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ABSTRACT

Most condition monitoring systems rely on system-driven
generation of indicators or features for early fault detection.
However, this strategy requires the prior knowledge on the
system kinematics and/or exact structure parameters of mon-
itored system. To address this problem, this paper presents
a novel condition monitoring framework where the condition
indicator is generated via data-driven method. In this frame-
work, the time-frequency periodogram is extracted from raw
vibration signal first. Then, the acquired time-frequency peri-
odogram is mapped by pseudo Perron vector, which is learned
from vibration data, to generate the condition indicator. Fi-
nally, the bearing can be monitored via analyzing this indi-
cator using gaussian based control chart. Based on experi-
mental results on a publicly-available database, we show the
effectiveness of presented framework for early fault detection
in the continuous operation of rolling bearing, indicating its
great potentials in real engineering applications.

1. INTRODUCTION

Bearings are vital mechanical parts of most rotating ma-
chines, and frequently used in vast domestic and industrial
applications. However, they are also fragile components. Ac-
cording to the report, about 41% of total machine faults are
due to bearing (MRWG, 1985) . In this context, accurate and
reliable bearing condition monitoring plays a critically impor-
tant role in the predictive maintenance of rotating machinery,
which can not only reduce the maintenance cost but ensure
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the reliability of the monitored system during its continuous
operation (Hameed, Y. S., Y. M., Ahn, & C. K., 2009).

Since it has been widely accepted that the degeneration of
bearing can be reflected in the bearing vibration signal, most
existing schemes aim to monitor the health of bearing via
extracting effective features/indicators from vibration sig-
nal using signal processing techniques (Javed, Gouriveau,
Zerhouni, & Nectoux, 2014; Dong, Tsui, & Qiang, 2018).
These techniques include time-domain, frequency-domain
and time-frequency domain approaches. Among them, time-
frequency domain approaches have been an extensively
studied area in the literature. The most common time-
frequency approaches known in the literature are the short-
time Fourier transform (STFT), the empirical mode decom-
position (EMD), the continuous wavelet transform (CWT)
and the discrete wavelet transform (DWT). A comprehensive
review of such approaches can be found in (Zhipeng, Ming,
& Fulei, 2013). Comparing with time-domain and frequency-
domain approaches, time-frequency domain approaches give
an insight of operating condition in both time and frequency
domian, where frequency spectrum is continuously extracted
over time and then analyzed to inspect the dynamic charac-
teristics of bearing vibration signal. The main advantages of
time-frequency domain based method can be boiled down
as (1) it is promising in analyzing non-stationary signals
(Zhipeng et al., 2013), (2) it is able to inspect the incipient
fault information with weak amplitude and short duration
(Javed et al., 2014).

To extract condition indicators in time-frequency domain, it is
crucial to select early fault related frequency components for
monitoring. Take the rolling ball bearing for example, bear-
ing failures are mostly due to the defects in the outer raceway
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(OR), inner raceway (IR), or ball. Different type of faults will
produce unique frequency component (fIR,fOR,fball) which
can be calculated as,

fIR =
n

2
fs(1 +

d

D
cosθ), (1)

fOR =
n

2
fs(1−

d

D
cosθ), (2)

fball =
D

2d
fs(1−

d2

D2
cos2θ), (3)

According to this, a common strategy to evaluate bearing op-
erating status is monitoring these fault-related frequencies, as
conducted in many references (Fernández-Francos, Martı́nez-
Rego, Fontenla-Romero, & Alonso-Betanzos, 2013; Yaguo,
Shantao, Liang, & Naipeng, 2017; Gerber, Martin, & Mail-
hes, 2014; Betta, Liguori, Paolillo, & Pietrosanto, 2002). If
an anomaly appears in one of these frequency sub-bands,
it is reasonable to believe the corresponding fault occurs.
However, this strategy requires the prior knowledge on ex-
act parameters related to the monitored bearing (such as
θ,n,fs,D,d). The acquirement of these parameters is not
a trivial work and even impossible in some applications
(Combet & Gelman, 2007).

D

d

θ

Figure 1. Rolling ball bearing.

To address this problem, this paper presents a novel condi-
tion monitoring framework where the condition indicator is
generated via data-driven method. Main contributions of this
paper are given as follows.

• This paper proposes generating the condition indicator
in time-frequency domain by taking into account of the
correlations between each pair of frequency components.

• The graph modeling strategy upon time-frequency spec-
trum is put forward, followed with theoretical interpreta-
tion and experimental investigation.

1.1. Overview of proposed framework

As shown in fig. 2, given a bearing vibration signal of the
whole life cycle, we first extract the time-frequency pe-
riodogram and then model it into an undirected weighted
graph. By calculating the graph spectrum, the pseudo Perron
vector can be acquired as the output of the learning phase.
Subsequently, this pseudo Perron vector is used to map the
time-frequency periodogram extracted from the vibration sig-
nal of monitored bearing, resulting in a one-dimensional con-
dition indicator. Since this indicator is highly related with the
operating condition of monitored bearing (the experimental
validation is given in Experiment. 3.2 and the theoretical in-
terpretation is given in Appendix. B), the early fault can be
timely detected by checking this indicator over time.
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Figure 2. The flowchart of proposed framework.

The rest of this paper is organized as follows. Section. 2 de-
tails the proposed framework. In Section. 3, we demonstrate
the performance of the proposed framework on a publicly-
available database, and compare it with a representative
method reported in the literature. Finally, Section. 4 con-
cludes this paper and shows our future work.

2. THE PROPOSED SCHEME FOR BEARING CONDITION
MONITORING

This section describes the proposed framework for bear-
ing condition monitoring which contains four steps: time-
frequency periodogram extraction, graph modeling, condition
indicator generation, fault decision-making.

2.1. Time-frequency periodogram extraction

Derived from the short-time Fourier transform(STFT), time-
frequency periodogram estimates the power spectral density
of bearing vibration signal. Let us denote the signal as x(n),
n ∈ [0, N − 1]. The STFT calculation formula in discrete
form is given as,
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Y (m, k) =

N−1∑
n=0

x[n]ω∗[n−mM ]e−j2πk∆fn (4)

This transform is discrete in both time and frequency domains
where M is time-skip and ∆f is frequency-skip, Y (m, k) is
the output at time mM and frequency k∆f , the operator (∗)
denotes conjugation. The proper window ω can be selected
according to the characteristics of processed signals by con-
sidering the amplitude resolution, frequency resolution, time
resolution, etc. Note that the Hanning window with a size of
1*2000 is used in this paper.

The short-time periodogram is then calculated by,

P (m, k) =
1

T
|Y (m, k)|2 (5)

Similarly, P (m, k) is the output at time index 0 ≤ m ≤ M
and frequency index 1 ≤ k ≤ K.

Since it has been well-recognized that the bearing early fault
can reflect in the energy distribution over frequency domain,
there is a clear motivation to investigate the short-time peri-
odogram of bearing vibration signal, where the power spec-
tral density is continuously extracted over time. However, if
the prior knowledge of monitored bearing is not acquirable,
how can we extract the fault-related frequency component?
This paper proposes mapping the short-time periodogram us-
ing pseudo Perron vector which is calculated from graph
model.

2.2. Graph modeling strategy

A typical graphG consists of a set of nodes and a set of edges,
i.e., G = {V,L}. The motivations of employing graph mod-
eling strategy upon time-frequency periodogram are boiled
down as follows,

• Graph describes/represents the time-frequency peri-
odogram from a global view, so that both the time
information and frequency information are taken into
account.

• By introducing edges, the correlation between each pair
of frequency component can be described, which is the
main innovative point of this paper. Concretely, this pa-
per proposes extracting condition indicator via consider-
ing the correlations between each pair of frequency com-
ponents.

As shown in fig 3, the graph G is structured as follows
(Guoliang, Jie, & Peng, 2018; Teng, Guoliang, & Peng,
2019).

a) Regard each frequency sample k = 1, 2, ...,K as a node,
and connect each pair of two nodes i and j as an edge
Li,j ;

Figure 3. Illustrative example of graph modeling: (a) Time-
frequency periodogram that is assumed to contain 12 fre-
quency components. (b) Modeled graph. (c) Adjacent matrix
α of the graph.

b) To reflect the correlation between each pair of nodes, cal-
culate the weight ei,j and sign it to edge Li,j ;

c) Algebraically express the graph G as an adjacent matrix
α, i.e., α = {ei,j}, which is symmetric and square.

eij = Cov{ℵ(P (i, 1 : M)),ℵ(P (j, 1 : M))} (6)

In this paper, the weight of edge is calculated via Eq.(6),
where Cov(·, ·) is the covariance. ℵ is mean removal opera-
tion. Intuitively, weight eij describes the covariance between
each pair of frequency components.

2.3. Condition indicator generation

The condition indicator in this paper is generated by mapping
the time-frequency periodogram using pseudo Perron vector.
To illustrate this point, let us start with a quick review of
graph spectrum.

The employment of matrix for representation of graph has en-
couraged researchers to study the eigenvalues of these graphs.
Graph spectrum is defined by Biggs (Beyer, Goldstein, Ra-
makrishnan, & Shaft, 1999) as the eigenvalues of graph in
strictly descending order (i.e., λ1 ≥ ... ≥ λk... ≥ λK) with
their corresponding eigenvectors (i.e.,V1, ...,Vk...,VK).

In the other hand, according to Perron-Frobenius theorem
(Berman & Plemmons, 1994), any nonnegative matrix has
a nonnegative principal eigenvalue called the Perron root and
any other eigenvalue is strictly smaller than the Perron root in
absolute value. The corresponding eigenvector of Perron root
is so-called Perron vector which is widely used in many graph
based applications such as web page rank, population statis-
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tics. It is worth mentioning that the Perron-frobenius theorem
only applies to nonegative matrix. However, as the elements
in α = {ei,j} can be negative value in this paper, the V1 can
not be regard as Perron vector. In this regard, we name V1 as
pseudo Perron vector.

Since pseudo Perron vector V1 is with a size of 1 × K and
time-frequency periodogram P (k,m) is with a size ofK×m,
the condition index C1(m) is acquired by mapping P (k,m)
using V1 as,

C1(m) = V1 ∗ P (m, k) (7)

where m is time index.

2.4. Fault decision-making

In order to use the condition indicator C1(m) for early fault
detection, we first make an assumption upon C1(m) as fol-
lows,

Lemma 1: When bearing operates in normal condition,
C1(m) is stable. While, the occurrence of fault will cause
dramatic fluctuation of C1(m).

Note that the experimental validation and theoretical inter-
pretation of Lemma 1 are given in Experiment. 3.2 and Ap-
pendix. B respectively.

Lemma 1 enables the early fault can be detected using gaus-
sian based control chart. Since condition indicator C1(m) is
stable when bearing operates normally, we can defined a con-
fidence interval based on a simple assumption that C1(m)
follows gaussian distribution (Teng, Guoliang, Jie, & Peng,
2018). Any early fault will induce C1(m) to exceed this con-
fidence interval. The formulation of fault decision-making is
given as follows,

H0 :C1(t) ∈ A, i.e., normal operation.

HA :C1(t) /∈ A, i.e., fault occurs.
(8)

where A = [µt−1 − nσt−1, µt−1 + nσt−1] is the con-
fidence interval, µt−1 is the mean value and σt−1 is
the standard deviation computed from past data, i.e.,
{C1(1), C1(2), ..., C1(t − 1)}. n is the parameter that
controls precision and recall. A suitable value of n can
be confirmed empirically or by a prior estimation. In the
following experiments, n is fixed as 5 empirically.

3. EXPERIMENT

In this section, we aim to demonstrate the effectiveness and
superiority of the proposed framework. Experiment I and Ex-
periment II are conducted on a publicly-available database to
answer the following two questions separately:

• Can the generated indictor reflect the bearing operating
condition effectively.

• Does the presented condition monitoring strategy outper-
forms the representative methods in this area.

3.1. Experiment materials

The bearing vibration data used for testing are provided by
Center on Intelligent Maintenance Systems (IMS), Univer-
sity of Cincinnati (Hai, Lee, Jing, & Gang, 2006). As shown
in Fig. 4, four bearings were installed on one shaft which was
driven by an AC motor and coupled by rub belts. Two ac-
celerometers were mounted on each of bearing to collect the
vibration signals in two perpendicular spatial axes. Totally,
three times of run-to-failure experiments (Experiment 1∼3)
were conducted on this platform. It is worth mentioning that
the vibration data snapshots were collected with a interval of
10 minutes and we changed the interval into 300 minutes to
decrease the computational load. In this study, as exhibited
in Appendix. A, all six run-to-failure signals collected from
these experiments are tested and their descriptions are given
in Table. 1.

Accelerometers Radial
 Load

Bearing 1 Bearing 2 Bearing 3 Bearing 4

Figure 4. Bearing test platform for fault detection experiment.

3.2. Experiment I: Performance on early fault detection

In this Section, the performance of proposed framework is
validated. As mentioned in Fig. 2, in the learning phase, the
pseudo Perron vector is learned first. Then this vector is used
for mapping time-frequency periodogram to acquire the con-
dition indicator in the testing phase. It is worth mentioning
that the more similar the learning signal and testing signal
are, the better performance will be achieved. Since signal 1
and 2, signal 3 and 4, signal 5 and 6 are with the same type of
fault (seen Table. 1), in this experiment, signals with the same
fault type are taken as training signals mutually. For example,
signal 1 was used as learning signal to test signal 2, and vice
versa. The condition monitoring results are shown in Fig. 5.

From Fig. 5, we can see that the extracted condition indica-
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Table 1. The description of all six run-to-failure signals in IMS database.

Number Description Recording Duration Fault description

Signal 1 Horizontal vibration signal of bearing 3 collected from Experiment 1. Approx. 756 h At the end, inner
race defect occurred.

Signal 2 Vertical vibration signal of bearing 3 collected from Experiment 1. Approx. 756 h At the end, inner
race defect occurred.

Signal 3 Horizontal vibration signal of bearing 4 collected from Experiment 1. Approx. 756 h At the end, roller
race defect occurred.

Signal 4 Vertical vibration signal of bearing 4 collected from Experiment 1. Approx. 756 h At the end, roller
race defect occurred.

Signal 5 Vertical vibration signal of bearing 1 collected from Experiment 2. Approx. 164 h At the end, outer
race defect occurred.

Signal 6 Vertical vibration signal of bearing 3 collected from Experiment 3. Approx. 754 h At the end, outer
race defect occurred.

tor is highly related with the degradation process of tested
bearing. The tendency of C1(m) is consistent with the as-
sumption made in Lemma 1, namely when bearing operates
normally, C1(m) shows a stable tendency and the early fault
can cause a dramatic fluctuation which can be detected by
Eq. (8). In summary, all of early faults were successfully de-
tected without any false detections.

3.3. Experiment II: Comparison with representative
works

As mentioned in Section. 1, the main challenge of condition
monitoring from time-frequency domain is extracting fault-
related frequency components. To cope with this issue, ex-
isting studies (Gerber et al., 2014; Fernández-Francos et al.,
2013; Betta et al., 2002) mainly relies on the selection of fre-
quency sub-bands/components which are highly related with
the potential faults. Generally, the selection strategy can be
classified into following two categories,

• Prior knowledge based selection: This strategy requires
the knowledge on the system kinematics and exact struc-
ture parameters of monitored system. For example, using
the parameters of bearing structure and rotating speed,
the fault-related frequency fIR,fOR,fball can be calcu-
lated. Then, the sub-bands are determined as [f −w, f +
w], f = fIR, fOR, fball, w is constant (Yaguo et al.,
2017).

• Experience based selection: In this strategy, the decision
about the size of the sub-band is made empirically. Gen-
erally, two requirements have to be met for sub-band se-
lection (Fernández-Francos et al., 2013): (a) it should
not be sensitive to noise and (b) it should be able to ac-
curately concentrate the diagnosis in the band where the
fault is significant. Intuitively, if the size of the sub-band
is too narrow, the method will be very sensitive to noise.
On the other hand, too wide sub-bands would not allow
us to accurately localise the exact band where the fault is
evident.

Table 2. The detection result of bearing failure

Performance indexesMethod
Precision Recall

50Hz sub-bands 0.2% 83.3%
100Hz sub-bands 0.3% 100.0%
200Hz sub-bands 0.4% 100.0%
Ours 100.0% 100.0%

Since this paper focus on monitoring the condition without
the prior knowledge, we only compare the presented work
with the methods in the second category. Concretely, the
method reported in (Fernández-Francos et al., 2013) is taken
as a competitor , in which the size of sub-band is determined
as 200Hz and then the average energies of each band are cal-
culated to form a sub-band energy pattern. Finally, the early
fault is detected using one-class SVM upon this energy pat-
tern. We implemented this method on the same database used
in this paper. Moreover, apart from using the sub-bands with
the size of 200Hz, we also report the detection performance
using 50Hz, 100Hz sub-bands. Table. 2 summarizes the de-
tection performance of different methods where the detection
performance is evaluated with two retrieval indexes defined
respectively by,

Precision =
Number of Correct Detections of Faults

Number of Detections of Faults

Recall =
Number of Correct Detections of Faults

Number of True Faults

The precision indicates the probability that a detection is a
true positive; recall is the probability that a true positive can
be detected.

It can be seen from Table. 2 that even though sub-band
based methods performed well on Recall, these achieved an
extremely low performance on Precision i.e., 0.2% with
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Figure 5. Bearing condition monitoring: (a) Result from signal 1. (b) Result from signal 2. (c) Result from signal 3. (d) Result
from signal 4. (e) Result from signal 5. (f) Result from signal 6.

50Hz sub-bands, 0.3% with 100Hz sub-bands, 0.4% with
200Hz sub-bands. The main reason behind this lies in the
existence of noises over frequency domain (Carden & Fan-
ning, 2004). these noises are unrelated with early faults
but induce the false detections in the monitoring phase. In
comparison, our method achieved a perfect performance in
terms of Precision and Recall. It is worth mentioning
that our method dramatically outperforms sub-band based
method on Precision, which demonstrates that mapping
time-frequency periodogram via pseudo Perron vector can ef-
fectively distinguish the fault-related frequency information
from irregularly fluctuated noises (see Appendix. B for de-
tails).

4. CONCLUSION

In this paper, we have presented a novel framework for bear-
ing condition monitoring based on the condition indicator
generated in time-frequency domain. In this framework, the
time-frequency periodogram is extracted from the raw vi-
bration signal first. Then, the acquired time-frequency pe-
riodogram is mapped by pseudo Perron vector to generate the
condition indicator. Finally, the bearing can be monitored via
gaussian based control chart. In the experiment, we show
the effectiveness of proposed framework, which outperforms
sub-band selection based method in this area.

Meanwhile, this paper shows the potential of mapping time-
frequency spectrum for early fault prognostic. Alone with
this line, this work can be expanded to early fault diagnosis,
which is the future work of this study.
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NOMENCLATURE

fIR inner raceway fault related frequency component
fOR outer raceway fault related frequency component
fball roller fault related frequency component
fs bearing rotating frequency
n roller number
d roller diameter
D bearing pitch diameter
θ contact angle
m time index
k frequency index
P (m, k) output of short-time periodogram
eij edge weight
α adjacent matrix for the representation of a graph
V1 pseudo Perron vector
C1(m) condition index
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APPENDIX

Appendix A
The raw signals used in this paper are exhibited in Fig. 6.
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Figure 7. Use {V1, ...,Vk, ...,VK} to map the time-frequency periodogram: (a) Time-frequency periodogram extracted from
bearing vibration signal. (b) Fault-related frequency components after mapping, whereC1(m) is selected as condition indicator.

（a-1）

100            200            300            400             500            600            700

5

0

-5
（a-2）

100            200            300            400             500             600             700

4

0

Signal 1

-4

Signal 2

3

0

-3
100           200             300            400             500            600             700

（a-3）

100            200            300             400             500            600             700

4

0

-4

Signal 4
（a-4）

20             40              60             80           100            120           140          160

3 Signal 5
0

-3

（a-5）

100             200             300             400             500             600            700

Signal 6

Time（hour）

A
m

pl
itu

de

0

-1.5

1
（a-6）

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Signal 3

Figure 6. All six run-to-failure signals in IMS database.

Appendix B
Recall that an assumption is made in Lemma 1 that when
bearing operates in normal condition, C1(m) is stable and
the occurrence of fault will cause a dramatically fluctuation
of C1(m). This appendix presents the theoretical interpreta-
tion of Lemma 1.

On the one hand, λ1 is the eigenvalue and V1 is the eigenvec-
tor of graph α. The following equation holds,

αV1 = λ1V1, (9)

On the other hand, inspired by principal component analy-

sis (PCA), let us use a set of orthogonal basis vectors W =
{w1, w2, ..., wK} to map the time-frequency periodogram
P (m, k). The goal is to maximize the variance of frequency
in the new space after mapping(Hotelling, 1933; Wold, Es-
bensen, & Geladi, 1987), namely,

max
W

tr(WTαW )

s.t.WTW = I,
(10)

By using lagrange multiplier method to solve Eq. (10), we
can acquire that

αwi = Aiwi, (11)

Comparing Eq. (9) with Eq. (11), we can draw the conclusion
that: (1) the pseudo Perron vector V1 is w1 . (2)using V1 to
map time-frequency periodogram P (m, k) result in the max-
imum variance of the resulted indicator. More interesting, the
maximum variance is λ1.

This theoretical derivation is not the contribution of this paper
as it has be reported in many reference(Hotelling, 1933; Wold
et al., 1987). However, this paper believes this maximum
variance is induced by early fault of bearing. Moreover, when
employing the orthogonal basis vector other than V1 to map
the time-frequency periodogram, the lower the variance is,
the less information is contained in acquired data. To validate
this point, Fig. 7 shows the operation of mapping the time-
frequency periodogram using W = {V1, ...,Vk, ...,VK}
where signal 5 is taken as an example. It can be seen that
without the prior knowledge of bearing, it is almost impos-
sible to select the fault-related frequency sub-band from raw
time-frequency spectrum. On the contrast, after mapping, we
can aggregate all the frequency information into a specific
sub-band as labelled in the red box. The condition indicator
used in this paper is C1(m) which has the maximum vari-
ance. Meanwhile, note that pseudo Perron vector referred
here is not the PCA of time-frequency periodogram. It is the
parameter/coefficient can be learned from the time-frequency
periodogram of one signal. This parameter can be used to
highly the fault-related information in other similar signals.
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