A sequential hybrid method for full remaining useful life prediction of bearings in rotating machinery under varying speed conditions

> Koen Geurts – Research Engineer PHM23 conference Salt Lake City 31/10/2023

FLANDERS

DRIVING INNOVATION IN MANUFACTURING

Flanders Make

Research institute to supports the Flemish industry to increase its international competitive strength

Manufacturing industry

Industry with

challenges

manufacturing

Bridging the gap between academic research and industrial implementation

- Challenges
- Background
- Model-based RUL prediction
- Data-driven RUL prediction
- Sequential hybrid method
- Conclusions

Sequential hybrid method for RUL prediction Challenges

RUL prediction for bearings

- Availability of data faulty and run-to-failure data
- Smart maintenance strategies need RUL prediction during entire lifetime
 - RUL prediction after anomaly/fault detection not sufficient
 - Short degradation time wrt full lifetime
- Varying operating conditions

FAG 6205-C-TVH

stress riser

Rolling direction

Challenges Data - Flanders Make data-set

- +200 bearings run-to-failure (20g)
- Accelerated lifetime tests (ALT)
 - High load + damage initiation
- Vibration and/or acoustic measurements
- **Different speed and loads + varying speed**

Surface fatigue fault at inner race

Challenges

RUL prediction during entire lifetime

Challenges

Varying operating conditions

Varying speed tests

- Challenges
- Background
- Model-based RUL prediction
- Data-driven RUL prediction
- Sequential hybrid method
- Conclusions

Model-based RUL prediction

Model-based RUL prediction

Historical data

- Histogram of lifetime & anomaly detection
- Average time of degradation (phase 3)
- L10 bearing rating life (1h:15)
- L50 average bearing life (3h:15)

Prior knowledge/estimates

- L10 bearing rating life
- L50 average bearing life
- Weibull or log-normal distribution
 - Weibull:
 - Shape = 2.5 (literature: 0.7 3.5)
 - Scale = L50 average bearing life

Model-based RUL prediction

- Distribution of End-of-Life
- Distribution of "Moment of anomaly detection"

Bearing vibration feature

4000

Accelerated testing time [seconds]

000

2000

3000

RUL₅₀ determination

Model-based RUL prediction

RUL₅₀ determination

- **Distribution of End-of-Life Distribution of** "Moment of anomaly detection"
 - Model-based RUL prediction RUL₅₀

4000

000

2000

3000

- Challenges
- Background
- Model-based RUL prediction
- Data-driven RUL prediction
- Sequential hybrid method
- Conclusions

Sequential hybrid method for RUL prediction Data-driven RUL prediction

Sequential hybrid method for RUL prediction Data-driven RUL prediction

Feature extraction

- Statistical time-domain features (e.g. RMS, peak-to-peak, impulse factor ...)
- Statistical frequency-domain features (e.g. max amplitude, frequency of max amplitude ...)
- Fault frequency features (e.g. BPFO, BPFI, BDF ...)
- (can be extended with ML features or any other relevant features)

Data-driven RUL prediction

Auto-encoder to generate health indicator

- Smart feature selection limited AE size
- Only limited healthy training data required
- Reconstruction error = health indicator
- Individual reconstructed features can be used for diagnostics
- Capable of coping with varying operating conditions

Sequential hybrid method for RUL prediction Data-driven RUL prediction

Remaining Useful Life prediction

- Kalman filter with exponential degradation model fitted to the health indicator
- Extrapolation towards threshold results in RUL
 Threshold based on historical end-of-life data (if available) or engineering knowledge

- Challenges
- Background
- Model-based RUL prediction
- Data-driven RUL prediction
- Sequential hybrid method
- Conclusions

Sequential hybrid method

- Vibration health indicator & RUL₅₀ computed in parallel
- Data-driven model after anomaly is detected

Sequential hybrid method

- Hard switch between methods once an anomaly is detected
- Short living bearing (less than average lifetime)

L10 Bearing rating life True RUL **Model-based RUL Data-driven RUL**

Sequential hybrid method

- Constant operating conditions
- Short living bearing (less than average lifetime)

 Long living bearing (double of average lifetime)

Sequential hybrid method

- Constant operating conditions
- Short living bearing (less than average lifetime)

- Data-driven RUL prediction
 - oscillations due to stepwise nature of spalling

Sequential hybrid method

- Varying operating conditions
- Short living bearing (less than average lifetime)

 Long living bearing (double of average lifetime)

Sequential hybrid method

- Varying operating conditions
- Short living bearing (less than average lifetime)

- Data-driven RUL prediction
 - oscillations due to varying RPM and spalling

Conclusions

- RUL prediction for entire lifetime of bearing
- Limited healthy and faulty data required
- Method handles varying operating conditions
- Applicable for different models and components

Ongoing development

- Apply expert/engineering knowledge to set up Bayesian network
- Fiber optic strain measurements

Koen Geurts Koen.Geurts@flandersmake.be