of massive data (Yu, Liang, 
He, Hatcher, Lu, Lin & Yang, 2018). However, because of 
the limited storage capacity of edge devices, several edge 
nodes will be used and coordinated for storing data, 
increasing the complexity of the data management. The 
integration of Cloud and Edge computing in a structure that 
locally processes high-priority tasks and delay-sensitive tasks 
while processes low-priority and delay-tolerant tasks in the 
cloud could represent the optimal infrastructure for PM 
applications (Calabrese, Regattieri, Botti & Galizia, 2019), 
(Angelopoulos, Michailidis, Nomikos, Trakadas, 
Hatziefremidis, Voliotis, & Zahariadis, 2020).  
Prognostic Health Management (PHM) is a step-wise process 
for the realization of PM. Based on this approach, signals are 
first collected from critical components, in each possible 
operating and fault conditions; then, relevant and redundant 
features the best distinguish the health condition from the 
faulty ones and a monotonic Health Indicator (HI) that reflect 
the degradation process are computed for diagnostic and 
prognostic purposes, respectively; then, diagnostics is 
conducted to find the relationships between the feature space 
and the health conditions, so to be able to classify next 
observations; finally, prognostics is conducted based on the 
extracted HI, in order to predict the RUL of the component 
(Lei, Li, Guo, Li, Yan & Lin, 2018).  
Once diagnostics and prognostics models had been trained on 
historical data, they can be applied to streaming data at the 
edge, taking the advantage of cloud services when necessary. 
In this way, it is possible to obtain a real-time feedback on 
the health condition of the monitored equipment and react as 

fast as possible. Examples of edge-cloud structures for 
streaming-based PM can be found in the works by Bowden 
Bowden, Marguglio, Morabito, Napione, Panicucci, 
Nikolakis, Makris, Coppo, Andolina, Macii, Becker & Jung 
(2019), Yaseen, Swathi & Kumar, (2018), Bose, Kar, Roy, 
Gopalakrishnan & Basu (2019), by Qian et al., (2019). A 
streaming-based analysis, can also help solve two main issues 
related to the application of PHM in industrial contexts. First, 
labeled data are not always available. While it is quite easy to 
collect data corresponding to healthy conditions, it is difficult 
to get data during faulty conditions, as failures can be very 
rare or, for safety reasons, it is not possible to simulate a 
failures. As a consequence, the labeled dataset may be 
unbalanced, reducing the performance of diagnostic models. 
Second, external factors strongly affect the machinery 
functioning. Among them, you can find not only 
environmental conditions, like external temperature, 
humidity level or surrounding equipment vibration levels, but 
also the machinery operating conditions. Indeed, machinery 
can work under different settings, because of the difference 
in the processed material or in the production parameters. 
Also these conditions, as the environmental ones, cannot be 
known a priori and can evolve in time, making pre-trained 
models obsolete. In other words, industrial plants are 
inherently dynamic, which limits the simply streaming 
application of a pre-trained PHM approach even to the same 
component if it works in different places.  
To deal with these issues, unsupervised or semi-supervised 
and incremental learning can be introduced in a streaming 
analysis, in order to directly process unlabeled data and let 
models learn by themselves as a new observation is available. 
To this purpose, novelty detection algorithms assume a 
crucial role. Their aim, in a streaming analysis, is to detect a 
change in the machinery behavior and identify if the current 
condition is known or unknown. Based on the novelty 
detection algorithm results, then the activity to carry on for 
diagnostic and prognostic will be different.   
In this paper, a methodology for streaming-based PHM 
application is presented. In particular, the attention has been 
focused on the operating condition recognition problem, 
which requires an incremental feature extraction and an 
incremental unsupervised diagnostic model. Here, the 
Incremental Principal Component Analysis introduced by 
Lippi & Ceccarelli (2019), the Anomaly Detection presented 
by Costa, Angelov & Guedes (2015) and the Incremental 
Clustering presented by Gu, Angelov & Príncipe (2018) have 
been slightly modified and integrated in a unique framework 
able to select the most relevant features on-line, to detect 
anomalous behaviors and to assign each observation to an 
existing or a new cluster (operating condition). The novelty 
of the methodology, with respect to other existing 
frameworks in literature, is that it can start “from scratch” and 
no previous batch and supervised analysis is needed. This 
methodology is suitable for components that experiment a 
very slow degradation that depends on the machinery setting.  
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The remaining of the paper is organized as follows. In section 
2, the problem of operating condition recognition is defined, 
and both characteristics and requirements for tackling it in 
real industrial contexts are presented. In section 3, previous 
works related to streaming and semi-supervised analysis for 
fault/condition detection and diagnosis are reviewed and the 
mathematical formulation of the chosen algorithms is 
reported. In section 4, the proposed methodology is 
described, and the pseudo-code is also provided. In section 5, 
the proposed methodology is applied to a real industrial case, 
in order to verify its goodness in recognizing different 
operating conditions. Finally, in section 6, conclusions and 
directions of future research are provided. 

2. RELATED WORKS AND PROBLEM SETTING 

The ultimate goal of PHM is to predict the RUL of a 
component/system, in order to anticipate the occurrence of a 
failure, while maximizing its useful life. This goal is achieved 
by computing a Health Indicator (HI) from collected signals 
and building a degradation model that follows the 
degradation trend. Given the degradation model, at any point 
in time the RUL can be computed as the difference between 
the time in which the HI is expected to reach a prefixed FT 
and the current time. The essence of degradation modelling 
is to develop a “good” probability model that is able to 
describe the degradation phenomenon (Ye & Xie, 2015). In 
the data-driven approach, it can be done by resorting to 
statistical or stochastic models, whose parameters are 
estimated based on historical failures data, in order to 
minimize the Maximum Likelihood Estimation (MLE) (Ye, 
Wang, Member & Tsui, 2013), (Xia, Dong, Xiao, Du, Pan & 
Xi, 2018), (Sikorska, Hodkiewicz & Ma, 2011), (Si, Wang, 
Hu & Zhou, 2011). Adaptive degradation models have also 
attracted many researches in this filed, as they can adapt their 
parameters also based on actual data, instead of relying only 
on historical data (Zhai & Ye, 2017), (Datong, Yu & Xiyuan, 
2011).  
Machinery operating conditions (e.g., a different load, or a 
different set of temperatures) affect the degradation 
phenomenon. Operating conditions may change depending 
on the machinery user, on the material that has to be 
processed, on the environmental conditions of the industrial 
plant and on other factors. Thus, the degradation models 
should include a  different degradation rate that varies 
according to the operating condition (Moghaddass & Zuo, 
2014). For example, Bian, Gebraeel & Kharoufeh, (2015), 
assume the operating conditions to evolve as a continuous-
time Markov chain and the resulting degradation model 
parameters are updated in real-time within the Bayesian 
framework. Although that approach is highly promising, it 
still requires the total number of settings to be known a priori. 
In addition, in many cases, a subset of the acquired signals 
could define the particular condition that is implemented. A 
change in one or more variable values included in the subset 
determines a change in the machinery setting. In these cases, 

if the operating condition is known, then the corresponding 
degradation model can be selected. So, basically, the problem 
of updating degradation models based on the operating 
condition, could be reduced to a condition operating 
recognition problem, which is similar to diagnostics or fault 
detection and identification problems, where fault conditions 
are replaced by multiple normal operating conditions.  
As a pattern recognition problem, it can be faced by means of 
supervised ML models, which are trained on historical data 
related to different conditions to derive rules to classify new 
unlabeled observations (Liu, Yang, Zio & Chen, 2018), 
(Benkedjouh, Medjaher, Zerhouni, Rechak, 2013). Although 
these models work effectively in recognizing two or more 
conditions, supervised models require to know a priori all 
possible operating conditions. However, the same issues as in 
the diagnostic task, i.e., the lack of labeled data and dynamic 
nature of the industrial environments, also apply to the 
operating condition recognition problem. Thus, 
unsupervised, or semi-unsupervised and incremental learning 
may be adopted in order to process unlabeled data and create 
a new cluster each time a new operating condition occurs 
(Hu, Zhu, Cheng, He, Yan, Song, & Zhang, 2017).   
As in the supervised learning, the unsupervised learning also 
depend on the extracted features. In general, there are two 
main issues related to the choice of the most suitable features. 
The first one is connected to the frequency of the data 
acquisition (sampling). The second one is connected to the 
number of the collected signals (dimensionality reduction). 
Indeed, signals are usually collected at high frequencies, in 
the order of kilohertz, so to get as much information as 
possible. However, signals collected at high frequencies 
present a very oscillating trend, which may compromise the 
classification/clustering task. For this reason, a sampling 
activity, usually referred as feature extraction, is often 
conducted (Lee, Wu, Zhao, Ghaffari, Liao & Siegel, 2014). 
In this step, statistics of the signals in the time or frequency 
domain are computed over a time window, so to greatly 
reduce the number of data samples. Alternatively, the signal 
is transformed in the time-frequency domain, and statistics, 
as well as energy information of the signals, are extracted in 
this domain. However, this activity results in an increased 
number of variables, which may be or may not be relevant for 
the classification/clustering problem. In addition, very often 
machinery are provided with a high number of sensors, from 
which several signals can be collected. For each added signal, 
the number of extracted statistics doubles down, resulting 
often in a very high-dimensional dataset. For this reason, a 
second step, named feature selection or feature extraction is 
performed in order to transform the high-dimensional dataset 
in a lower dimensional dataset, by automatically selecting or 
extracting only relevant and non-redundant features (Hu, 
Baraldi, Di, & Zio, 2017), (Wang, Li, Jiang & Cheng, 2017).  
In our problem, even if signals representing the operating 
condition are known,  the different trends they assume in each 
condition is unknown. In particular, besides the amplitude of 
the signal, the number of signals that change also affects the 
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operating condition. Thus, all signals should be monitored 
simultaneously, increasing the complexity of the algorithm 
and limiting their processing in streaming. A synthetic feature 
(computed for instance as the mean of all the signal values) 
may be not appropriate as the signals may assume very 
similar values among each other and the synthetic value may 
result to be the same for two different settings. To clarify this 
concept, an example of signal trends in different operating 
conditions is shown in Fig. 1. Here, the mean of the three 
signals is similar for setting 2 and 3.  

 
Thus, an incremental and unsupervised feature extraction 
method, able to extract the best feature when required,  is 
needed.  
Although on-line, semi-supervised and incremental 
techniques in non-stationery or dynamic environments have 
attracted many researchers in last years, only a few works are 
related to predictive maintenance. These works are mainly 
based on the integration of novelty detection and diagnosis 
models in order to discover new scenarios, starting from data 
related to a healthy condition and some known fault 
conditions. In the work of Cariño, Delgado-Prieto, Iglesias, 
Sanchis, Zurita, Millan, Ortega Redondo, & Romero-
Troncoso (2018), an ensemble-based classifier for novelty 
detection and an evolving classifier for diagnosis are 
separately performed to a different set of features, and then 
integrated in a unique methodology, in order to discover new 
patterns in case only data related to a healthy condition are 
available. In particular, statistical features in the time domain 
are extracted from raw signals and dimensionality reduction 
techniques are applied only for the novelty detection part. In 
this work, a measurement considered unknown can represent 
an outlier, a new fault or a new operating condition. Thus, the 
intervention of a user is required to verify which of the above 
cases the novelty refers to. In the work of Cariño, Delgado-
Prieto, Zurita, Picot, Ortega, & Romero-Troncoso (2020), an 
hybrid approach is presented for multi-modal signal analysis, 
novelty detection and diagnosis, whose aim is to detect and 
incrementally include new discovered scenarios, based on 
time-frequency features. Both papers operate in a Semi-
Supervised Learning context, which basically uses limited 
labeled data to transfer their class information to unlabeled 
data. Instead, Dyer, Capo & Polikar (2014) defined a new 

scenario, named Initially Labeled Streaming Environment 
(ISLE), which is characterized by an infinite verification 
latency, i.e., no labeled data are ever received after 
initialization. In this context, they developed a new 
algorithm, named COMPOSE, which learns drifting concepts 
from a streaming non-stationary environment that provides 
only unlabeled data after initialization. COMPOSE has been 
applied to fault diagnostics by Hu, Baraldi, Di Maio & Zio 
(2017), in which a semi-supervised feature selection step is 
also presented. Based on the resulting framework, both 
gradual and abrupt changes can be detected; then, a classifier 
is updated in order to include a new class and a feature set is 
selected for the new class. However, this framework still 
requires a feature set extracted off-line and a classifier to be 
trained on labeled data. Thus, it is not appropriate in cases in 
which no labeled data is available. 
In conclusion, in case of a set of signals directly correlated to 
the operating condition (we call them characteristic signals 
from now onward) is available and collected at high 
frequency, and in case of a streaming analysis performed in 
an edge-cloud infrastructure, the characteristics and 
requirements of the condition recognition problem can be 
summed up as follows: 
1. As the characteristic signals slightly oscillate around a 

certain mean value that correspond to the set point of that 
signal, a high frequency is not needed. Thus, the mean of 
each signal, directly in the time domain, can be 
computed over a certain time window, in order to reduce 
the amount of data to process and store. 

2. A set of relevant features has to be extracted from the 
sampled characteristic signals. As it operates in an 
unsupervised and dynamic environment, the algorithm 
for feature extraction has to be incremental. In particular, 
if the condition is known, the set of relevant features is 
known as well. Thus, the algorithm can directly extract 
them.  When the condition is unknown, the set of 
relevant features is unknown too. Thus, the algorithm 
should evaluate which features are relevant.  

3. Based on the extracted features, a novelty detection 
method has needed in order to detect if a change in the 
original characteristic signals has occurred. When the 
behavior of the system changes, the algorithm has to 
recognize whether the condition is known or unknown, 
and label the observations accordingly. In particular, in 
the first case, the current observation is assigned to an 
existing cluster (that is, to one of the existing operating 
condition). In the second case, a new cluster should be 
created, and all similar observations are assigned to the 
same unknown cluster. 

4. Finally, a validation is needed. It may be performed into 
the cloud each time a new cluster is created. In particular, 
when a new condition is detected, the corresponding 
sampled characteristic signals can be temporary stored 
into the edge and then sent to the cloud. Here, a batch 
analysis can be conducted in order to extract relevant 

Figure 1. Example of a change in the signal trend 
corresponding to a change in the operating condition 
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features and initialize the corresponding cluster, so that 
the corresponding operating condition from that moment 
will be considered known.    

Here, an incremental Principal Component Analysis (PCA) 
has been chosen for feature extraction. PCs are extracted each 
time a new data is available and PCs retaining the 90% of 
variance are selected each time a new condition is detected. 
Novelty detection is performed at each observation and a 
completely unsupervised and incremental clustering 
algorithm is adopted for assigning data points to existing or 
new conditions.  

3. THEORETICAL BACKGROUND 

In next subsections,  the theoretical backgrounds of the 
adopted algorithms for incremental feature extraction, 
anomaly detection and incremental clustering is provided. 

3.1. Incremental PCA 

Lippi & Ceccarelli (2019) presented an exact incremental 
implementation of PCA. As the authors state, exacts means 
that it provides the same results, i.e., the same PCs as in the 
batch version. In addition, it also contains an online data 
normalization, which is fundamental when variables assume 
very different values. Basically, the difference between the 
batch PCA and its incremental version formulated in that 
paper lies in the covariance matrix computation, which is 
recursive. The steps of the algorithm are the following:  

1. The sample mean �̅�!(#)and the standard deviation 𝜎$!(#)  
are computed for each variable 𝑗	(𝑗 = 1,… ,𝑚) over the 
first 𝑛 available observations, in order to compute the 
standardized matrix 𝑍! as follows 

	 𝑍! = 0
𝑥% − �̅�!
…

𝑥! − �̅�!
2 Σ!&%	 (1)	

Where Σ! ≡ 𝑑𝑖𝑎𝑔(𝜎!) is an 𝑚×𝑚 matrix 
2. The covariance matrix 𝑄!  of the data matrix 𝑋! is 

computed as follows   

	 𝑄! =
1

𝑛 − 1𝑍!
'𝑍!	 (2)	

3. The standard diagonalization of 𝑄! is made by means of 
the eigenvector matrix 𝐶! as follows 

	 𝑄! = 𝐶!&% >
𝜆%

…
𝜆(
@ 𝐶!	 (3)	

Where  the eigenvalues 𝜆)  are put in descending order 
and express the variance associated with the ith Principal 
Component (PC), that is the ith eigenvector of 𝐶!. 

4. Finally, the time evolution of PC values until the time 
stamp 𝑛 is computed as 

	 𝑃𝐶! = 𝑍!𝐶!	 (4)	

5. At the step 𝑛 + 1, the mean and the standard deviation 
are updated and the standardized matrix 𝑍!*%  is 
computed as follows  

	 𝑍!*% = E𝑍!𝛴! + 𝛥𝑦 I 𝛴!*%&% 	 (5)	

Where 𝑦 = 𝑥!*% − �̅�!*% , Δ is a 𝑛 ×𝑚 matrix made of 
repeating 𝑛 times the vector 𝛿 = �̅�! − �̅�!*% 

6. The covariance matrix 𝑛𝑄!*% is computed ad follows 
	 𝑛𝑄!*% = 𝑍!*%' 𝑍!*%	 (6)	

Which only depends on the covariance matrix computed 
at the point 𝑛 and the new feature vector 𝒙!*%. 

7. Finally, the updated 𝑄+  are used to compute the nth 
values for the evolving PCs by means of Eq. (4).  

3.2. Anomaly Detection  

Angelov, Ramezani, & Zhou (2008) introduced for the first 
time the concept of Recursive Density Estimation (RDE) in 
the context of detection and object tracking in video streams. 
Aiming to decide whether a pixel belongs to the background 
or the foreground in real-time, the introduced approach 
basically substitutes the traditional Gaussian kernel adopted 
for modelling the pixel probability density function (pdf) 
with the Cauchy function, which allows the recursive 
estimation of pixel pdf as a new image frame occurs. In Costa 
et al., (2015), concepts of RDE theory are adopted in the 
context of online fault detection, in order to discover 
anomalous behaviors. Basically, the parameters involved are 
the global density, the mean value and the scalar product, 
which can be recursively computed by Eq. (7), Eq. (8) and 
Eq. (9), respectively. 

	 𝐷(𝒙,) =
1

1 + ‖𝒙, − 𝝁,‖- + Σ, − ‖𝝁,‖-
	 (7)	

	 𝝁, =
𝑘 − 1
𝑘 𝝁, +	

1
𝑘 𝒙,	

(8)	

	 Σ, =
𝑘 − 1
𝑘 Σ, +	

1
𝑘
‖𝒙,‖-	 (9)	

where 𝒙, ∈ ℝ! is the feature vector at the time stamp 𝑘. 
At the first iteration (𝑘 = 1), the parameters are initialized as 
𝐷(𝒙%) = 1, 𝝁% = 𝒙%, Σ% = ‖𝒙%‖-. The, for each 𝑘 > 1, the 
parameters are updated and the condition in Eq. (10) is 
checked to decide whether the current point represents an 
anomaly or not 

	

𝐼𝐹	𝐷(𝒙,) < 𝜇.	

𝑓𝑜𝑟	𝑘 = 𝑡%, … , 𝑘 − 1, 𝑘		

𝑇𝐻𝐸𝑁	𝒙,	𝑖𝑠	𝑎𝑛	𝑎𝑛𝑜𝑚𝑎𝑙𝑦	

	

(10)	

Where 
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	 𝜇. = h
𝑘𝑠 − 1
𝑘𝑠 𝜇. +	

1
𝑘𝑠 𝐷

(𝒙,)i (1

− Δ.) + 𝐷(𝒙,)Δ.	
(11)	

is the mean value of the local density computed recursively, 	
Δ. = |𝐷(𝒙,) − 𝐷(𝒙,&%)| is the absolute value of difference 
between the global density computed at two consecutive time 
stamps, and 𝑘𝑠 is the number of data samples from the last 
status change. Indeed, if the condition is satisfied, then the 
status of the system switches from normal to anomalous. and 
𝑘𝑠 is set to 0. The condition expressed in Eq. (10) basically 
means that if the global density is lower than the mean density 
for a certain number of time stamps (or seconds), then the 
status becomes anomalous. Indeed, when a new data point 
arrives, if it is close to the previous point, then 𝝁, is close to 
the 𝒙,, 𝐷(𝒙,) stays close to 1 and 𝜇. stays close to the actual 
mean of the data points, as (1 − Δ.) is very close to 1, which 
gives a more importance to the first term of Eq. (11). 
However, when the new point is far from the previous ones, 
𝐷(𝒙,)  slightly decreases, while 𝜇.  becomes closer to 
𝐷(𝒙,), as the term Δ. gives more importance to the second 
term of Eq. (11). As new points are closer to the previous 
point, then 𝐷(𝒙,) continue to decrease until the condition in 
the Eq. (10) is satisfied. Note that, when the status changes 
from normal to anomalous, 𝑘𝑠  is set to 0, leading 𝜇.  to 
notably decrease. When the mean density is lower than the 
global density for a certain number of points, or seconds, then 
the status returns to be normal. Thus, the condition expressed 
by Eq. (12) applies:  

	

𝐼𝐹	𝐷(𝒙,) > 𝜇.	

𝑓𝑜𝑟	𝑘 = 𝑡-, … , 𝑘 − 1, 𝑘		

𝑇𝐻𝐸𝑁	𝒙,	𝑖𝑠	𝑛𝑜𝑟𝑚𝑎𝑙	

(12)	

Note that, both 𝑡% in Eq. (10) and 𝑡- in Eq. (12) are set by the 
user and may represent either the data samples or seconds. 

3.3. Clustering 

Based on the concepts of RDE, a clustering algorithm has 
also been introduced in Gu et al., (2018), in both offline and 
online version. Here, the online version will be briefly 
described. At the first iteration (𝑘 = 1) the local parameters 
of each cluster are initialized as follows 

	 𝐶, = 1;	𝝁,% = 𝒙%; 	𝑆,% = 1	 (13)	

Where, 𝐶/  is the cluster at the time stamp 𝑘 = 1, 𝝁%% is the 
focal point of cluster 1 at the time stamp 𝑘 = 1, and 𝑆%% is the 
number of data points belonging to the cluster 1 at the time 
stamp 𝑘 = 1. In addition, the global parameters expressed by 
Eq. (8), Eq. (9) are also initialized. Then, for each 𝑘 > 1,  

1. The mean value 𝝁,  and the scalar product Σ,  are 
updated by means of Eq. (8) and (9), respectively.  

2. The condition expressed by Eq. (14) is checked to decide 
whether the current point has to be assigned to an 
existing cluster or should be a new focal point itself 

	

𝐼𝐹	𝐷(𝒙,) > max
)0%,…,3!

𝐷,p𝝁,) q 	𝑂𝑅	𝐷(𝒙,)

< min
)0%,…,3!

𝐷,p𝝁,) q	

	𝑇𝐻𝐸𝑁	𝒙,	𝑏𝑒𝑐𝑜𝑚𝑒𝑠	𝑎	𝑛𝑒𝑤	𝑓𝑜𝑐𝑎𝑙	𝑝𝑜𝑖𝑛𝑡	

(14)	

The condition expressed in Eq. (14) means that if the 
global density is greater than, or lower than, the densities 
computed at each of the existing focal points (the density 
of each cluster), then the current point creates a new 
cluster.  

3. If Eq. (14) is satisfied, then a new cluster is created, 
whose parameters are initialized by means of Eq. (15) 

	 𝐶, = 𝐶,*%; 	𝝁,
4! = 𝒙,; 	𝑆,

4! = 1	 (15)	

4. Otherwise, the distance between the current feature 
vector 𝒙, and the focal point of each existing cluster is 
computed, in order to decide whether the current point 
can be assigned to the closest cluster, by means of Eq. 
(16) 

𝐼𝐹	‖𝒙, − 𝝁,!‖ < {Σ, − ‖𝝁,‖-	

	𝑇𝐻𝐸𝑁	𝒙,	𝑖𝑠	𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑	𝑡𝑜	𝝁,!	
							(16)	

Condition expressed by Eq. (16) means that if the 
distance between the current point and the nearest focal 
point  𝝁,!  is lower than the distance among all points 
arrived until the current stamp, then the current point is 
assigned to the nearest cluster.  

5. If the condition expressed by Eq. (16), then the 
parameters of the closest cluster 𝐶,5  are updated by 
means of Eq. (17) 

	 𝝁,5 =
𝑆,5 − 1
𝑆,5

𝝁,5 +	
1
𝑆,5
𝒙,; 	𝑆,5 = 𝑆,5 + 1	 	(17)	

4. THE PROPOSED METHODOLOGY 

In this section, a new methodology to perform streaming 
feature extraction and condition recognition is presented. It 
gathers in a unique algorithm the three models described in 
the previous section, which have been modified in order to be 
applied to the problem stated in Section 2. The goal of the 
proposed methodology is twofold: first, to recognize, in real-
time, the occurrence of a change in the operating condition of 
the monitored machinery; second, to group similar 
observations representing the same operating condition, both 
known and unknown. The main assumptions are the 
following: 
1. If a data point (i.e, a feature vector) is considered 

anomalous and creates a new cluster, then the system has 
entered an unknown operating condition.  



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020 

7 

2. If the point is anomalous and is assigned to an existing 
cluster, that is different from the current cluster, then the 
system has entered a known operating condition.  

3. If an anomaly is detected, but the data point is assigned 
to the current cluster, then the operating condition has 
not changed, and the anomaly can be ignored (for 
instance, because it corresponds to a measurement error).  

To achieve the above mentioned goals, the methodology 
starts from data collection and performs, as data becomes 
available, feature extraction, anomaly detection and 
clustering, as described in the previous section. Feature 
extraction is made of two steps: sampling and dimensionality 
reduction. The sampling step is performed after a certain 
number of observations is available, or a certain time has 
passed, in order to extract one or few more values (features) 
from a signal segment of a certain length. The dimensionality 
reduction is performed after the sampling step. Thus, each 
time the set of features extracted from all characteristic 
signals is available, the IPCA is triggered, so to extract a 
subset of relevant features, based on the actual sampled 
signals. Finally, the anomaly detection and the clustering 
algorithms are applied to the last extracted subset of features, 
in order to evaluate whether it is anomalous and group it 
accordingly. There are several decisions to take before 
applying the above described methodology.    
First, the length of the signal segments, 𝑡+, from which the 
features have to be extracted for the sampling purpose. It 
depends on how the signal evolves over time (for example, 
for rotating components, it may be equal to, or a multiple of, 
the rotation frequency) and on how quickly the feedback is 
needed.  
Second, which features to extract from the signal segments. 
It depends on the kind of component and collected signals. 
For vibrations collected from rolling bearings, one can think 
to transform the signal into the time-frequency domain and 
extract the energy of the signal (Calabrese, Gamberi, 
Margelli, Pilati & Regattieri, 2019). For other kinds of 
signals, such as temperatures or pressures, features may be 
extracted directly in the time domain.   
Third, the number of iterations 𝑛 needed for the initialization 
of the covariance matrix 𝑿! and the first PCs.  
Finally, the values of 𝑡% and 𝑡- , which are used by the 
anomaly detection algorithm for determining whether the set 
of extracted features is anomalous or not (Eq. (10) and Eq. 
(12)). These values depend on how rapidly the changes in the 
machinery behavior are expected to occur and how rapidly 
the system is expected to react. The higher the above two 
needs, the lower 𝑡% and 𝑡-  should be. However, the lower 
𝑡% and 𝑡- . the more sensitive the methodology is to 
measurement errors or point anomalies.  
Once the above input parameters have been set, then the 
following step-by-step methodology can be applied, whose 
pseudo-code can be read in Fig. 2.  

1. Given the time window equal to 𝑡+, the mean value for 
each signal 𝑥#(𝑡), where (	𝑗 = 1… , 𝑝) is the number of 
the characteristic signals, is computed over 𝑡+.  

Figure 2. The Pseudo-Code of the Proposed 
Methodology 

2. After 𝑛 iterations, i.e., after 𝑛 mean values are available, 
the matrix 𝑿! is obtained, where the generic element 𝒙})# 
represents the mean extracted from the original signal 
𝑗	(𝑗 = 1,… , 𝑝) after 𝑡+" time windows (𝑖 = 1,… , 𝑛).  

3. The batch PCA is then applied to 𝑿! in order to obtain 
the initial covariance matrix and the first 𝑚  PCs that 
explain the 90% of the variance are selected. The 
extracted feature vector {𝒙,}, (𝑘 = 𝑛, 𝑛 + 1,… ) 
represents the input vector for the anomaly detection and 
clustering algorithms.  

4. When 𝑘 = 𝑛 , the anomaly detection and clustering 
algorithms are triggered. Thus, the mean value, the scalar 
product and the global density are initialized as described 
in Eq. (8), Eq. (9) and Eq. (7), respectively. In addition, 
the assumption to be in a normal condition is made 
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(𝑠𝑡𝑎𝑡𝑢𝑠 = 0). The extracted feature vector {𝒙,} 𝑘 = 𝑛 
creates the first cluster, whose parameters are initialized 
based on Eq. (15).  

5. For each mean vector {𝒙})}, (𝑖 > 𝑛) , the incremental 
PCA is applied to the new matrix 𝑿)*%, which contains 
the old matrix 𝑿! and the new mean vector {𝒙})}.  
a. If a new cluster has been created at the previous 

iteration, then the 𝑚 PCs explaining the 90% of the 
variance are selected. That is, the operating 
condition has changed and the feature vector that 
best represents the new situation may change 
accordingly. Thus, the number of relevant PCs has 
to be re-evaluated.  

b. Otherwise, the same number of PCs extracted at the 
previous step is selected.  

In both cases, the feature vector {𝒙,}, 𝑘 > 𝑛, is obtained.  
6. For each {𝒙,},	 the parameters of the anomaly detection 

algorithm, i.e., the mean value, the scalar product, the 
global density and the mean density, are updated based 
on Eq. (8), Eq. (9), Eq. (7) and Eq. (11), respectively. 

7. The condition expressed by Eq. (10) is checked to 
establish whether the current point is an anomaly or not.  
a. If the global density computed at the current time 

stamp is lower than the mean density for a certain 
number of past observations (or for a certain time), 
that is, Eq. (10) is satisfied, than the current feature 
vector is an anomaly, the distance between it and the 
centers of all the 𝑁 existing clusters 𝐷,p𝝁,6 q, (𝑙 =
1,… ,𝑁) , is computed and the nearest cluster is 
identified.  
i. If the condition expressed in Eq. (16) is 

satisfied, than the point is assigned to the nearest 
cluster, whose parameters are updated by means 
of Eq. (17). This means that the anomaly 
corresponds to a change of the operating 
condition that is already known.  

ii. Otherwise, a new cluster is created, whose 
parameters are initialized based on Eq. (15). 
This means that the anomaly corresponds to a 
change of the operating condition that is 
unknown.  

b. If condition (10) is not satisfied, that is, if the global 
density computed at the current point is greater than 
the mean density for some observations in 𝑡%, then 
the current feature vector is not an anomaly and the 
point is directly assigned to the current cluster, 
whose parameters are updated by means of Eq. (17). 

8. Once a point is detected anomalous, then the system 
enters in an anomalous status 𝑠𝑡𝑎𝑡𝑢𝑠 = 1 
a. If condition expressed by Eq. (12) is satisfied, then 

the system returns to a normal status, which could 

correspond to an existing or new condition. Thus, 
the nearest cluster is found and  
i. If the condition expressed by Eq. (16) is 

satisfied, then the point is assigned to the current 
cluster, whose parameters are updated by means 
of Eq. (17). This means that the system has 
entered a known operating condition. 

ii. Otherwise, a new cluster is created, whose 
parameters are initialized by means of Eq. (15). 
This means that the system has achieved a new 
stability condition, but that is different from the 
known ones.   

b. If the condition expressed in Eq. (12) is not satisfied, 
then the point is assigned to the current cluster, 
whose parameters are updated by means of Eq. (17). 
This means that the system continues to be in an 
anomalous status and the algorithm is still not able 
to evaluate whether the operating condition is 
changing or not.   

5. CASE STUDY 

In this section, the proposed procedure is applied to a sub-
system of an automatic machinery, which has been operating 
in a real industrial context for many years. The system is 
made of two electric motors, a heated extruder and a 
volumetric pump. The inner screw is subject to a very slow 
degradation, that becomes relevant after two or three years of 
functioning. The group is provided with 30 sensors, which 
measure the temperature and the percentage of usage of 
thermo-resistors in different zones, the power and the 
velocity of the motors, as well as the input and output 
pressures of a volumetric pump, placed at the end of the 
extruder. Based on the expertise of technicians, it has been 
found that the percentage of usage of one of the electric 
motors is a good Health Indicator (HI). As it is shown in 
Figure 3, its trend is characterized by sudden jumps, which 
occur when the machinery setting changes. In addition, the 
degradation rate varies according to the specific setting.  
The operating condition is determined by a set of temperature 
values, whose actual signals are collected during the 
machinery functioning. In order to establish the operating 
condition in which the machinery is working, the proposed 
procedure introduced in the previous paragraph will be 
applied. Results will be compared with the corresponding 
batch algorithms, i.e., the PCA and most adopted 
classification algorithms in the field of diagnostics, that are 
the Support Vector Machines (SVMs) and the K-Nearest 
Neighbor (K-NN). 
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Figure 3. The Health Indicator of the monitored component 

5.1. Dataset Description 

Signals are collected in two different sources. In the first one, 
signals are acquired at a frequency of 1Hz. Each day, almost 
8 hours of data are recorded; then, files are directly 
downloaded by the PLC of machinery. The second one is a 
low-frequency data source: each day, after 30 minutes of the 
machine functioning, four different statistics over a batch of 
30 seconds for each collected signal are computed. The actual 
characteristic signals are collected in the high-frequency data 
source.  
The available dataset includes data related to two units. As 
summarized in the Table 1, the first unit was monitored for 
almost 11 months, while the second unit was monitored for 
almost 21 months. For each unit, two different settings were 
implemented. The information related to the setting change 
are summarized in Table 2. While for the first unit there is 
only a change from setting 1 to setting 2, in the second unit, 
there are two changes: from setting 3 to setting 4 and from 
setting 4 to setting 3.  
It worth to note that the data were not recorded each day. This 
situation is very common in real applications, especially 
when the implementation of a predictive maintenance 
program is in its initial phase. In addition, transients nor 
failures were recorded, and no maintenance intervention was 
realized during the considered period.    

 

5.2. The proposed methodology 

For feature extraction, 11 variables (temperatures) have been 
considered. As shown in the Figure 4, where both set value 
and actual value are depicted, the actual values of the setting 
points oscillate around the set value.  
First, a the sampling step has been conducted before 
extracting relevant features. The mean value of each variable 
is computed over a batch 1800 samples, that correspond to a 
30 minutes of data. This value has been arbitrarily chosen, 
based on the following factors: the accuracy of prediction, the 
latency of the algorithm, the memory storage of the possible 
edge device and its computational capacity. In this case, the 
batch of 1800 samples represents a good compromise among 
all these factors. However, it demonstrated to effectively 
smooth the signal with no loss of information.  

 
Figure 4. Setting: set value vs. actual value 

 
Therefore, the Incremental PCA is applied to the 11 sampled 
signals. Figure 5 shows the results of the Incremental PCA, 
compared with those obtained from a batch PCA, for unit 1 
and unit 2, respectively.  

 
Figure 5. Performance of Incremental PCA vs. batch PCA 

for unit 1 (left) and unit 2 (right) 
 
As shown in Table 3, the first four PCs extracted from the 
data related to the first unit are able to retain the 90% of the 
variance during all the analysis. The same variance is retained 
by the first five PCs for the second unit. The trend of these 
PCs are shown in Figure 6 (unit 1) and Figure 7 (unit 2).  

Table 1. Dataset Description. 
 

Unit Period of collection  Settings 
1 From 2017-10-20 to 2018-09-17 2 
2 From 2017-01-12 to 2018-09-06 2 

 
 Table 2. Setting changes. 
 

Unit Period  Setting 
1 From 2017-10-20 to 2017-11-03 1 
 From 2017-12-04 to 2018-09-17 2 
2 From 2017-01-12 to 2017-06-12 3 
 From 2017-06-12 to 2017-06-26 4 
 From 2017-06-26 to 2018-09-06 3 
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Therefore, instead of considering the eleven variables, only 
four (unit 1) and five (unit 2) PCs are necessary for condition 
recognition. Indeed, based on the extracted PCs, the proposed 
algorithm is able to correctly recognize the change of the 
operating condition, as shown in Figure 8 and Figure 9, where 
the black dots correspond to the first setting, the grey dots to 
the second setting and the red crosses represent the moment 
in which a changing behavior is detected.  As summarized in 
Table 4, in both cases, the algorithm recognizes the switch 
from setting 1 to setting 2 and from setting 3 and setting 4 
after 9 data samples. In addition, for unit 2, the algorithm also 
recognizes the switch from setting 4 to setting 3, as data 
points are assigned to the existing cluster corresponding to 
the first operating condition. 
Note that, in both cases, there are several data points 
considered anomalous. However, none of them creates a new 
cluster. These points correspond to true anomalies in the data, 
like measurement errors or anomalous peaks, which are 
evident in the raw signals. 
 

 

 
Figure 6. Relevant PCs (unit 1) 

 
Figure 7. Relevant PCs (unit 2) 

 

 
Figure 8. Online Anomaly Detection and Clustering (unit 1) 

 
Figure 9. Online Anomaly Detection and Clustering (unit 2) 

 

5.3. Supervised approach 

To validate the proposed methodology, a supervised analysis 
has been conducted. In particular, the batch PCA has been 
applied to the matrix 𝑿 , where the generic element 𝑥)# 
corresponds to the mean value computed over 1800 data 
points at time 𝑖 for the characteristic signal 𝑗	(𝑗 = 1,… ,11). 
The PCs retaining the 90% of the variance have been 

Table 3. Dataset Description. 
 

Unit PC  Variance Cumulative Variance 
1 1 66,45% 66,45% 
 2 11,88% 78,33% 
 3 7,81% 86,14% 
 4 4,77% 90,91% 
2 1 46,61% 46,61% 
 2 14,49% 61,1% 
 3 12,46% 73,56 
 4 10,16% 83,72% 
 5 7,55% 91,27% 

 
 

Table 4. Clustering Results. 
 

Unit Setting change 
(Detected)  

Setting change 
(Real) 

1 114 105 
2 4257 4248 
 5674 4904 
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extracted. As expected, for unit 1, 4 PCs have been extracted, 
while for unit 2, the number of the extracted PCs is equal to 
5. Then, two classification models, Support Vector Machine 
(SVM) and K-Nearest Neighbor (K-NN) have been applied 
to both the original matrix 𝑿 and the matrix of extracted PCs. 
Results for both the units are shown in Table 5. Both models, 
in both cases, without and with PCA, provide the 100% of 
accuracy in classifying the different operating conditions.  

5.4. Results and discussions 

The proposed methodology, that includes feature extraction, 
anomaly detection and clustering, is able to recognize a 
change in the operating condition. In addition, it is able to 
group data that are related to the same operating condition 
into the same cluster. No prior information about belonging 
class is provided and no data distribution is assumed.  
An important step in the methodology is represented by the 
incremental feature extraction. As shown in Table 5, the 
supervised approach provides a 100% of prediction accuracy 
in both cases, without and with PCA. This result justifies the 
implementation of the incremental PCA into the streaming 
methodology, as it allows to reduce the quantity of data to 
store (4 or 5 variables against the 11 original variable), while 
keeping the accuracy of prediction at the same value. This is 
also possible as incremental PCA is performed every 30 
minutes, and thus the time for computation is no strict.  
Note that, while the application of batch PCA to the batch and 
supervised analysis does not improve the accuracy of the 
classification (always equal to the 100%), the integration of 
the incremental PCA into the streaming methodology 
strongly affects the results. As shown in Table 6, for the Unit 
1, the algorithm recognizes the occurrence of two different 
settings. However, its latency is much higher (30 data points). 
Instead, for the Unit 2, results are much worse. The change 
from setting 3 (Cluster 1) to setting 4 (Cluster 2) is detected 
with a higher latency, as well as the change from setting 4 to 
setting 3. In addition, another cluster (Cluster 3) is created. 
This would imply that another setting change has occurred, 
which is not true.   

 
Thus, the proposed methodology provides promising results 
in terms of novelty detection and clustering. As shown in 
Table 4, the latency of the algorithm in recognizing the 
change of setting is equal to 9 data points in two cases out of 
three. In the last case, which corresponds to the recognition 
of an existing condition, i.e., the assignment to an existing 
cluster, the latency is much higher. This is because of two 
main reasons: the first one is that there are few data samples 
belonging to the setting 2 of unit 2. Thus, the algorithm has 
not enough time to let the parameters be stable. Second, a lot 
of anomalous peaks in the original signals occurred for 
unknown reasons. Thus, both the global density and the mean 
density trends are so fluctuating to make condition expressed 
in Eq. (10) never satisfied.  

6. CONCLUSIONS 

In this paper, a new methodology for condition recognition is 
presented. The rationale is that, very often, the degradation of 
a certain component/system may be affected by the operating 
condition in which the machinery is functioning. Thus, if the 
operating condition is known, the corresponding degradation 
model can be applied in order to compute the RUL. However, 
operating conditions are not known a priori: they may change 
because of machine users, the processed material, the 
production parameters as well as environmental conditions. 
In addition, the development of technologies as IoT, Cloud 
Computing and Edge Computing make possible the 
implementation of Predictive Maintenance directly at the 
edge of the network, where some tasks can be carried out in 
order to get a real-time feedback of the health status of 
machinery. Thus, the proposed methodology aims to perform 
a streaming and unsupervised analysis, that can be performed 
at the edge, and includes an incremental PCA for feature 
extraction, and a novelty detection and clustering algorithm 
based on RDE concept. 
First, the problem of condition recognition is stated. It 
requires to identify the signals that reflect the implemented 
operating condition, to extract the relevant features for each 
condition, to recognize when a change of the operating 
condition occurs and finally to group the data related to the 
same operating condition into the same cluster. Second, 
related works are investigated and the mathematical 

Table 6. Clustering Results without IPCA. 
 

Unit Setting change 
(Detected) 

Setting change 
(Real) 

1 144 – Cluster 2 105 
2 4287 – Cluster 2 4248 
 5702 – Cluster 1 4904 
 7751 – Cluster 3 - 
 8000 – Cluster 1 - 
 8017 – Cluster 3 - 

 
 

Table 5. Classification Results. 
 

Unit 1 
Without PCA With PCA 

Model Accuracy Model Accuracy 
SVM 100% SVM 100% 
K-NN 100% K-NN 100% 

Unit 2 
Without PCA With PCA 

Model Accuracy Model Accuracy 
SVM 100% SVM 100% 
K-NN 100% K-NN 100% 
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background of the adopted algorithms for incremental feature 
extraction, anomaly detection and clustering, is provided. 
Then, the proposed methodology is described, which is 
completely unsupervised and can be applied “from scratch”. 
The only assumption is related to the first data samples, 
which are assumed to belong to a known operating condition. 
The incremental feature learning allows to select the relevant 
features according to actual data; the anomaly detection 
algorithm recognizes if a change in the behavior is occurring; 
the clustering algorithm decides whether the anomaly 
corresponds to an existing cluster, to a new cluster or just to 
a measurement error. A case of an automatic machinery 
operating in a real industrial context, whose monitored 
subsystem is subject to very slow degradation that depends 
on the implemented machinery setting, is presented. The case 
study shows that the proposed methodology is able to 
recognize when the operating condition has already occurred 
or is new, and to assign the data sample accordingly.  
The advantages of the proposed methodology can be 
summarized as follows: first, when the computed HI is 
subject to sudden jumps depending on the operating 
conditions, and no information is available on which 
condition is implemented, the presented methodology allows 
to associate the trend of the HI in a specific time to a specific 
operating condition and thus, if known, to update the 
corresponding degradation model for the RUL prediction. In 
addition, if the condition is unknown, the methodology 
allows to automatically group similar observations in a 
unique cluster, which correspond to a new operating 
condition. This activity can be seen as an automatic labelling 
procedure. Finally, the distinction of known conditions from 
the new ones allows to keep in memory only the extracted 
features, when the condition is known, and store all the 
collected signals, when the condition is unknown. In this 
way, the storage capacity of the edge device, the bandwidth 
for data transmission, as well as the policies for the data 
transmission to the cloud, can be notably reduced.  
Further research will be dedicate to (1) the integration of a 
classification model that, for each cluster, creates a class, so 
that it can be applied in the streaming procedure for assigning 
the data to existing operating condition, (2) the integration in 
the streaming methodology of RUL prediction based on 
degradation models trained on data related to the known 
operating conditions. 
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