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ABSTRACT

New transportation modalities such as electric powered ver-
tical takeoff and landing aircraft and logistic applications
like delivery of packages with drones require highly reliable
and powerful electric batteries for operation. A challenging
but very important task hereby is the precise forecasting of
the degradation of battery state-of-health (SOH) and state-
of-charge (SOC). While high-fidelity electrochemistry based
models can provide precise predictions of the SOC, they can
be computationally expensive. On the other hand, purely data-
driven approaches require a large amount of training data in
order to learn the input to output relation. In this research an
improved hybrid physics-informed machine learning model
is introduced, that conserves the electrochemistry based laws
and is implemented with data-driven layers to compensate for
unknown portions of internal voltage drop during discharge.
Preliminary results indicate that the model can predict dis-
charge for a large variety of loads, accurately predicts capacity
degradation over age and can be enhanced through extracting
information from cell temperature data as surrogate for aging.

1. PROBLEM STATEMENT

State-of-the-art Li-ion battery cells are a crucial part of the
electric powered vehicles and contribute up to 40% of vehicle
cost (Lutsey & Nicholas, 2019). Hence, there is a demand
in models that can predict SOH and SOC depending on wide
load level variations taking into account the underlying elec-
trochemistry of Li-ion battery cells. The existing modeling
approaches that have been trying to address these challenging
predictions have found the following roadblocks:

• Purely model based approaches have difficulties to repli-
cate the complex non-linear behavior of battery aging
processes without using experimental validation data.

• Data-driven approaches require a large amount of data
that come along extensive efforts to build test beds for
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battery aging under real-world conditions.
• Time constraints associated with experimental testing of

battery life make it impractical to gather data from real
life operation for prognosis of battery health degradation.

In this PhD research we aim to address these roadblocks by
(i) developing a physics-informed machine learning model,
which uses previously gathered data on battery degradation
and aims to forecast the SOH and SOC degradation on new
developed battery cells with only some available data history;
(ii) validating the trained model against gathered data from a
accelerated battery life aging test conducted on a self-designed
battery cycling test bed; and (iii) contribute to the state-of-the
art literature regarding Li-ion battery degradation through
implementation of a new model using additional available
sensor data (e.g. cell temperature) for SOH prediction.

2. CONTRIBUTIONS TO THE STATE-OF-THE ART

The main output of this research is a physics-informed ma-
chine learning model for battery degradation prognosis that:

• Estimate SOC during constant and variable current dis-
charge depending on load levels

• Track and forecast capacity degradation over lifetime as
function of operating conditions

• Predict Battery failure taking into account current levels
and temperature build-up during discharge

The resulting hybrid physics-informed machine learning model
is designed to accurately estimate remaining useful life of Li-
ion batteries and detect battery cells that are close to failure
and require replacement. The model is also designed to be
deployable for different Li-ion battery cell chemistries by uti-
lizing readily available data from fleet operators and minor
adjustments of model parameters.

3. RESEARCH PLAN

The specific objectives of this research include these four
primary tasks:

Objective 1: Develop a test bed for accelerated lifing of
Li-ion batteries- Design an accelerated battery lifecycle test
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bed that utilizes integrated self-designed printed circuit boards
to autonomously cycle Li-ion battery cells. The goal is to
gather a rich dataset of battery aging depending on load level
variations as training data for hybrid machine learning models.

Objective 2: Implement an algorithm for solving ordi-
nary differential equations using hybrid physics-informed
neural networks- In this task we develop a new machine
learning approach that implements hybrid models combining
physics-informed and data-driven kernels, where data-driven
kernels are used to reduce the gap between predictions and
observations of time series forecasting.

Objective 3: Create a framework for pro-active monitor-
ing of new components using Bayesian transfer learning-
The goal here is to build a transfer learning model that uses
a combined electrochemistry based and machine learning ap-
proach to predict SOC and SOH of Li-ion batteries taking into
account battery fleets with large load level ranges.

Objective 4: Develop a method for battery degradation
prognosis as function of cell temperature and load levels-
Using temperature build-up and current data from discharge
cycles we aim to build a Bayesian model for remaining useful
life and failure prediction.

3.1 Progress to date

In the first step of this PhD research, we designed and built a
test bed for accelerated battery life testing that integrates self-
designed printed circuit boards, which, in combination with a
microcontroller, perform continuous full charge and discharge
cycles of battery packs at controlled current levels. Here, we
contribute to the literature by generating a life cycle dataset
for batteries subjected to a wide range of load levels with ei-
ther constant or variable loading conditions. This rich dataset
allows to study battery aging under real world operating condi-
tions, as they are expected in battery powered vehicles. With
the goal of building a hybrid battery degradation model, we
estimate the battery capacity at each 20th cycle through refer-
ence discharges at constant current levels of 1C. Fig. 1 (left)
shows the self-developed testbed in operation, where 6 battery
packs placed on separate levels are connected to one charger
board each and a load board, used for discharge, is placed
on the top level. In Fig. 1 (right) the capacity degradation
over cumulative energy, generated from our life cycle study,
is shown for each battery until reaching end of life (marked
by X). By collecting this dataset we already contribute to the
literature for battery aging research, covering a wide battery
aging range, which is used in this research as foundation for
battery degradation prognosis with hybrid machine learning.

In the second part of this research, we implemented a Python
framework for the solution of ordinary differential equations
through recurrent neural networks (RNN) as further detailed in
(Nascimento, Fricke, & Viana, 2020). This approach is used
to build hybrid models, where ODEs governing reduced order

Figure 1. Testbed for battery lifing and capacity degradation.

Figure 2. Hybrid physics-informed battery discharge model

physics equations are implemented in a recurrent neural net-
work cell and a machine learning compensator is used to learn
the missing physics of the reduced order model. To demon-
strate the capabilities of this approach, in one case study we
implement fatigue crack growth integration through Euler’s
forward method combining a data-driven stress intensity range
model with a physics-based crack length increment model in
order to reduce the gap between predictions and observations.
In a second case study, we implemented a two degree of free-
dom mass-spring-damper system within an RNN cell, where
parameter identification of the damping coefficients could be
successfully demonstrated.

Using this RNN integration framework we extend the capa-
bilities of the RNN cell by implementing a hybrid electro-
chemistry and data-driven battery SOC model to predict the
voltage curves during discharge depending on current and
battery cell temperature inputs (Fig. 2). The cell predicts the
voltage output at each time step, where the state, similar to a
state space representation, is integrated over the entire time se-
ries. The general voltage drop is captured through the Nernst
and Butler-Volmer equations (blue blocks), as introduced in
(Karthikeyan, Sikha, & White, 2008) and (Daigle & Kulkarni,
2013), while the remaining discrepancy between actual and
predicted voltage is captured through the non-ideal voltage
multi-layer perceptron (green block), as it was presented by
(Nascimento, Corbetta, Kulkarni, & Viana, 2021).

Our contribution here, further enhances the hybrid approach
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by introducing the effects of large load variations and cell
temperature build-up during discharge to the prediction model.
The proposed model is trained, on constant loading discharge
curves detailed in Fig. 3, whereas the variable loading curves
are used for validation. Fig. 4 illustrates the discharge predic-
tion results on early life variable loading (top) and predictions
on the same battery later in life (bottom), where our find-
ings validate that the model predictions significantly improve
through aging parameter updates. The aging parameters in
form of available Li-ions (qmax) and internal resistance (Rb)
are updated using battery discharge curves throughout cycle
life. Fig. 5 shows our Gaussian process model (GP) predict-
ing the degradation of qmax and the increase of the internal
resistance Rb as function of cumulative energy and loading
levels, where our model captures the influence of different
load levels on both aging parameters.

Figure 3. Current and voltage discharge curves

Figure 4. Random loading discharge prediction on early life
(top plot) and aged battery (bottom plot) with updated and
outdated model parameters

Fig. 6 shows the cross validation results for a prediction
outside of the training dataset, where the lowest load level at
9.3A was partially or completely excluded from training data
and used for prediction. Our findings indicate, that without
any early life data (left column) predictions for qmax and
Rb deviate from the data points, whereas updating the model
with early life data until 6kWh (right column) significantly
improves the prediction results.

Using the predicted aging parameters we established predic-

Figure 5. Gaussian process model for qmax and Rb over
lifetime with mean function and 95% CI.

Figure 6. Forecast of qmax and Ro as function of cumulative
energy for constant current at 9.3A. Predictions are done with
and without qmax and Rb update using early life data.

tions of discharge curves on aged batteries. Fig. 7 shows
the discharge curve prediction for 9.3A load level at a bat-
tery age of 4kWh and 6kWh, respectively. Without early life
data, the model prediction deviates from the discharge curve,
whereas our investigation shows, adding early life data helps
to improve the discharge curve prediction significantly.

Figure 7. Voltage curves for 9.3A constant discharge at 4kWh
(left) and 6kWh (right) using predicted qmax and Rb.

3.2 Remaining work

We will further contribute by enhancing the model to pre-
dict cell failure and using temperature build-up data during
discharge cycles as surrogate for age. Fig. 8 shows the fail-
ure classification including 95% confidence intervals (CI) for
different load levels as function of cumulative energy. The
presented GP model already establishes a prediction method
for battery failure as function of age on different load levels
and will be fused with the battery aging model in the next step.
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Figure 8. Failure classification: current levels vs age

Furthermore, we propose a model using cell temperature build-
up during discharge cycles to predict aging curves and failures.
In Fig. 9 one can see a clear trend between the within-mission
temperature build-up and battery age (Fig. 9, left). Here,
we will contribute by extracting the slope of the temperature
curves to build a GP capacity prediction model with load level
and temperature slope as input (Fig. 9, right).

Figure 9. Capacity as function of cell temperature.

In this research we also propose a model to capture loading
variations over life time. Fig. 10 shows the capacity degra-
dation curve (full circles) of a battery that was initially aged
at 16A until reaching 2.15Ah, moved to a mild load of 7.5A
until 2.0Ah and aged at a more aggressive load of 17.5A until
failure at 1.92Ah. Here, we will establish a model that can
predict battery degradation depending on load level changes,
where the model is used to move the battery to an equivalent
age at the current load level (empty circles). Additionally,
we contribute through re-using previously aged battery cells.
For this purpose, previously deployed cells with similar aging
history were assembled to new battery packs. Those second
life battery packs are then subjected to milder load levels com-
pared to the initial deployment. Fig. 11 shows the capacity
degradation curves of four second life batteries, where signif-
icant life extension of up to 4kWh has been observed. With
this approach we will introduce a model that can be beneficial
for operators of battery fleets that intend to re-purpose used
battery cells.

4. Conclusion

In this research work an enhanced hybrid physics-informed
machine learning model is proposed to predict the SOH and
SOC of Li-ion batteries. Through a self-designed test bed

Figure 10. Battery recommissioning from aggressive (16A),
to mild (7.5A) and moderate loading (14.3A).

Figure 11. Aged batteries with 2nd life at low current levels.

battery life cycle data gathered and used to train a hybrid elec-
trochemistry based and data-driven model in order to capture
missing physics for discharge voltage prediction. Preliminary
results show the model can predict variable and constant load
discharge curves and can successfully predict the the aging pa-
rameters to determine SOH as function of loading conditions.
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