Sensitivity enhanced method for fault detection and prediction of elevator doors using a margin maximized hyperspace

Minjae Kim^{*}, Seho Son, and Ki-Yong Oh *Presenter Applied Dynamics and Intelligent Prognosis Laboratory Department of Mechanical Convergence Engineering Hanyang University

HANYANG UNIVERSITY

Contents

Motivation & Background

Methodology

Experiment

Result & Discussion

Conclusion & Future work

Motivation & background

Increasing number of elevators in urban area

Apartments in Seoul https://en.yna.co.kr/view/AEN20201202004000320

Necessity for effective elevator door fault detection and diagnosis (FDD) methods

Effective FDD methods for elevator doors are required

Motivation & background

Existing FDD methods for solving elevator door FDD problems

Effective solution for real-world FDD problem is required

Motivation & background

- The number of elevators in urban area containing lots of buildings is increasing fast
- > The elevator faults, especially for doors frequently occur
- Accurate but robust FDD methods are required

Challenges

- Extreme imbalance between normal and scarce fault data
- Impossible to define RUL of the complex system
- > Impossible to detect degrading sign on binary dataset only containing normal and faulty data

Research goal

- Develop accurate FDD method for solving highly imbalanced real-world dataset
- Define RUL focusing on each component instead of the entire system
- Predict faults even in the absence of degrading data

Phase A. Preprocessing

2 Methodology

- > Phase B. Model construction
 - Margin Maximized Hyperspace (MMH)

Bayesian Optimization for enhanced stability

Maximize sensitivity separating normal and faulty clusters with VAE

2 Methodology

Phase C. Application of MMH

> Fault detection and prediction using MMH

Application of MMH for fault detection and prediction

HYU

Elevator door operating dataset

Data acquisition

5 real-number data

- Door location
- Reference signal
- Feedback signal

10 Boolean-type signal

- Command signal
- Limit signal

List of features used for training and testing

Feature number	Feature name
1-3	Door location (Peak, mean, RMS)
4-6	Reference speed (Peak, mean, RMS)
7-9	Ecodback arcod (Pock mean, RMS)
10-12	1 features in total mean, RMS)
13-15	Reference torque (Peak, mean, RMS)
16-18	Feedback torque (Peak, mean, RMS)
19-21	Differential torque (Peak, mean, RMS)

Elevator door operating dataset

- > Time dependency of elevator door motor health state
 - Open strokes

Reason for selecting open strokes for validation

- Safety issue → Purely opened by motor torque, mostly closed by inertia
- Health state of door motor → Less clear in close strokes (Degrading strokes X)

Redundancy for discussing both strokes

Only used open stroke dataset for validation

Result & Discussion

Effect of the latent space regulation

Variance of normal/faulty clusters

Comparison with other types of autoencoders

Demonstrates locational constancy and high cohesiveness

Result & Discussion

Validation for fault detection

NPV comparison

Invariant decision line of MMH

Demonstrates high accuracy for fault detection

Result & Discussion

- Validation for fault prediction
 - > Fault prediction using degrading strokes

Effective for fault prediction under absence of degrading data

Conclusion & Future work

Conclusion

- MMH (Margin-Maximized Hyperspace) method is effective at detecting and predicting faults in highly-imbalanced dataset
- This method maximizes sensitivity separating two imbalanced clusters and shows locational constancy at latent space
- Knowledge-based feature manipulation improves accuracy, so that the method is effective at detecting faults
- Distance-based RUL estimator effectively detect potential faults and can quantitively predict RULs even without degrading data

Future work

- > Validation of the method with elevators at other locations
- > **Embed** the method for real-time FDD of operating elevators

Thank you