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ABSTRACT 

Nowadays, lots of data are generated in industries using 
vibration sensors to evaluate the equipment’s working 
condition and identify faults. A significant challenge is that 
only a small fraction of data can be transmitted for intelligent 
fault diagnosis and storage. The edge processing capacity is 
often insufficient for advanced analysis due to time and 
resource constraints. The neuromorphic signal encoding 
scheme efficiently reduces the data rate by encoding relevant 
signal changes into spike trains while discarding redundant 
information and noise, enabling energy-efficient 
neuromorphic processing. Due to the presence of dominant 
operational features and noise in the original measurements, 
signal pre-processing is required to extract the relevant 
features before spike coding and processing. The work 
investigates the effects of different filter banks (pre-
processing methods) on the spike encodings for vibration 
measurements from bearings. This also includes bearing fault 
features diagnosis based on statistical analysis of generated 
spikes. The comparative analysis is made for benchmarking 
different signal pre-processing methods (e.g., envelope, 
empirical mode decomposition (EMD), and gammatone 
filter) on bearing vibration datasets. An event-triggered 
scheme, i.e., Level-crossing analog-to-digital converters 
(LC-ADCs) is applied to encode the vibration measurement 
to spikes. Inter-spike intervals (ISIs) statistics are analysed 
for fault diagnosis of bearings. The results obtained for 
CWRU bearing databases indicate a possible fault detection 
and diagnosis with significant data rate reduction and an 
opportunity for improved computational efficiency. With the 
developed approach, the envelope filter is found to be the 
most efficient of all. This work enables a new approach to 

improve the energy efficiency of condition monitoring 
systems and further sets a new course of research 
development in this area using neuromorphic technologies. 

1. INTRODUCTION 

Machine condition monitoring plays a crucial role in today’s 
fiercely competitive market. It serves as a powerful tool for 
industrial systems to fine-tune their management strategies 
(condition-based maintenance, remaining useful lifetime, 
degradation status, and environmental factors) and streamline 
their processes, enabling them to stay ahead of the 
competition (Ingemarsdotter et al., 2021). Therefore, it also 
brings a wealth of benefits to the industrial sector. By swiftly 
identifying potential equipment failures, it acts as a proactive 
guardian, preventing costly breakdowns and reducing 
unplanned downtime. Moreover, it is a cost-saving protector, 
helping industrial systems optimize maintenance efforts and 
allocate resources wisely. The global machine condition 
monitoring market is projected to soar to USD 4 billion by 
2027, driven by escalating demand from oil and gas, power 
generation, and automotive industries (MarketsandMarkets, 
2023). Machine condition monitoring systems led to a 
remarkable 24% drop in unplanned downtime (Ault & 
Bradley, 2022a) and a significant 10-25% decrease in 
maintenance expenses (uit het Broek et al., 2021; Yeardley et 
al., 2022). 

Vibration analysis is a widely employed tool for condition 
monitoring of rotating machinery (Strömbergsson et al., 
2020). It enables the early detection of faults and ensures 
optimal operational efficiency. By utilizing vibration 
analysis, machinery health can be continuously monitored, 
enabling the identification of fault signatures associated with 
issues such as misalignment, unbalance, bearing wear, or gear 
damage (de Sá Só Martins et al., 2021; Mohammed & 
Rantatalo, 2020; Strömbergsson et al., 2021).  
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The recent advancement in data-driven models for machine 
condition monitoring relies on the richness of available 
information within measured data to uncover insights about 
the underlying process (Nguyen et al., 2022; Quiñones-
Grueiro et al., 2019). Vibration-bearing datasets, including 
FEMTO-ST, IMS, XJTU, CWRU, MPFT, and Paderborn, 
provide a wide range of fault scenarios and realistic vibration 
signals (Smith & Randall, 2015a; X. Zhang et al., 2021). 
These datasets are invaluable resources for evaluating and 
enhancing diagnostic methods, thereby facilitating algorithm 
development and comparative studies in the field of condition 
monitoring for bearings (Kumar et al., 2022; Sahu & Rai, 
2022; Wang et al., 2023; Zabin et al., 2023). 

Applying appropriate filtering techniques and noise reduction 
algorithms during data pre-processing significantly improves 
the quality and reliability of the signal analysis process (Yu 
et al., 2022). Filtering techniques have demonstrated their 
effectiveness in vibration signal analysis, with a proven track 
record supported by numerous studies. Various methods, 
such as the fast kurtogram, WPT, empirical mode 
decomposition (EMD), envelope, gammatone, and blind 
filters, are widely utilized in this field to enhance the 
understanding and interpretation of vibration signals. These 
techniques effectively enhance the comprehension of 
vibration signals, leading to accurate fault detection and 
reliable condition monitoring (Antoni, 2021a; Miao et al., 
2022; Peeters et al., 2020; Sahu & Rai, 2022; K. Zhang et al., 
2021).  

The advent of Industry 4.0 has revolutionized industrial 
processes, leading to a significant increase in the adoption of 
machine learning practices. (Ahmer et al., 2022; Attoui et al., 
2020; Hoang & Kang, 2019; Kuncan et al., 2020; D. Zhang 
et al., 2021; Zuo et al., 2022) The increasing interest in 
“black-box” solutions can be attributed to their robustness 
and high performance in tackling complex and nonlinear 
problems (Hoang & Kang, 2019). The application of these 
solutions brings significant benefits to industries, including 
optimized maintenance activities, improved equipment 
uptime, reduced operating costs, and enhanced overall 
operational efficiency (Ault & Bradley, 2022b; uit het Broek 
et al., 2021; Yeardley et al., 2022). The development of 
advanced statistical and intelligent predictive maintenance 
techniques aims to optimize the diagnostic approach by 
leveraging recorded data. In the practice of continuous 
monitoring and earlier diagnosis, where the handling of large 
volumes of data is essential, energy plays a crucial role. Key 
components involved in this process include sensors for data 
capture, wired or wireless (WLAN/Zigbee/Bluetooth) 
connections for data transmission, filters for pre-processing, 
and GPU for efficient data analysis. The energy expenditure 
on condition monitoring in industries is also increasing every 
year with the increase in its market size (CAGR rate of 7.8 % 
from 2022 to 2027 (MarketsandMarkets, 2023)).   

In monitoring systems, on-chip feature extraction and 
compression techniques are applied after sampling signals 
from an analog-to-digital converter (ADC) (Deepu et al., 
2018; Dennler et al., 2021; Li et al., 2020). A recent 
advancement in ADC technology is the development of level-
crossing ADCs (LC-ADCs), which integrate compression 
during the data acquisition stage (Saeed et al., 2021; Van 
Assche & Gielen, 2020). This approach is gaining interest in 
converting continuous signals to neural spikes (spike data), 
as it effectively reduces on-chip bandwidth and energy 
consumption (Saeed et al., 2021). However, to date there is 
no comparison of the effect of different filter-bank choices on 
the signal representation obtained with LC-ADCs for energy-
efficient bearing condition monitoring purposes.    

This work investigates alternative methods to generate a 
succinct event-based representation of condition monitoring 
vibration signals, e.g., enabling low-power edge processing 
applications. The main contributions are:  

1. Comparison of EMD, Envelope, and Gammatone 
filter banks for signal decomposition.   

2. Application of LC-ADCs for spike coding of the 
decomposed vibration signals (transforming time 
domain signals to spike trains). 

3. Fault diagnosis based on spike timing analysis using 
inter-spike interval histograms. 

The schematic representation of the workflow is given in 
Figure 1.  

2. DATA AND DECOMPOSITION 

Vibration-based machine condition monitoring relies on 
dataset selection and pre-processing techniques to extract 
relevant fault features. The Case Western Reserve University 
(CWRU) dataset is utilized in this study, and three different 
filter banks are employed for signal decomposition. The 
objective is to compare and identify the most suitable filter 
bank for vibration analysis using spike encoding, prioritizing 
reduced latency and energy consumption.  

2.1. Dataset 

The Case Western Reserve University (CWRU) vibration 
dataset is widely recognized and utilized for machine 
learning in fault diagnosis and prognostics of rotating 
machinery (Loparo, 2012). The dataset specifically 
emphasizes the bearings of the electric motor main shaft, 
which is connected to a dynamometer for generating braking 
torque. One of the motor bearings, an SKF deep groove ball 
bearing of type 6205-2RS JEM, is employed for testing. 
During data acquisition, accelerometers are strategically 
placed on the motor housing to capture vibrations across 
various operating conditions. 
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Figure 1. Schematic representation of the work. 

 
The dataset consists of vibration signals categorized into four 
distinct classes of motor bearing faults: outer race fault 
(ORF), inner race fault (IRF), ball fault, and normal baseline 
data (NBD). These faults are introduced by electro-discharge 
machining to create fault diameters ranging from 0.1778 to 
0.7112 mm on the rolling elements, inner and outer races. The 
braking torque by the dynamometer varies at four levels, 
leading to four different power levels of the motor,0, 1, 2, and 
3 horsepower while maintaining a constant motor speed, 
which are referred to as the four different load stages of the 
system. Specifically, the corresponding motor speeds for 
these torque levels are 1796, 1772, 1750, and 1730 
revolutions per minute, respectively.  

Table 1. Details of Data Used in the Analysis 

Data Sets Operating Details 
• Normal 

Baseline Data 
(NBD) 

• Outer Race 
Fault (ORF) 

• Inner Race 
Fault (IRF)   

Load-stage 2 Hp 
Motor speed 1750 RPM 
Sampling 
Frequency 

48 kHz 

Sampling time 10 s 
Fault Diameter 0.1778 mm  

The purpose of utilizing the CWRU dataset in this study is to 
establish a benchmark and facilitate standardized 
comparisons. The details of the selected datasets are outlined 
in Table 1. Among these datasets, there is one healthy dataset 
and two faulty datasets. This selection allows for a significant 
comparison between the faulty and normal datasets in terms 
of fault diagnosis. The dataset with a minimum fault diameter 
of 0.1778 mm is only selected here, as in Magar et al., 2021 
to establish proof-of-concept of our proposed model. This 
way, the problems associated with other parts of the CWRU 
data set are avoided (Li et al., 2020; Smith & Randall, 2015; 
Yang et al., 2018). 

2.2. Filters 

Filter banks are utilized to decompose a signal, enabling the 
separation of its different frequency components. This allows 
for identifying and analyzing specific vibration patterns or 
anomalies with enhanced accuracy and clarity (Antoni, 
2021b; Holguín-Londoño et al., 2016). This work 
decomposes the signals using an envelope, an empirical mode 
decomposition (EMD), and gammatone filter banks. These 
filters are analyzed to evaluate their compatibility and 
identify the most efficient filter for diagnosing faults in 
bearings based on vibration signals with the proposed 
approach. In this work, the analysis focuses on envelope and 
EMD filter banks due to their widespread usage in vibration 
signal decomposition. This approach allows for a standard 
comparison, enabling the comparison of both methods with 
the bio-inspired cochlea model, also known as the gamma 
tone filter bank.    

2.2.1. Filter bank 1: Envelope.  

An envelope filter bank is used in vibration signal processing 
of bearing to distinguish the impacts of faults from the noisy 
environment. It isolates the high-frequency component 
(related to bearing defects) from the low-frequency 
component (noise) (Randall & Antoni, 2011) (Wei et al., 
2021). In the context of bearing analysis, the envelope signal 
reveals more defect information (periodic impacts of defects) 
than the raw signal (Chen et al., 2022; Tse et al., 2001). The 
envelope technique was used to decompose the 0-5kHz area 
into eight channels. Also, a cascade on the upper cut-off 
frequency of the band-pass filter was used before rectification 
and low-pass filtering.  
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2.2.2. Filter bank 2: Empirical Mode Decomposition 
(EMD). 

The EMD filter banks are commonly used in bearings fault 
detection to decompose nonlinear and non-stationary signals 
into intrinsic mode functions (IMFs) (Huang et al., 1998). 
The input signal is decomposed into several IMF components 
through a sifting process, each representing an oscillatory 
signal component with a distinct time scale and band-limited 
nature (Dybała & Zimroz, 2014; Kumar et al., 2023). This 
process represents the original signal as a combination of 
IMFs and a low-order polynomial residue. Combining the 
IMF components with the residue can reconstruct the original 
signal using linear combination techniques (Van et al., 2014). 
Using the method proposed by Huang et al., 1998, the 
vibration measurements are decomposed into eight sets of 
intrinsic mode functions (IMFs).   

2.2.3. Filter bank 3: Gammatone. 

The gammatone filter bank, commonly utilized in audio 
signal processing and speech recognition, emulates the 
frequency analysis of the human auditory system (Slaney, 
1993). Each filter within the bank captures energy within a 
specific frequency band, determined by its center frequency 
and bandwidth. These filters are essential for modeling the 
frequency filtering properties of the basilar membrane during 
cochleagram creation. Each overlapped filter corresponds to 
a specific position on the membrane. The cochleagram 
technique is known for its superior performance in robust 
feature extraction (Y. Zhang et al., 2022). By adjusting the 
central frequency, the filter bank captures information from 
various frequency bands, facilitating the extraction of 
harmonic features (Abdul et al., 2020). The purpose of 
including gammatone filters in this study is to evaluate the 
effectiveness of decomposing vibration signals for bearing 
fault diagnosis. A cascade of eight IIR (Infinite Impulse 
Response) filters with linearly spaced center frequencies is 
used to decompose the vibration measurements. 

3. SPIKE ENCODING  

In signal processing, the first step is the quantization of an 
analog signal in continuous time to obtain the digital 
representation. The conventional means to achieve the 
conversion is analog-to-digital converters (ADC). The 
recommended sampling rate in fault diagnosis of bearing is 
greater than >40kHz for fault diagnosis of bearing (Smith & 
Randall, 2015b). Continuous or real-time monitoring of 
machines consumes energy in transmitting, processing, and 
storing large data. A bio-inspired, neuromorphic model based 
on event-driven (or level-crossing) principles is employed to 
address this issue and improve energy efficiency. This model 
effectively reduces the amount of data processed at the initial 
level, thereby minimizing power consumption. (Weltin-Wu 
& Tsividis, 2013). The analog-to-spike conversion (delta 
encoding), based on the level-crossing analog-to-digital 

converter (LC-ADCs), can efficiently convert continuous 
analog signals into digital representations. The LC-ADCs 
generate (up or down) events only when the change in signal 
is larger than the reference level (threshold), which gives 
remarkable compression properties (He et al., 2022; Safa et 
al., 2023). This adaptive sampling rate efficiently captures the 
signal’s instantaneous spectral content. In sparse signals with 
an occasional high spectral range, fewer samples are needed 
compared to a Nyquist fixed-rate ADC, resulting in direct 
signal compression and reduced power consumption at the 
system level. The optimal sampling rate selection of LC-
ADCs can affect data rate and power consumption (Saeed et 
al., 2021). The challenges in implementing LC-ADCs include 
generating false samples in the presence of noise and 
efficiently representing signals with high amplitude 
precision. The LC-ADCs can be optimized for efficient and 
accurate data conversion by applying noise rejection and 
adaptive precision techniques, see Ye et al., 2021 for an in-
depth discussion. The average event rate is defined by the 
LC-ADCs threshold parameter so that it is above the 
maximum fault frequency of interest, this gives a maximum 
value on the threshold. Furthermore, we checked that the 
selected threshold is well above the noise floor, which gives 
a minimum possible value on the threshold. Thereby we aim 
to represent the relevant information in the signal using a 
minimum event rate. We investigated the effect of further 
increasing the event rate and found that this only contributes 
noise while the spectral peaks are still visible. 

Understanding the encoded spike data information is crucial 
for investigating patterns in neuroscience (Karimov et al., 
2022). A widely used tool for analyzing spike data is 
measuring the distance between spikes, known as the inter-
spike interval (ISI). The ISI is calculated as the time 
difference between two consecutive spikes, representing the 
duration between successive spike occurrences, and stored as 
the ISI. This measure can be used to analyze burst activity in 
the spike train. The detection of bursts using spike intervals 
alone can be challenging at times. However, the ISI 
histogram method is found to be a quantitative, simpler, and 
more reliable approach for characterizing the differences 
between two types of activity patterns. (Cocatre-Zilgien & 
Delcomyn, 1992; Kaneoke & Vitek, 1996). The ISI 
histogram represents characteristics of firing activity, 
bursting behavior, and potential underlying mechanisms and 
is formed by the time binning of ISIs. In the representation of 
the ISI histogram, there are two regions for analyzing bursts: 
intra-burst (i.e., within burst) and inter-burst (i.e., between 
burst). It is important to note that there can be multiple bursts 
depending on the information conveyed by sensory input 
(Ishii & Hosoya, 2020).  

4. RESULTS AND DISCUSSIONS  

This section aims to verify the performance of the proposed 
approach for fault diagnosis using selected parts of the 
CWRU dataset. Specifically, the signals NBD (Normal 
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Baseline Data), ORF (Outer Race Fault), and IRF (Inner Race 
Fault), as discussed in Table 1, are sliced to obtain a sampling 
time of 0.5 seconds. This duration was selected based on the 
recommendation of a minimum of 20-25 repetitions of 
impulses in the selected signals (Strömbergsson, 2020). The 
slicing of these signals serves two purposes: reducing power 
consumption during subsequent processing and evaluating 
the effectiveness of the proposed method with minimal 
required data in machine condition monitoring. Figure 2 
shows the sliced ORF data, and upon visual inspection, the 
minimum repetitive impulses required in the signal for 
vibration analysis can be verified. The same is done with 
NBD and IRF datasets, but only the ORF signals are 
presented here as one example of data to avoid redundant 
representations.  

 
Figure 2. Vibration signal for ORF before filtering  

All signals are processed to decompose in eight parts using 
an envelope, empirical mode decomposition (EMD), and 
gamma-tone filter bank. Each part represents each channel 
for further processing. So, there are eight channels for one 
type of Filter bank with one data set, meaning there are 8 X 3 
channels for all three signals from each filter bank, and in all, 
there are 8 X 3 X 3 channels.  

 
Figure 3. Decomposition result of 8th of envelope filter bank 

for (a) NBD, (b) ORF, and (c) IRF datasets. 
It is not feasible to present all the output here, so only the 
signals obtained from the eighth channels of the envelope 
filter bank for all datasets are shown in Figure 3. This 

selection of narrow-band components allows better visual 
comparisons across the datasets. The presence of repetitive 
impulses can be observed in all the datasets, and this verifies 
the impulses are caused by fault and noise from interference 
of the other components. The comparison of Figure 3(b) and 
Figure 2 shows that noise components are considerably 
reduced. 

 
Figure 4. Spikes train using of (a) NBD, (b) ORF and (c) 

IRF datasets with envelope filter bank. 
The spike train generated for each data set corresponding to 
different filters are obtained, but it is difficult identify the 
fault by visual inspection of change in spike train. In this 
work, the inter-spike intervals (ISIs) of spike trains are 
investigated to understand better the filtering effects in 
bearing fault diagnosis. To further have a comparative 
analysis among all the signals, ISIs histograms are plotted. 
Figures 5, 6 and 7 represent the ISIs histogram for the NBD, 
ORF, and IRF datasets corresponding to the last channel of 
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all three filter banks. In Figures 5, 6, and 7, the count on the 
‘Y’ axis represents the number of intervals.  

 
Figure 5. ISIs Histogram of NBD for (a) Envelope, (b) 

EMD, and (c) Gammatone filter banks 
The high population of small-time intervals can be observed 
in a few numbers of bins, and large-time intervals are 
widespread over a large number of bins with low populations 
(Pasquale et al., 2010). For the NBD dataset, there is a 
number of peaks for the envelope filter bank in Figure 5(a), 
but there are a few peaks with EMD and gammatone filter 
banks shown in Figure 5(b) and Figure 5(c). This shows the 
distribution of spikes randomly over bins, which shows the 
presence of noise in signals. 

 
Figure 6. ISIs Histogram of ORF dataset for (a) Envelope, 

(b) EMD, and (c) Gammatone filter banks 
  Figure 6, represents the ISIs corresponding to the ORF 
dataset, t. The first peak is near 0 ms, which shows the intra-
burst, while the second peak at 9 ms corresponds to the inter-
burst (Cotterill & Eglen, 2018). The burst can be clearly 
observed and identified from the visual inspection of these 
figures. The second peak at 9 ms is present because of the 
outer race failure, which is related to the outer race fault 
frequency of 102 Hz. This shows that the developed method 
can diagnose the fault in the bearing using vibration signals. 

 
Figure 7. ISIs Histogram of IRF dataset for (a) Envelope, 

(b) EMD, and (c) Gammatone filter banks 
The method can be further verified with another dataset, i.e., 
ORF. Figure 7 represents the ISIs corresponding to the ORF 
dataset, there are number of peaks in the with envelope filter 
bank, but few with the EMD and gammatone filter banks. 
But, the peaks show a repetition at an interval of 6 ms, which 
shows the presence of inner race fault and is equal to the fault 
frequency of 157.8 Hz. This shows the effectiveness of the 
proposed method in fault diagnosis of the bearing. 

5. CONCLUSIONS   

This work investigates alternative methods to generate event-
based representations of condition monitoring vibration 
signals for bearing fault diagnosis. For the smallest (0.1778 
mm) outer/inner race faults in the CWRU dataset, fault 
signatures are seen in spike interval statistics using all three 
investigated filter banks (EMD, Envelope, and Gammatone). 
However, only in the case of the envelope filter bank inter-
spike intervals corresponding to bearing fault frequencies are 
dominant. Also, for the envelope filter bank this is the case 
for all channels, which is not the case for the other filter 
banks. These results demonstrate that the choice of filter bank 
is important in the design of LC-ADCs for event-based 
processing of condition monitoring vibration signals, as the 
number of events that need to be generated and processed to 
achieve the desired performance (signal-to-noise ratio, etc.) 
will influence the power consumption of the system. The LC-
ADC with an average spike rate of 300 Hz is found to be 
sufficient to encode the fault information present in the 
signals considered here, provided that the filter transfer 
function is appropriately selected.  

On the contrary, if an inappropriate filter is used, many of the 
generated events will encode information that is redundant or 
unrelated to the faults and render unnecessary energy costs 
for downstream processing. Thus, balancing between fault-
specific solutions and generic systems that can generalize 
across machine and bearing types is a complex co-design 
problem that requires optimization of both the filter bank and 
the LC-ADCs with constraints from the applications.    
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