The Impact of Sensor Faults on Condition Monitoring of a Hydraulic Actuator

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Oct 26, 2025
Stephen Adams Dan DeCollo Floyd Steele Nate Brown Sherwood Polter Peter A. Beling

Abstract

While supervised machine learning is prevalent in prognostics and health management applications, the success of these models is dependent upon being trained on accurate data. Training data collected with faulty sensors can degrade the performance of these models when deployed in an operational environment. This study investigates the impact of faulty data and the robustness of feature extraction methods and tree-based classifiers. This study also provides an open-source software package for injecting faults into time series data. The numerical experiments are performed on an open-source hydraulic actuator data set and demonstrate that certain features are robust to certain types of faults and that more complex models, such as ensemble techniques, are more robust to sensor faults than simple models. This work suggests that more complex models and larger (and possibly redundant) feature sets may be preferred in situations where sensor faults are likely. Furthermore, certain feature extraction techniques may be selected if certain faults are more likely than others.

How to Cite

Adams, S., DeCollo, D., Steele, F., Brown, N., Polter, S., & Beling, P. A. (2025). The Impact of Sensor Faults on Condition Monitoring of a Hydraulic Actuator. Annual Conference of the PHM Society, 17(1). https://doi.org/10.36001/phmconf.2025.v17i1.4415
Abstract 1 | PDF Downloads 0

##plugins.themes.bootstrap3.article.details##

Keywords

sensors, faults, feature extraction

References
Adams, S., Beling, P. A., Farinholt, K., Brown, N., Polter, S., & Dong, Q. (2016). Condition based monitoring for a hydraulic actuator. In Annual Conference of the PHM Society (Vol. 8).
Adams, S., Beling, P. A., Greenspan, S., Velez-Rojas, M., & Mankovski, S. (2018). Model-based trust assessment for internet of things networks. In 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE) (pp. 1838–1843).
Adams, S., Cody, T., Beling, P. A., Polter, S., & Farinholt, K. (2020). Hierarchical classification for unknown faults. In 2020 IEEE International Conference on Prognostics and Health Management (ICPHM) (pp. 1–8).
Adams, S., Meekins, R., Beling, P. A., Farinholt, K., Brown, N., Polter, S., & Dong, Q. (2017). A comparison of feature selection and feature extraction techniques for condition monitoring of a hydraulic actuator. In Annual Conference of the PHM Society (Vol. 9).
Adams, S., Meekins, R., Beling, P. A., Farinholt, K., Brown, N., Polter, S., & Dong, Q. (2019). Hierarchical fault classification for resource constrained systems. Mechanical Systems and Signal Processing, 134, 106266.
Alzraiee, A. H., & Niswonger, R. G. (2024). A probabilistic approach to training machine learning models using noisy data. Environmental Modelling & Software, 179, 106133.
Argawal, R., Kalel, D., Harshit, M., Domnic, A. D., & Singh, R. R. (2021). Sensor fault detection using machine learning technique for automobile drive applications. In 2021 National Power Electronics Conference (NPEC) (pp. 1–6).
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.
Cody, T., Adams, S., Beling, P. A., Polter, S., Farinholt, K., Hipwell, N., . . . Meekins, R. (2019). Transferring random samples in actuator systems for binary damage detection. In 2019 IEEE International Conference on Prognostics and Health Management (ICPHM) (pp. 1–7).
de Silva, B. M., Callaham, J., Jonker, J., Goebel, N., Klemisch, J., McDonald, D., . . . Aravkin, A. Y. (2020). Physics-informed machine learning for sensor fault detection with flight test data. arXiv preprint arXiv:2006.13380.
Fink, O., Wang, Q., Svensen, M., Dersin, P., Lee, W.-J., & Ducoffe, M. (2020). Potential, challenges and future directions for deep learning in prognostics and health management applications. Engineering Applications of Artificial Intelligence, 92, 103678.
Gupta, S., & Gupta, A. (2019). Dealing with noise problem in machine learning data-sets: A systematic review. Procedia Computer Science, 161, 466–474.
Helwig, N., Pignanelli, E., & Schtze, A. (2015). Condition monitoring of hydraulic systems. UCI Machine Learning Repository. (DOI: https://doi.org/10.24432/C5CW21)
Helwig, N., Pignanelli, E., & Sch¨utze, A. (2015a). Condition monitoring of a complex hydraulic system using multivariate statistics. In 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings (pp. 210–215).
Helwig, N., Pignanelli, E., & Sch¨utze, A. (2015b). Detecting and compensating sensor faults in a hydraulic condition monitoring system. Proceedings SENSOR 2015, 641–646.
Ibrahim, A., Eltawil, A., Na, Y., & El-Tawil, S. (2019). A machine learning approach for structural health monitoring using noisy data sets. IEEE Transactions on Automation Science and Engineering, 17(2), 900–908.
Liu, J., Adams, S., & Beling, P. A. (2020). An ensemble trust scoring method for internet of things sensor networks. In 2020 IEEE 6th World Forum on Internet of Things (WF-IoT) (pp. 1–6).
Machado, G. R., Silva, E., & Goldschmidt, R. R. (2021). Adversarial machine learning in image classification: A survey toward the defender’s perspective. ACM Computing Surveys (CSUR), 55(1), 1–38.
Martakis, P., Movsessian, A., Reuland, Y., Pai, S. G., Quqa, S., Garcia Cava, D., . . . Chatzi, E. (2021). A semi-supervised interpretable machine learning framework for sensor fault detection. Smart Struct. Syst. Int. J, 29, 251–266.
Meekins, R., Adams, S., Beling, P. A., Farinholt, K., Hipwell, N., Chaudhry, A., . . . Dong, Q. (2018). Cost-sensitive classifier selection when there is additional cost information. In International Workshop on Cost-Sensitive Learning (pp. 17–30).
Meekins, R., Adams, S., Farinholt, K., Polter, S., & Beling, P. A. (2020). ROC with cost pareto frontier feature selection using search methods. Data-Enabled Discovery and Applications, 4, 1–13.
Mohapatra, D., Subudhi, B., & Daniel, R. (2020). Real-time sensor fault detection in tokamak using different machine learning algorithms. Fusion Engineering and Design, 151, 111401.
Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
Poulinakis, K., Drikakis, D., Kokkinakis, I. W., & Spottswood, S. M. (2023). Machine-learning methods on noisy and sparse data. Mathematics, 11(1), 236.
Reis, I., Baron, D., & Shahaf, S. (2018). Probabilistic random forest: A machine learning algorithm for noisy data sets. The Astronomical Journal, 157(1), 16.
Rezaeianjouybari, B., & Shang, Y. (2020). Deep learning for prognostics and health management: State of the art, challenges, and opportunities. Measurement, 163, 107929.
Rokach, L., & Maimon, O. (2010). Classification trees. In Data mining and knowledge discovery handbook (pp. 149–174). Springer.
Schneider, T., Helwig, N., & Sch¨utze, A. (2017). Automatic feature extraction and selection for classification of cyclical time series data. tm-Technisches Messen, 84(3), 198–206.
Wang, X., Li, J., Kuang, X., Tan, Y.-a., & Li, J. (2019). The security of machine learning in an adversarial setting: A survey. Journal of Parallel and Distributed Computing, 130, 12–23.
Wiyatno, R. R., Xu, A., Dia, O., & De Berker, A. (2019). Adversarial examples in modern machine learning: A review. arXiv preprint arXiv:1911.05268.
Zhang, L., Lin, J., Liu, B., Zhang, Z., Yan, X., & Wei, M. (2019). A review on deep learning applications in prognostics and health management. IEEE Access, 7, 162415–162438.
Section
Industry Experience Papers

Most read articles by the same author(s)