

Identifying Key Factors in Turbofan Engine Health Degradation using Functional Analysis

A Case Study Using NASA's NC-MAPSS DS02 Data

Declan P. Mallamo

Advisors: Prof. Michael Pecht and Dr. Michael H. Azarian

Presented

at the

15th Annual Conference of the Prognostics and Health Management Society, November 1st, 2023

Center for Advanced Life Cycle Engineering https://calce.umd.edu

Background

Objective: To develop an interpretable method for assessing the state of health in turbofan engines

Key Findings: Identification of critical parameters and flight regime points conducive to effective prognostics

Methodology: Elastic registration, data standardization, and functional principal components analysis (FPCA)

Benchmark: NASA's New Commercial Modular Aero-Propulsion System Simulation (NC-MAPSS) DS02 dataset.

Impact of Prognostics: Implementing accurate and interpretable prognostics can greatly improve safety by enabling early detection of degradation and can reduce maintenance costs through condition-based maintenance strategies.

Background: NASA's NC-MAPSS DS02 Benchmark Dataset

- NASA's NC-MAPSS standardizes aerospace research, providing a reliable basis for developing and validating engine health prognostic models.
- Dataset Details: Features 32 engine-related time-series parameters, aggregated into 26.9 GB of H5 files, capturing real-world flight conditions and turbofan degradation.
- The DS02 dataset contains subset features a specific usage case that simulates three key degradation types: High-Pressure Turbine Efficiency (HPT_eff_mod), Low-Pressure Turbine Efficiency (LPT_eff_mod) and Flow (LPT_flow_mod).

Chao, M.A., Kulkarni, C., Goebel, K., & Fink, O. (2021). Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics. Data, 6(1), 5.

Approach

B-Spline Interpolation and Universal Flight Domain Results

Elastic Registration and Standardization Results (Equivalency Ratio, Φ)

Elastic Registration

$$\gamma^{*}(t) = argmin_{\gamma}D\left(f(t), g(\gamma(t))\right)$$

 $= argmin_{\gamma}$

 $\int_0^1 || (q(t) - (q_g \circ \gamma))(t)) ||^2 dt$ Where $(q_g \circ \gamma)(t)$ is the composition of the B-Spline function with the time warping function that minimizes the distance metric.

$$z = \frac{x - \mu}{\sigma}$$

FPCA Projection Results (Equivalency Ratio, Φ)

Multivariate Principal Component Analysis[

 $\max_{\beta^T\beta=1}\frac{1}{N}\beta^T X^T X\beta$

Found solving the eigenvalue problem, $V\beta = \lambda_1\beta$, where $V = \frac{1}{N}(X^T X)$

Functional Principal <u>Component Analysis</u> $V_f(s) = \int_T v(s,t)f(t)d(t)$ Where $v(s,t) = \sum_{i=1}^N x_i(s)x_i(t)$ $\int_T v(s,t)\beta_j(t)d(t) = \lambda_j\beta_j(s)$

Standardized and Aligned Data

OMP/k-NN Results

Data Preprocessing Results

Center for Advanced Life Cycle Enginee https://calce.umd.edu

calce

9

Copyright © 2023 CALCE

ESF-kNN Testing Results

Calce Center for Advanced Life Cycle Engineering https://calce.umd.edu

Copyright © 2023 CALCE

Spearman Correlation Results Comparison

Conclusion

- Effectively built a predictive State of Health (SoH) estimation method for turbofan engines, incorporating advanced preprocessing and data transformation techniques.
- Created an innovative use of feature engineering, selection and state estimation called Elastic-Sparse-Functional k-NN or (ESF-kNN)
- The method achieved a remarkable reduction in feature space complexity from 6200 critical variables to just 9 (0.145%), while maintained moderate levels of predictive accuracy while greatly increasing interpretability.
- This method can aid in root cause analysis, refining data collection techniques and undertaking big data analysis.

Extra Slides

OMP Information Results

ca

Engine Parameters

Index	Symbol	Description	Units	Symbol	Description	Units
1	Nf	Physical fan speed	rpm	accel_in	Accel limiter input	rpm/s
2	Nc	Physical core speed	rpm	accel_out	Accel limiter output	rpm/s
3	epr	Engine pressure ratio (P50/P2)		BPR	Bypass ratio	
4	P21	Total pressure at fan outlet	nsia	DD	Decel limiter output	rpm/s
5	T21	Total temperature at fan outlet	°D	farB	Burner fuel-air ratio	
5	121 D24	Total temperature at fail outlet	K	far_HPT	HPT fuel-air ratio	
0	P24	Total pressure at LPC outlet	psia	far_LPT	LPT fuel-air ratio	
7	124	Total temperature at LPC outlet	°R	Fdrag	Drag force	lbf
8	P30	Total pressure at HPC outlet	psia	htBleed	Bleed enthalpy	
9	T30	Total temperature at HPC outlet	°R	Nf_dot	Fan acceleration	rpm/s
10	P40	Total pressure at burner outlet	psia	Nc_dot	Core acceleration	rpm/s
11	T40	Total temperature at burner outlet	°R	Nf_dmd	Demanded fan speed	rpm
12	P45	Total pressure at HPT outlet	psia	P2	Pressure at fan inlet	psia
13	T48	Total temperature at HPT outlet	°R	PCNfRdmd	Demanded corrected fan speed	pct
14	P50	Total pressure at LPT outlet	nsia	PCNfR_filtered	Output of penfr filter for gain scheduling	pct
15	T 50	Total temperature at LPT outlet	°D.	PR_HPC	Pressure ratio of HPC	
15	150		K	PR_HPT	Pressure ratio of HPT	
16	W21	Fan flow	pps	PR_LPT	Pressure ratio of LPT	
17	Fn	Net thrust	lbf	tau_HPC	Torque of HPC	ft-lb
18	Fg	Gross thrust	lbf	tau_HPT	Torque of HPT	ft-lb
19	SmFan	Fan stall margin		tau_LPT	Torque of LPT	ft-lb
20	SmLPC	LPC stall margin		TRA	Throttle resolver angle	deg
21	SmHPC	HPC stall margin		12	Total temperature at fan inlet	°R
22	NRf	Corrected fan speed	rpm	W22	Flow out of LPC	Ibm/s
23	NRc	Corrected core speed	rpm	W25	Flow into HPC	Ibm/s
20	P15	Total pressure in bypass-duct	neia	W31	HP1 coolant bleed	Ibm/s
24	DCM/D	Demonstration of the speed	psia	W32	HP1 coolant bleed	Ibm/s
25	PUNIK	Percent corrected fan speed	pct	W48	Flow out of HPT	Ibm/s
26	Ps30	Static pressure at HPC outlet	psia	W50	Flow out of LPT	Ibm/s
27	phi	Ratio of fuel flow to Ps30	pps/psi	Wf_dot	Derivative of fuel flow	lbm/s ²
				x1,,x5	Solver outputs	

