Creep Mechanisms vis-à-vis Power Law vs. Grain Boundary Sliding in α-β Titanium Alloys for Physics Based Prognostics



Published Oct 18, 2015
Amar Kumar Alka Srivastava Nita Goel Avi Banerjee Ashok K Koul


This work is performed in support of our continued physics-based prognostics system development using a life cycle management-expert system (LCM-ES) framework. The physical damage based modeling approach involving global behavior and localized response of a component at the microstructural level is used. The current research aims at constructing parts of a deformation mechanism map (DMM) for α-β Ti alloy. The appropriate constitutive equations are used for power-law creep and grain boundary sliding mechanisms. Simulations are performed using the Newton- Raphson method using Matlab software code in order to obtain contour lines corresponding to strain rates ranging from 104 to 10-12 over the homologous temperature ranges of 0.10 to 0.655. The dominance of power-law creep and grain boundary sliding over a wider range of stresses and temperatures in Ti-64 alloy is studied. The simulation results are validated using experimental data points. The predicted contour lines in the map match fairly well. The structure- creep mechanism relationships in α-β Ti alloy under different stress, temperature and strain rate conditions are discussed.

How to Cite

Kumar, A. ., Srivastava, A. ., Goel, N. ., Banerjee, A. ., & K Koul, A. . (2015). Creep Mechanisms vis-à-vis Power Law vs. Grain Boundary Sliding in α-β Titanium Alloys for Physics Based Prognostics. Annual Conference of the PHM Society, 7(1).
Abstract 238 | PDF Downloads 346



prognosis, Creep mechanism,, Ti alloy

Badea L., Surand M., Ruau J., Viguier B. (2014). Creep Behavior of Ti-6Al-4V from 450°C to 600°C, U.P.B. Sci. Bull., Series B, Vol. 76, Iss. 1, ISSN 1454 – 2331.

Evans W. J. and Harrison G. F (1983). Power law steady state creep in α/β titanium alloys, Journal of Materials science, 18, 3449-3455.

Seco F. J., Irisarri A. M. (2001). Creep failure Mechanisms of a Ti-6Al-4V thick plate, Fatigue and Fracture of Engineering Materials &Structures, Volume 24, Issue 11, pp. 741–750.

Frost H. J., and Ashby M. F. (1982). Deformation- Mechanism Maps, The Plasticity and Creep of Metals and Ceramics, by Cambridge University, Permagon Press.

Langdon T. G. (2006). Grain boundary sliding revisited: Developments in sliding over four decades, J Mater. Sci. 41 (2006) 597–609.

Janghorban K, Esmaeili, S. (1991). Deformation mechanism map for Ti-6wt%Al alloy, Journal of Materials science 26, 3362 -3365.

Briguente, L. A. N. S., Couto, A. A., Guimarães, N. M. Reis, D. A. P, C., Neto, M. and Barboza, M. J. R, (2012), Determination of Creep Parameters of Ti-6Al- 4V with Bimodal and Equiaxed Microstructure, Defect and Diffusion Forum Vols. 326-328 (2012) pp 520-524 (2012), Trans Tech Publications, Switzerland doi:10.4028/

Bano N., Koul A. K, Nganbe M. (2014). A Deformation Mechanism Map for the 1.23Cr-1.2Mo-0.26V Rotor Steel and Its Verification Using Neural Networks, Metallurgical and Materials Transactions, 45A, 2.

Banerjee A., Zhao J., Koul A. K, Kumar A., Srivastava A., Goel N. (2013). Physics-Based Prognostics for LCF Crack Nucleation Life of IMI 685 Aero-engine Compressor Disc, Procee. Annual conference of prognostics and health management.

Metzger, M. and Seifert, T. (2012). A Mechanism-Based Model for LCF/HCF and TMF/HCF Life Prediction: Multiaxial Formulation, Finite-Element Implementation and Application to Cast Iron”, TECHNISCHE MECHANIK, 32, 2-5.

Lütjering, G., Williams, J., C. (2007). Titanium Engineering Materials and Processes, Second ed. Springer.

Matthew J. Donachie, Jr. (2002). Selection of titanium alloys for design, Chap. 6, Handbook of Materials selection, ed. Myer Kutz, John Wiley & Sons, NY.

Leyens, C., Peters, M. (ed.), (2003). Titanium and Titanium Alloys - Fundamentals and Applications, WileyVCH Verlag GmbH & Co. KGaA.

Peters, M. Hemptenmacher, J., Kumpert J. and Leyens C. (2003). Structure and properties of Titanium and Titanium alloys, ed. C. Leyens, M. Peters, 2003, Wiley- VCH Verlag GMBH &co.

Es-Souni, M. (2001). Creep behaviour and creep microstructures of a high-temperature titanium alloy Ti–5.8Al–4.0Sn–3.5Zr–0.7Nb–0.35Si–0.06C (Timetal 834), Part I. Primary and steady-state creep, Materials Characterization 46, 365– 379

Es-Souni, M. (2001). Creep Deformation Behavior of Three High-Temperature near α-Ti Alloys: IMI 834, IMI 829, and IMI 685, Metallurgical and Materials Transactions A, Volume 32, Number 2, pp. 285-293(9)

Wu, X. J. (2010). Life prediction of gas turbine materials,

Wu X. J. and A.K. Koul (1995). Metall. Mater. Trans. A, vol. 26A, pp. 905–14.

Xu, S., Wu, X .J. and Koul A. K. (1999). Metall. Mater. Trans. A, vol. 30A, pp. 1039–45.

Xu S., Dickson, J. I. and Koul, A. K (1998). Metall. Mater. Trans. A, vol. 29A, pp. 2687–95.

Frenkel, J., (1926). Z. Phys. 37, 572.

Orowan E., (1948). Rep. Prog. Phys., 12, 183 Wadsworth, J., Ruano, O.A., Sherby O. D., (1999).

Deformation by Grain Boundary Sliding and Slip Creep versus Diffusional Creep”, The Minerals, Metals and Materials (TMS) Annual Meeting , 4.

Barboza, M. J. R., Perez, E. A. C, Medeiros, M. M., Reis, D.A. P., Nono, M. C. A., Neto, F. P., Silva, C. R. M. (2006). Creep Behavior of Ti-6Al-4V and a Comparison with Titanium Matrix Composites, Materials Science and Engineering, 428, pp. 319-326.

F C Campbell (2012) Fatigue and Fracture- Understanding the basics ASM International, The Materials information society

M J R Barboza, CM Neto and CRM Silva (2004). Creep mechanisms and physical modeling for Ti-6Al-4V, Materials science and engineering, vol. A, 369, p. 201.

Y. Ro, S. Nakazawa, H. Onodera, K. Ohno, T. Yamagata, I. Tomizuka, M. Yamazaki, ISIJ Int. 29 (1989) 165–170. A.K. Chakrabarti, E.S. Nichols, in: H. Kimura, O. Izumi
(1980). Titanium Science and Technology, vol. 2,Metall. Soc. AIME, Kyoto.

S.M.L. Sastry, P.S. Pao, K.K. Sankaran, in: H. Kimura, O.Izumi (Eds.), Titanium Science and Technology, vol. 2.Metall. Soc. AIME, Kyoto, 1980, pp. 873–886.

C.M. Omprakash, D.V.V. Satyanarayana and Vikas Kumar (2010). “Effect of microstructure on creep and creep crack growth behaviour of titanium alloy” Transactions of The Indian Institute of Metals, Vol 63, 1-2, pp 457-2010

S. Suri, T. Neeraj, G.S. Daehn, D.-H. Hou, J.M. Scott, R.W. Hayes, M.J. Mills (1997). “Mechanisms of primary creep in α/β titanium alloys at lower temperatures”, Materials Science and Engineering A234-236, 996-999
Poster Presentations

Most read articles by the same author(s)