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ABSTRACT 

Remaining useful life estimation is a crucial and complicated 

task in predictive maintenance in order to reduce downtime 

and avoid catastrophic breakdowns in industrial plants. 

Thanks to the recent advances in our machine learning era, 

deep learning models can effectively deal with modeling 

complex phenomena such as the bearing degradation process, 

specifically under varying operating conditions. However, 

obtaining large labeled datasets for training the data-

dependent deep learning models is challenging and 

expensive. To overcome this limitation, a phenomenological 

model has been used in this study as an effective approach to 

creating synthetic run-to-failure datasets under varying 

operating conditions. The suggested methodology is able to 

adjust synthetic run-to-failure datasets to the different 

periodic speed profiles, including the speed ranges that pass 

the resonance frequency of the structure. A Context-aware 

Domain Adversarial Neural Network is proposed to remove 

the domain shift between the simulated signals and the real 

ones and to enable the deep learning model to understand the 

varying speed operating conditions and the sequential order 

of the measurements. The simulated signals are used as the 

source domain and a limited number of the real signals are 

used as the unlabeled samples for the domain adaptation task. 

Speed and time information are encoded as one-dimensional 

vectors and fed to the Domain Adversarial Neural Network, 

leading to an improvement in the model performance and its 

generalization ability. A dataset captured in a bearing test rig 

is adopted to verify the proposed method. Results show that 

context awareness can result in better performance and also 

more robust predictions against major speed changes in 

varying speed scenarios compared to the non-context-aware 

models.  

1. INTRODUCTION 

Rolling element bearings are one of the industrial 

components that are mostly used in rotary equipment, and 

they are prone to failures, which can lead to machine 

breakdown (Buzzoni et al., 2020; Randall & Antoni, 2011). 

Remaining useful life (RUL) estimation plays an important 

role in reducing the risk of long downtimes and catastrophic 

breakdowns. It can be determined by the remaining time left 

before a health indicator crosses a certain threshold such that 

the component is no longer able to operate in the desired way 

(Lei et al., 2018). There are many approaches to achieving 

this aim. However, Artificial Intelligence (AI), specifically 

Deep Learning (DL), recently has shown brilliant results due 

to its ability to model processes with high complexity (Lei et 

al., 2018). 

In order to have an effective DL model, the availability of a 

large amount of labeled data is crucially important. However, 

collecting such a dataset is usually laborious and of high cost 

(Chen et al., 2018; C. Liu & Gryllias, 2022). Utilizing 

simulated datasets for training the DL models has emerged as 

a viable approach to alleviate the impact of limited 

availability of real labeled datasets, thus enhancing the 

overall performance of the models. 

Gryllias and Antoniadis (2012) generated artificial signals for 

different types of faults in bearings and classified the real 

samples using a Support Vector Machine (SVM) model. 

Chen et al. (2018) proposed a DL model to learn the fault 

patterns from artificial bearing datasets and applied the model 

to real bearing datasets. Farhat et al. (2021) developed a 
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model of a rotor-ball bearing system in order to build a digital 

twin (DT) to generate simulated vibration signals for 

different fault severity in bearings and classified them by 

machine learning algorithms. 

However, the simulated datasets cannot or at least cannot yet 

cover all the aspects of the faulty bearings or the degradation 

process, and there is always a distribution mismatch between 

real signals and simulated ones, leading to generalization 

problems while deploying the trained models on real 

industrial datasets (C. Liu & Gryllias, 2022). In order to 

address this issue, domain adaptation or transductive transfer 

learning methods in machine learning have been used to 

improve the generalization ability by transferring the 

knowledge learned from the source domain 𝒟𝑆 to the target 

domain 𝒟𝑇 . In this approach, the feature space between the 

domains is the same but the marginal probability distributions 

of them are different (Pan & Yang, 2010). 

C. Liu and Gryllias (2022) proposed a simulation-based 

transfer learning method based on domain adaptation that 

leveraged simulated signals for training in order to classify 

bearing faults in real samples. They showed that domain 

adaptation will improve the accuracy when it is applied to 

simulation-based neural networks. J. Liu et al. (2023) 

proposed a method that used a dynamic model of rolling 

bearings to generate vibration signals for different types of 

faults. Then, a non-adversarial domain adaptation network 

was used to provide knowledge for other working conditions. 

Domain adaptation showed an improvement in the accuracy 

of the classifiers. C. Liu et al. (2020) used a 

phenomenological model to generate synthetic signals that 

simulated a degradation process in bearings, aiming to create 

a synthetic run-to-failure dataset for training a transfer 

learning model based on domain adversarial neural networks 

(DANN). They showed that domain adaptation significantly 

enhanced the accuracy of the predictions. 

Moreover, varying speed condition poses an additional 

challenge that impacts the performance of deep models 

developed based on the steady operating condition 

assumption (Chi et al., 2022). Varying speed operating 

conditions can be seen in industrial robots, wind turbines, 

servo motors, etc. (Cocconcelli et al., 2011; Xia et al., 2022; 

Xue et al., 2017). In some cases, in condition monitoring 

strategies, the tachometer pulses are also available that are 

commonly used in signal processing methods to avoid 

misinterpretations when dealing with varying speed 

operating conditions. Likewise, tachometer data or speed 

signals can also be used in the AI-based methods as a context 

that helps the network improve its accuracy. “Context” can 

be defined as any information about working conditions such 

as load, temperature, and speed that has a significant effect 

on the equipment’s behavior (Leturiondo et al., 2017). 

Ciani et al. (2019) used the temperature and humidity 

information as contexts or covariates to improve the 

reliability estimation of wind turbines. Rezamand et al. 

(2021) introduced a method to utilize the wind speed and 

ambient temperature of the assets as well as vibration features 

to estimate the RUL of wind turbines. They showed that 

speed and temperature information will improve the accuracy 

under varying operating conditions compared to the model 

that did not use this information. Chi et al. (2022) employed 

sparse auto-encoders to encode the speed information, 

intending to combine them with deep vibration features 

obtained by transformers. This fusion aimed to enhance the 

accuracy of bearing fault classifications under variable speed 

operating conditions. 

Driven by the observation that the RUL prediction under 

varying speed operating conditions is still an open research 

question, this study aims to present a chain of methods for 

RUL prediction in bearings under varying speed operating 

conditions. The whole chain can be summed up as follows: 

• Generate synthetic signals under varying speed 

operating conditions using a phenomenological 

model and simulate the degradation process in 

bearings to create a synthetic run-to-failure dataset. 

• Propose a context-aware neural network 

architecture based on the DANN model and train it 

using the synthetic labeled samples as the source 

domain and the real unlabeled samples as the target 

domain for the domain adaptation task. 

The rest of this article is organized as follows. Section 2 

explains the fundamental theory that has been used in the 

proposed methods. Section 3 describes the proposed 

methodologies to predict the RUL. Section 4 introduces a 

run-to-failure dataset under varying speed operating 

conditions and shows the results of the proposed model 

applied to this dataset. Finally, Section 5 provides the 

conclusion of the paper. 

2. THEORETICAL PART 

2.1. Phenomenological model 

The phenomenological simulation of the bearing vibration 

signals tries to emulate the real vibration signals coming from 

a real bearing by comparing the whole bearing structure to a 

single-degree-of-freedom (SDOF) vibration system 

subjected to a repetitive excitation force due to the localized 

faults presented in the bearing. The initial idea was proposed 

by McFadden and Smith (1984) and then it was improved by 

Antoni (2007) in order to have a more realistic spectral 

analysis. The simulated vibration signal can be generated by 

the following formula (Antoni, 2007): 

𝑥(𝑡) = ∑ ℎ(𝑡 − 𝑖𝑇 − 𝜏𝑖)𝑞(𝑖𝑇)𝐴𝑖 + 𝑛(𝑡)

+∞

𝑖=−∞

 (1) 

where ℎ(𝑡) is the impulse response of the equivalent SDOF 

system. 𝑇  is the time period between two consecutive 
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impacts. 𝑖 is the index of the 𝑖-th impact due to the fault, 𝑛(𝑡) 

accounts for the possible noise presented in the signals, and 

𝑞  is the amplitude modulating function due to the load 

distribution. 𝐴 and 𝜏 are the parameters in order to take into 

account the randomness of the impact intensities and the 

moments that the impacts occur, respectively. According to 

(Antoni, 2007): 

𝐸{𝜏𝑖𝜏𝑗} = 𝛿𝑖𝑗𝜎𝜏
2 

(2) 
𝐸{𝐴𝑖

2} = 1 + 𝛿𝑖𝑗𝜎𝐴
2 

where 𝜎𝜏  and 𝜎𝐴  are the standard deviations, and 𝛿𝑖𝑗  is the 

Kronecker symbol. 

The time period between two consecutive impacts surely 

depends on the rotational speed of the inner race of the 

bearing, and the mean value of the time interval Δ𝑇  is 

expressed by: 

𝐸{Δ𝑇} =
𝐸{∆𝜃}

2𝜋𝑓𝑟
 (3) 

where 𝑓𝑟  is the inner race rotational speed and ∆𝜃  is the 

angular distance between two consecutive impacts which its 

mean value is expressed by: 

𝐸{∆𝜃} =
2𝜋

𝑂𝑖𝑚𝑝
 (4) 

where 𝑂𝑖𝑚𝑝 is the characteristic fault order, and it is defined 

as follows for different types of faults (Buzzoni et al., 2020): 

Outer race 
𝑛

2
(1 −

𝑑

𝐷
cos(𝛽)) 

(5) 

Inner race 
𝑛

2
(1 +

𝑑

𝐷
cos(𝛽)) 

Rolling element 
𝐷

2𝑑
(1 − (

𝑑

𝐷
cos(𝛽))

2

) 

Cage 
1

2
(1 −

𝑑

𝐷
cos(𝛽)) 

where 𝑛 is the number of rolling elements in the bearing, 𝐷 

is the pitch circle diameter, 𝑑 is the bearing roller diameter 

and 𝛽 represents the contact angle. 

2.2. Domain Adversarial Neural Network (DANN) 

DANN is an architecture in machine learning which is used 

to remove the domain shift between the deep features 

extracted from the source domain dataset and the target 

domain dataset by capturing the underlying shared 

information across domains. In this way, the extracted 

features from both domains are domain-invariant which is 

one of the important properties in order to increase the 

generalization ability of the neural network. As illustrated in 

Figure 1, the network consists of three different parts: feature 

extractor, domain classifier, and label predictor or regressor. 

The feature extractor 𝐺𝑓 is typically a deep neural network 

that learns to extract high-level representations from the input 

data. It transforms the input samples into a latent 

representation that encodes useful features for the following 

layers. The domain classifier 𝐺𝑑  is another neural network 

component that tries to predict the domain of the input 

samples based on the extracted features. Its purpose is to learn 

to differentiate between the source and target domains. 

The objective of the domain classifier is to maximize its 

accuracy in predicting the domain while the feature extractor 

tries to minimize the accuracy of the domain classifier. This 

is the result of the gradient reversal between these two parts 

of the network. Therefore, the training process is done in an 

adversarial manner and at the end of the training process, the 

domain classifier is no longer able to distinguish between the 

features coming from different domains. In other words, the 

feature extractor layer is able to extract domain-invariant 

features (Farahani et al., 2021). Label predictor or regressor 

layer 𝐺𝑟 are also trying to use the domain-invariant features 

to estimate the output. 

 

Figure 1. DANN architecture for regression task 

Two different losses are defined corresponding to the 

regressor and domain classifier as follows (Ganin et al., 

2016): 

ℒ𝑟
𝑖 (𝜃𝑓, 𝜃𝑟) = ℒ𝑟(𝐺𝑟(𝐺𝑓(𝑥𝑖 ; 𝜃𝑓); 𝜃𝑟), 𝑦𝑖) 

(6) 
ℒ𝑑

𝑖 (𝜃𝑓, 𝜃𝑑) = ℒ𝑑(𝐺𝑑(𝐺𝑓(𝑥𝑖; 𝜃𝑓); 𝜃𝑑), 𝑑𝑖) 

where 𝜃𝑓, 𝜃𝑟, and 𝜃𝑑 represent the parameters of the 𝐺𝑓, 𝐺𝑟, 

and 𝐺𝑓 respectively. 

The goal of the DANN is to optimize the loss function: 

ℒ(𝜃𝑓, 𝜃𝑟, 𝜃𝑑) =
1

𝑛
∑ ℒ𝑟

𝑖 (𝜃𝑓 , 𝜃𝑟)

𝑛

𝑖=1

 

      −𝜆 (
1

𝑛
∑ ℒ𝑑

𝑖 (𝜃𝑓, 𝜃𝑑)

𝑛

𝑖=1

+
1

𝑛′ ∑ ℒ𝑑
𝑖 (𝜃𝑓, 𝜃𝑑)

𝑁

𝑖=𝑛+1

) 

(7) 

where 𝑛 and 𝑛′ are the number of samples presented in the 

source domain and the target domain datasets respectively, 

and 𝜆 is a hyperparameter that controls the trade-off between 
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the classification loss and the domain adversarial loss during 

training (Ganin et al., 2016). The optimization algorithms like 

Adam, SGD, or RMSProp can lead equation 7 to reach a 

saddle point, which allows for the labeling of the unlabeled 

data in the target domain (C. Liu et al., 2020). 

2.3. Context Awareness 

In the area of natural language processing (NLP), positional 

encodings are used to make the transformers aware of the 

relative or absolute order of the words inside a sentence 

(Vaswani et al., 2017). In order to encode the positional 

information, sine and cosine functions with different 

frequencies can be used (Vaswani et al., 2017): 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛 (
𝑝𝑜𝑠

100002𝑖 𝑑𝑚𝑜𝑑𝑒𝑙⁄
) 

(8) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠 (
𝑝𝑜𝑠

100002𝑖 𝑑𝑚𝑜𝑑𝑒𝑙⁄
) 

where 𝑝𝑜𝑠  is the position of the word, 𝑑𝑚𝑜𝑑𝑒𝑙  is the 

dimension of the word embeddings, and 𝑖  represents the 

dimension of the positional encoding. The use of sine and 

cosine functions with varying frequencies ensures that the 

positional encodings are unique for each position, providing 

a way for the model to distinguish between different positions 

in the input sequence. And more importantly, each positional 

encoding with offset 𝑘, 𝑃𝐸𝑝𝑜𝑠+𝑘  can be described as a linear 

function of the positional encodings 𝑃𝐸𝑝𝑜𝑠 , allowing the 

model easily learn the relative dependencies (Vaswani et al., 

2017). 

The fascinating part of the story is that all the concepts 

explained above can be transferred to the prognosis research 

area because the sequential order of the vibration signals 

measured from a bearing is of high importance in prognosis 

and it can be an indicator of how the damage is progressing 

through time. To put it simply, imagine that there are three 

signals v1, v2, and v3 measured from a bearing at time t1, t2, 

and t3. The interpretation of these data is different from when 

the order of the signals changes to v2, v3, and v1. In other 

words, the same vibration signals in different contexts can be 

interpreted in different ways. 

Additionally, equation 8 can be used to encode the speed 

information. Although this method of encoding does not have 

physical meaning, it can make the neural network aware of 

the differences between the vibration signals coming from 

different operating conditions. Each operating condition 

should have a unique encoding that is assigned to the 

vibration signals. 

The method for specifying the value of 𝑑𝑚𝑜𝑑𝑒𝑙  will be 

described in section 4.1, and the value of 𝑝𝑜𝑠 is an integer 

number that starts from 1, indicating the sequential order of 

each measurement. The same way is followed to encode the 

speed information. For example, 𝑝𝑜𝑠 = 1  is used for the 

lowest speed when the speed profile is stepwise. For each 

𝑝𝑜𝑠 the value of 𝑖 starts from 0 and ends in 
𝑑𝑚𝑜𝑑𝑒𝑙

2
 to form a 

vector of length 𝑑𝑚𝑜𝑑𝑒𝑙 . For each 𝑖 there are two values, one 

from 𝑠𝑖𝑛𝑒 function and the other from 𝑐𝑜𝑠𝑖𝑛𝑒 function. For 

example, the encoding for 𝑝𝑜𝑠 = 1  is 

[𝑃𝐸(1,0), 𝑃𝐸(1,1), … , 𝑃𝐸(1,𝑑𝑚𝑜𝑑𝑒𝑙)] which is a one-dimensional 

vector. 

Context-aware machine learning in prognosis is a way to 

make the neural network aware of the true relationship 

between the measurements as well as the operating 

conditions. 

3. PROPOSED METHODOLOGY 

As discussed in Section 2, the first step is to create a synthetic 

dataset using the phenomenological model in order to train 

the context-aware DANN (CA-DANN) model. Generated 

signals should be adapted according to the real signals from 

different aspects. Firstly, the frequency content and the fault 

characteristic frequencies should be the same in real and 

synthetic signals. Then, the effect of speed on the amplitude 

of real signals before the anomaly should be investigated and 

the same effect will be applied to the synthetic signals. More 

importantly, the health indicator (HI) of the synthetic signals 

should be in a way to follow a degradation trajectory after the 

anomaly so that they can replicate a run-to-failure process. In 

this paper, peak to peak (PP) of the vibration signal is used as 

the health indicator. Figure 2 shows the whole algorithm for 

estimating the RUL of the bearings. 

 

Figure 2. The architecture of the proposed algorithm 

3.1. Synthetic run-to-failure dataset 

The first step is to replicate the real signals using equation 1. 

Equation 5 helps to find the time distance between the 

impacts due to the fault, and equation 9 determines the 

impulse response ℎ(𝑡) in equation 1: 

ℎ(𝑡) = 𝑒−𝜁𝜔𝑛𝑡 𝑠𝑖𝑛 (√1 − 𝜁2𝜔𝑛𝑡) 

(9) 𝜔𝑛 = √𝑘/𝑚  

𝜁 =
𝑐

2𝑚𝜔𝑛

 

where 𝑐  and 𝑘  are the damping coefficient and stiffness 

respectively, and 𝑚 is the equivalent mass. A simple Fast 
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Fourier method can be applied to the real measurements to 

determine the dominant natural frequency. Additionally, the 

logarithmic decrement can be used to see at which rate the 

amplitude of the impact responses in real measurements is 

decreasing in order to determine 𝜁. 

Subsequently, a simple assumption should be made in order 

to easily capture the effect of speed and degradation severity 

on the amplitude of the signals. Every synthetic signal can be 

seen as a multiplication of a base signal generated by the 

phenomenological model and two modifier functions: 

𝑺𝑠,𝑖 = 𝑺𝑏,𝑖 . (𝑹𝑖 × 𝐷𝑖)  (10) 

𝐷𝑖 = {
1

𝑒𝑎(𝑡𝑖−𝑡𝑎𝑛𝑜𝑚𝑎𝑙𝑦)          
𝑡𝑖 < 𝑡𝑎𝑛𝑜𝑚𝑎𝑙𝑦

𝑡𝑖 ≥ 𝑡𝑎𝑛𝑜𝑚𝑎𝑙𝑦
 (11) 

where 𝑺𝑠  and 𝑺𝑏  are the synthetic adapted signal and the 

synthetic base signal generated by the phenomenological 

model respectively. 𝑹 is a linear function of the speed signal 

from the real measurements, 𝐷 is a piecewise function that 

describes the degradation process, and 𝑡𝑖  represents the time 

at the acquisition number 𝑖. Function 𝐷 is assumed to be an 

exponential function that can describe the dynamic of the 

degradation in bearings. Its parameter, 𝑎, should be found by 

curve fitting on the health indicator of the real data that comes 

after the anomaly point. 

As defined in equation 11, the effect of degradation severity 

is stable before the anomaly, therefore, the real signals before 

the anomaly can be used to recognize the influence of speed 

on the amplitude of the signals. Figure 3 (a) shows a speed 

profile and its effect on the peak to peak of vibration. The 

important point here is to consider the possibility of the 

structure resonance when speed is varying. In other words, 

increasing speed does not necessarily result in an increasing 

amplitude. Figure 3 (b) and (c) show two possible behaviors 

that can be seen in speed varying scenarios. Increasing 

amplitude with increasing speed can be a sign of passing no 

resonance frequency in that specific speed range (Salunkhe 

& Desavale, 2021). 

Function 𝑹𝑖 in equation 10 is expressed as follows: 

𝑹𝑖 = 𝑐𝑗  .  𝒓𝒑𝒎𝑖  (12) 

where 𝑐𝑗 is a constant parameter specific to a certain speed 𝑗, 

and 𝒓𝒑𝒎𝒊 is the speed signal in the 𝑖-th measurement. 𝑐𝑗 can 

be determined using the available real signals before the 

anomaly. The amplitude of the synthetic signals should be 

adapted by equation 12 in a way that both real and synthetic 

signals have the same peak to peak. For this purpose, a mean 

square error (MSE) function will be formed to measure the 

error between the peak to peak of the real and synthetic 

signals that come from the same operating speed, intending 

to find the 𝑐𝑗 that results in the minimum error between peak 

to peak of the real and synthetic signals at speed 𝑗 . This 

method can capture the resonance effect as well, since the 

parameter 𝑐𝑗  is independently determined for each speed. 

Figure 4 (b) and (c) show two samples of the MSE loss 

function for two different speeds to find the optimum 

constant parameter 𝑐𝑗=𝑚,𝑛. 

 

Figure 3. (a) Varying speed effect on the peak to peak 

amplitude of the signals, (b) in case of no resonance, (c) in 

case of passing the resonance frequency 

 

Figure 4. (a) Peak to peak of synthetic and real signals 

before anomaly (red: speed m, green: speed n), (b) and (c) 

MSE of peak to peak of real and synthetic signals for two 

different speeds 

Figure 5 (a) shows the peak to peak of synthetic signals that 

replicate the real ones before the anomaly. By knowing 

function 𝑹𝑖 , the effect of speed can be removed from the 

health indicator by equation 13, meaning that any changes in 

the health indicator that is not associated with speed can 

manifest itself more clearly. This method will be used to find 

anomalies. 
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𝐻𝐼𝑛,𝑖 = 𝐻𝐼(𝑺𝑟,𝑖/𝑹𝑖) (13) 

𝐻𝐼𝑛  represents the normalized health indicator (peak to 

peak), and 𝑺𝑟  is the real vibration signal. Investigating the 

effect of speed on vibrations will be done in a specific time 

interval, for example from 𝑡0 to 𝑡1 in Figure 5 (a). Every real 

peak to peak after 𝑡1 will be normalized using equation 13 

with its corresponding 𝑐𝑗 and 𝒓𝒑𝒎𝑖  (𝑐𝑗 has been determined 

in the previous steps and 𝒓𝒑𝒎𝑖  comes with each new 

measurement). Figure 5 (b) shows the normalized peak to 

peak whose mean and standard deviation in the time interval 

[𝑡0, 𝑡1] can be used as the threshold for anomaly detection.  

 

Figure 5. (a) Peak to peak of real and synthetic signals, (b) 

anomaly detection by the normalized peak to peak 

After the anomaly, a limited number of signals will be used 

for curve fitting in order to find parameter 𝑎 in equation 11. 

As Figure 6 (a) shows, curve fitting is done based on the 

normalized peak to peak because the effect of speed has been 

removed, and it is only the degradation severity that plays a 

role. By introducing slight variations in the parameter 𝑎 in 

function 𝐷, different degradation trajectories can be built in 

order to have a big synthetic run-to-failure dataset. Figure 6 

(b) shows the typical degradation trajectories of the peak to 

peak of the synthetic dataset. 

 

Figure 6. (a) curve fitting according to the normalized peak 

to peak, (b) peak to peak of the synthetic dataset 

3.2. Context-aware DANN 

As discussed in Section 2.3, two contexts, speed, and order 

of the measurements can be seen as two inputs in addition to 

the raw vibration signal. As illustrated in Figure 7, a 

Convolutional Neural Network (CNN) is used to extract the 

local information and deep features automatically from the 

raw vibration signals without any expert knowledge. The 

extracted features will be concatenated by two inputs 

(contexts) to form a bigger 1-D vector which is followed by 

two parallel Fully Connected (FC) layers, a domain 

discriminator and a source regressor. The loss function of the 

regressor part is the mean squared error and the loss function 

of the discriminator part is the binary cross entropy which is 

expressed as follows: 

ℒ𝑑 = −𝑦. 𝑙𝑜𝑔(�̅�) − (1 − 𝑦). 𝑙𝑜𝑔(1 − �̅�) (14) 

where 𝑦 ∈ {0, 1} is the domain label and �̅� is the predicted 

value between 0 and 1. Table 1 and Table 2 show the network 

parameters in detail. 

Table 1. Network parameters of the feature extractor 

Layer Type 
Filter/ 

Kernel/Stride 

Activation 

function 

1 1D CNN 4/128/16 ReLU 

2 Max Pooling -/8/8 - 

3 1D CNN 16/16/8 ReLU 

4 Max Pooling -/8/8 - 

 

Table 2. FC parameters in the regressor and the 

discriminator 

Regressor part Discriminator part 

Layer 
Units/Activati

on function 
Layer 

Units/Activati

on function 

1 64/softplus 1 64/softplus 

2 32/softplus 2 32/softplus 

3 1/softplus 3 1/sigmoid 

As depicted in Figure 7, the gradient reversal layer (GRL) 

with the trade-off parameter 𝜆 = 0.1 is also added as the first 

layer of the discriminator part to reverse the gradient in the 

backpropagation process. It should be noted that the length of 

the input signal should be long enough to include the 

sufficient number of impacts due to the fault in bearing. The 

number of the impacts due to the ball defect in one revolution 

of shaft is lower than other type of faults. On the other hand, 

at the lower shaft speeds, more datapoints are needed to cover 

a complete revolution of shaft. Using the equation 14, the 

number of datapoints needed to cover at least 1 impact due to 

the ball defect can be calculated. This number will cover 

more than one impact if a different type of defect is present 

at any speed. 

𝐿𝑐 =
𝐹𝑆

𝐵𝑆𝐹
 (14) 

where 𝐿𝑐 is the critical length of signal, BSF is the ball spin 

frequency at the lowest shaft speed, and 𝐹𝑆 is the sampling 

frequency. 
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Figure 7. The architecture of the proposed CA-DANN 

4. APPLICATION OF THE METHODOLOGY AND RESULTS 

4.1. Smart Maintenance dataset 

Smart Maintenance (SM) dataset provided by Flanders Make 

(Ooijevaar et al., 2019) consists of accelerated life tests where 

indentations were deliberately created on the inner races (IR) 

of bearings using a Rockwell-C indenter with a force of 100 

kg before the tests started to run. The diameter of the 

indentations is carefully regulated to be within the range of 

400 ± 25 μm. The radial load is 9 kN and the rotational speed 

follows a periodic stepwise profile starting from 1000 rpm to 

2000 rpm, each step is 100 rpm and is maintained for 60 

seconds. The type of test bearings is 6205-C-TVH from FAG. 

The sampling rate frequency is 50 kHz, and the stopping 

criterion for the experiments was based on the peak to peak 

value reaching 20g. However, some experiments were not 

ended at 20g. Therefore, in order to have a consistent dataset, 

a new threshold at 15g is considered for the end of life. Figure 

8 shows the peak to peak and speed profile of one of the 

experiments. Table 3 shows the specifications of all the 

bearings that are used in this study. 

Table 3. Bearing information in the SM dataset 

Bearing Test duration Anomaly detected Fault 

A148 143.3 min. at 112.6 min. IR 

A150 197.5 min. at 169.1 min. IR 

A153 229.3 min. at 207.8 min. IR 

A154 126.0 min. at 98.8 min. IR 

A155 369.3 min. at 348.6 min. IR 

A156 251.5 min. at 224.0 min. IR 

 

 

Figure 8. Peak to peak and its corresponding speed profile 

of bearing A148 

Table 4. Length of the inputs of the proposed architecture 

Input No. Length 

Input 1 (raw signal) 25000 

Input 2 (time context) 24 

Input 3 (speed context) 24 

Referring to the equation 14, a signal of 25000 datapoints is 

set as the input to make sure that at least 20 impacts will be 

covered in the critical scenario for the Smart Maintenance 

dataset. The length of the other inputs, 𝑑𝑚𝑜𝑑𝑒𝑙  in equation 8, 

should be lower than the length of the deep features after 

Flatten layer in order to make sure that the following layers 

will learn the features effectively. For the architecture 

described in Table 1, the length of the deep features for the 

input length of 25000 is 112. 

4.2. Results and discussions 

The phenomenological model is used to generate synthetic 

signals. Figure 10 shows one of the examples of the generated 

signals for bearing A148. 

The results of the proposed method for anomaly detection are 

mentioned in Table 3. After the anomaly, the DANN model 

needs some real signals to perform the domain adaptation 

task. In this study, 10 minutes of the real dataset after 

anomaly is used for this purpose. It should be noted that these 

samples are unlabeled, therefore, they will be used in the 

inference stage as well. Despite the passage of time, labeling 

the past samples is still valuable, since it indicates what were 

the predictions from a few moments ago which can be used 

for decision-making. 
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Figure 9. Predicted RUL of the bearing A156, (a) CNN, (b) DANN, (c) CA-DANN

 

Figure 10. (a) Comparison between the real and generated 

signals, (b) envelope spectrum of the real signal and (c) 

generated signal  

The synthetic run-to-failure dataset generated by the steps 

described in Section 3.1 is used to train 4 models. A simple 

CNN model that neither includes the discriminator part of the 

architecture nor contexts, a DANN model without contexts, 

the proposed CA-DANN model with time context, and the 

CA-DANN model with both time and speed contexts. Table 

4 shows the length of the inputs of the CA-DANN model. 

Table 5 shows the superior performance of the CA-DANN 

model which in all cases can improve the mean squared error 

(MSE) and the mean absolute error (MAE) of the RUL 

predictions. However, including the time information only as 

the context is not sufficient in varying speed operating 

conditions. As discussed before, the important point of the 

context awareness models is to make the model aware of the 

operating conditions and any other information that 

influences the physical behavior of the assets. This fact is 

perfectly shown in Figure 11 where by using the t-distributed 

stochastic neighbor embedding (t-SNE) technique the feature 

distribution of the second to the last fully connected layer in 

the regressor part of the CA-DANN model is visualized. This 

layer outputs a 32-dimensional feature space that t-SNE can 

reduce the dimension to a lower one such as a 2-dimensional  

feature space which is easier to visualize. 

Table 5. MSE and MAE of the predicted RUL of the SM 

bearings in minutes 

Bearing Error CNN 
DA

NN 

CA-DANN 

(time context) 

CA-

DANN 

A148 
MSE  6.22 6.76 6.68 6.02 

MAE 4.68 4.91 5.14 4.51 

A150 
MSE  7.46 6.45 7.04 6.03 

MAE 6.12 5.42 5.75 4.71 

A153 
MSE  3.80 3.44 3.17 2.13 

MAE 3.19 2.65 2.83 1.77 

A154 
MSE 6.69 6.81 6.39 4.72 

MAE 5.57 5.60 4.73 3.81 

A155 
MSE 6.97 5.94 6.78 4.20 

MAE 5.44 4.79 5.19 3.58 

A156 
MSE 5.44 5.49 4.51 3.12 

MAE 4.40 4.79 3.89 2.58 

Figure 11 shows how contextual information helps the CA-

DANN model distinguish between different speeds, resulting 

in better predictions. More importantly, context awareness 

makes the model more robust against the major changes in 

the speed profile. For example, bearing A156 underwent two 

major changes in operating speed after the anomaly. As 

depicted in Figure 9, major speed changes from 2000 rpm to 

1000 rpm in a short time interval led the CNN and DANN 

models to have a higher error in the predictions. However, the 

CA-DANN model effectively addresses these abrupt changes 
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by understanding that the high fluctuations of the amplitude 

of the signals at these moments are not due to the degradation 

severity but because of the operating speed. 

 

Figure 11. t-SNE visualization of the second to the last layer 

of the regressor part, bearing A156, (a) DANN, (b) CA-

DANN 

5. CONCLUSION 

The objective of this study is to utilize a phenomenological 

model to create synthetic run-to-failure datasets under 

varying speed operating conditions for training the machine 

learning models. Additionally, the proposed CA-DANN 

model facilitates the incorporation of contextual information 

in a deep-learning model for prognosis. The suggested 

approach demonstrates that integrating contextual 

information into the architecture of the DANN model enables 

the model to gain knowledge about both the operating 

conditions and the sequential order of measurements. 

Although the method for encoding the contextual information 

does not convey any physical meaning, it can help the 

network differentiate between the signals coming from 

different operating conditions and find the relative 

relationships between them. The experimental results on the 

SM dataset prove that the CA-DANN model is able to digest 

the speed changes to some degree and offers more reliable 

predictions at the moment of major speed changes. Thanks to 
the t-SNE technique, the fact that CA-DANN can 

discriminate between different operating conditions has been 

shown. On the other hand, leveraging the phenomenological 

model and simulated signals to create a synthetic run-to-

failure dataset enhances the cost-effectiveness of the 

proposed approach by minimizing the reliance on historical 

run-to-failure datasets. The flexibility of the proposed 

method in recognizing the speed influences on the amplitude 

of the signals makes it applicable to the various periodic 

speed profiles, and also different speed ranges, including 

those that may or may not pass the resonance frequency of 

the structure. Experimental results have shown the capability 

of the proposed method compared to the models that are not 

informed of the contextual information. 
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