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ABSTRACT 

This paper provides effective features that can be used to 

estimate the level of valve leakage in reciprocating 

compressors. It is expected that the level of leakage will 

change the shape of the pressure-volume diagram. This 

method constructs a feature space using the polytropic 

exponent during the expansion and compression phases as 

well as the discharge and suction valve loss power. These 

features are extracted by measuring in-cylinder pressure, 

discharge pressure, suction pressure, and the crank angle. 

Linear and quadratic discriminant classifiers are used as 

machine learning approaches to classify the valve health of 

the compressor. This method is implemented on a single-

stage double-acting industrial gas compressor operating on 

air. Faults are seeded by precisely machining valve poppets 

to simulate common valve leakage. The approach shows a 

high classification accuracy in determining the degree of 

leakage and shows promise for future work in prognostics. 

1. INTRODUCTION 

Reciprocating compressors are commonly used in the oil and 

gas industry because of their reliability with a variety of 

gases. While they have been improved on over the years, they 

still have maintenance costs that can be reduced. A large 

portion of repair and maintenance costs are associated with 

the valves (Shirmer et al. 2004). Condition monitoring 

approaches have been implemented to predict when valves 

should be serviced to combat these costs. Two common 

condition monitoring approaches for valves are done by 

analyzing the vibrations of the valve manifolds or by 

analyzing the P-V diagram. 

 

For vibration analysis, accelerometers are strategically 

placed on valve manifolds to accurately represent the actions 

of the compressor such as valve opening and closing due to 

the pressure differential. This happens cyclically, so the data 

is often converted to the time-frequency domain for each 

cycle. Pichler et al. (2011) have created a method to classify 

valve health while the compressor is operating at a constant 

load. The method takes the cumulative difference between 

the time-frequency matrix of a healthy dataset and the time-

frequency matrix of an unknown health dataset. If the 

cumulative difference is less than a threshold, the unknown 

dataset is classified as being healthy. An improvement on this 

method is to calculate more features that aren’t affected by 

the load. Pichler et al. (2015) created a spectrogram which 

was the difference between the time-frequency 

representations for two cycles. Features were then extracted 

and a support vector machine (SVM) algorithm classified 

valve health with high accuracy. Another approach to valve 

health classification is to implement image processing on the 

time-frequency representation of non-invasive vibration data. 

The authors pursued both a Bayesian statistical-based 

approach (Kolodziej and Trout (2016)) and one based on a 

deep learning method (Chesnes and Kolodziej (2021)). The 

Bayesian classifier used image-based statistical features 

derived from a region of interest in the Wigner-Ville 

spectrum and was compared with a convolutional neural 

network implementation using the  region of interest image 

as the direct input to the classifier. In both cases the 

algorithms had classification accuracies greater than 90%. 

P-V diagrams are another common method in industry for 

health monitoring of valves. The P-V diagram is also cyclical 

and takes into account a combination of mechanical actions 

and thermodynamic principles. Operators observe various 

features of the diagram and can diagnose faults when those 

features deviate from expectations. Ideally, this approach can 

be automated, thereby reducing operator costs of 
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reciprocating compressors. Brüel and Kjæl Vibro (2015) 

suggest that the polytropic exponent can be estimated and 

used in health monitoring. They explore the reliability of 

sensor placement and conclude that the polytropic exponent 

will deviate with faults. Phillippi (2016) explores the 

thermodynamics of reciprocating compressors with 

explanations based on the P-V diagram. They go over 

inefficiencies associated with compressors that affect the 

thermodynamics in the cylinders. Some of these can be 

calculated through the P-V diagram such as valve loss power. 

Other factors such as the type of gas used and the speed of 

the compressor are explored and show how they affect these 

values as well. The valve loss power has been theoretically 

discussed as useful compressor performance metric (Phillippi 

2016). However, to the best of the authors’ knowledge, it has 

not been used as a feature in health monitoring algorithms. 

The proposed method uses real-world data collected on a 

single-stage, dual-acting reciprocating compressor fitted with 

a variety of sensors. The pressure placements are as follows: 

in-cylinder pressure on the head and crank-side, suction 

pressure, and discharge tank pressure. The crank angle was 

measured by an encoder and is used to calculate the cylinder 

volumes. The features for this classifier are the polytropic 

exponent on the expansion and compression phases, 

discharge valve loss power (DVLP), and suction valve loss 

power (SVLP). The leaking poppets are seeded in the head-

side discharge valve to varying degrees by increasing the 

number of leaky poppets. The features are then used to train 

a Bayesian classifier, with an 80-20 training to testing data 

split. The method is able to diagnose valve leakage to a high 

degree of using sensors commonly used in reciprocating gas 

compressors. 

2. EXPERIMENTAL SETUP 

Experimental data was collected on a single-stage, dual-

acting reciprocating compressor while compressing air. The 

compressor operates at a nominal speed of 6.4Hz, while the 

speed is measured with a crank encoder. The cylinder 

dimensions are known so the volume of each cylinder is 

calculated for every data point. The data also includes the in-

cylinder pressure for both cylinders. The suction pressure is 

included instead of assuming a constant inlet pressure to 

increase the accuracy of the features. An air filter covers the 

inlet manifold causing notable pressure fluctuations. The 

compressed air is discharged into an anti-pulsation tank that 

slowly releases air back into the environment through a back 

pressure valve, and the pressure inside the tank is recorded. 

All of the data is recorded at 25.6kHz. The load options for 

the compressor are 0%, 50%, and 100%, and when set to 

50%, the crank-side of the compressor operates normally, 

while the head-side inlet valves are forced open. For the 

100% load option, both sides of the compressor compress air 

producing the highest pressure output. Figure 1 shows the 

compressor setup with a front and side view. 

a)  

b)  

Figure 1. a) Front view of the reciprocating compressor. b) 

Labeled side view of the reciprocating compressor. 

 

Faults are seeded into the head-side discharge valve which is 

on the right side in Figure 1 and data is collected while the 

compressor is operating at 100% load. There are 5 different 

levels of leakage with machined poppets simulating a 

chipped poppet. Figure 2 is showing the poppet array inside 

the valve assembly. Figure 3 is showing one of the machined 

poppets that is put inside the assembly. The first level of 

leakage is healthy data and the remaining 4 others have 

increasing levels of leakage. More poppets with a leak are 

added to the poppet array to increase the level of leakage 

representing multiple poppets being chipped. 

 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

3 

 
Figure 2. The poppet array in the valve assembly. 

 

 
Figure 3. A machined poppet. 

3. FEATURE EXTRACTION 

3.1. Polytropic Exponent 

In an adiabatic compression or expansion process, the 

polytropic exponent is equal to the ratio of specific heats for 

a gas, or 𝑛 = 𝑐𝑝/𝑐𝑉  for an ideal gas, where 𝑐𝑝 is the specific 

heat at constant pressure and 𝑐𝑣  is the specific heat at constant 

volume. For a real process, the polytropic exponent can take 

on different values depending on the enthaply entering or 

leaving the working gas. Hence, estimating it’s value should 

give some indication of the amount of leakage in the system. 

Equation (1) is used to calculate the polytropic exponent in 

this work. The polytropic exponent on the expansion phase is 

calculated when the volume of the cylinder is at 30 𝑖𝑛3 and 

40 𝑖𝑛3 , and the polytropic exponent for the compression 

phase is calculated when the volume of the cylinder is at 70 

𝑖𝑛3 and 120 𝑖𝑛3. The specified volumes are also shown in 

Figure 5 in the zoomed-in plot of the compression phase for 

all the P-V diagrams. To get the points for the polytropic 

exponent, 10 data points are averaged around the volumes to 

reduce the impact of measurement noise.  

 𝑛 = ln (𝑝2 𝑝1⁄ ) ln (𝑣1 𝑣2⁄ )⁄  (1) 

where; 

𝑛 =  𝑝𝑜𝑙𝑦𝑡𝑟𝑜𝑝𝑖𝑐 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 

𝑝1 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 1, 𝑝𝑠𝑖𝑎 (𝑃𝑎) 

𝑝2 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 2, 𝑝𝑠𝑖𝑎 (𝑃𝑎) 

𝑣1 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 1, 𝑖𝑛3 (𝑚3) 

𝑣2 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 2, 𝑖𝑛3 (𝑚3) 

The maximum pressure for the different leakage levels drops 

by about 3 psi with the higher levels of leakage as shown in 

Figure 4. Leakage can occur slowly over time and the 

pressure regulator can be adjusted to keep the discharge tank 

pressure as high as needed. However, the proposed method 

does not adjust the backpressure regulator with increased 

leakage. Figure 5 is showing a zoomed in portion of the P-V 

diagrams where the polytropic exponents were calculated. 

 

Figure 4. P-V diagram for all levels of leakage. 

 

Figure 5. Compression phase of the P-V diagram with the 

markers for the polytropic exponent. 

3.2. Valve Loss Power Estimation 

The discharge tank pressure is needed to calculate the 

discharge valve loss power, and suction pressure is needed to 

calculate the suction valve loss power. Figure 6 shows a 

sample of data with the discharge tank pressure and suction 
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pressure. The suction valve loss power is calculated by 

numerically integrating the area between the suction pressure 

and the cylinder pressure over the cylinder volume and is 

labeled “A” in Figure 4. While the discharge valve loss power 

is the area between the cylinder pressure and discharge tank 

pressure and is labeled “B” in Figure 6.  

 

Figure 6. P-V Diagram with Discharge Tank Pressure and 

Suction Pressure 

 

Three different feature combinations are used to train the 

classification algorithms. They are summarized in Table 1 

where nE and nC are the polytropic exponents on the 

expansion and compression phases, respectively. Feature 

vector 2 is explored because the two features are directly 

affected by the seeded faults. The polytropic exponent on the 

compression phase is affected because air leaves the cylinder 

before the valves open. The last vector is explored because 

the data shows separability between the degradation levels. 

 

4. CLASSIFICATION 

In practical applications, the selected features are expected to 

take on a continuous range of values as a function of leakage. 

Hence, such features may be appropriate for fault severity 

estimation and prognostics. To evaluate their effectiveness 

for fault estimation and prognostics, a quantitative measure 

of ground truth is needed – i.e. how much leakage is 

occurring. However, since the leakage is seeded in a discrete 

fashion, namely the number of affected poppets, a simple 

approach to evaluating the performance of the polytropic 

exponent and valve loss power in the context of fault 

detection is to formulate the problem as a classification 

problem. In a classification setting, features that result in high 

separation imply high sensitivity to the seeded faults. For this 

reason, the performance of the proposed features will be 

evaluated by their classification accuracy. 

To formulate the present analysis as a classification problem, 

this work uses a linear discriminant classifier (LDC) and a 

quadratic discriminant classifier (QDC) to assess the health 

of the valves. These were selected because they are purely 

statistical and do not require hyperparameter tuning or 

iterations to converge to a solution like other classification 

algorithms. Bayesian inference is employed by QDC and 

LDC to classify which health condition is the most probable. 

The possible degradation levels are “0”, “1”, ”2”, ”3”, and 

“4” which correspond to number of machined poppets in the 

valve assembly. The objective function for these classifiers is 

in Equation (2), and Equation (3) is the a posteriori 

probability of an unknown feature vector being in a certain 

class, 𝑘.  

𝐽(𝒙) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜔{∑ 𝐶(𝜔𝑖|𝜔𝑘)𝑝(𝒙|𝜔𝑘)𝑝(𝜔𝑘)4
𝑘=0 }         (2) 

𝑝(𝒙|𝜔𝑘) =
1

√(2𝜋)𝑑|𝚺k|

exp (−
1

2
(𝒙 − 𝛍k)𝑇𝚺k

−1(𝒙 − 𝛍k)) (3) 

where; 

𝒙 = the feature vector of the unknown sample 

ωi = degradation level i; i = 0, 1, 2, 3, 4   

𝑑 = the number of features (2, 4)   

𝐶(𝜔𝑖|𝜔𝑘) = the cost of selecting class 𝜔𝑘  when 𝜔𝑖  is the 

true class. 

𝑝(𝒙|𝜔𝑘) = the a posteriori probability of the feature vector 

being with class 𝜔𝑘  

𝑝(𝜔𝑘) = the a priori probability of the feature vector being 

with class 𝜔𝑘 

𝝁𝑘 = the mean vector of class k 

𝜮𝑘 = the covariance matrix of class k 

LDC and QDC both assume an a posteriori probability that 

is a multivariate Gaussian distribution, where the mean, 𝛍k, 

and covariance matrix, 𝚺k, are determined from the testing 

data. For LDC, the covariance matrices are assumed to be the 

same for all degradation levels. This is done by making the 

covariances for each degradation level the weighted sum of 

the measured covariances for all degradation levels, where 

the weights are the number of data points for each 

degradation level. The number of data points per degradation 

level is shown in Table 2. The covariance matrices for QDC 

are the measured covariance matrices for each degradation 

level. The number of data points for each degradation level is 

the same, so the a priori probability is 0.2 for all of the 

degradation levels. 

Table 1. Caption of the table. 

 

Scenario Features 

1 nE, nC, DVLP, SVLP 

2 nC, DVLP 

3 DVLP, SVLP 
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5. RESULTS 

A sensitivity test for k-fold cross validation is performed to 

determine the effects of the k value on the accuracy. The test 

is completed in scenario 1. Figure 7 shows the minimum, 

average, and maximum classification accuracy for each k 

value. The maximum accuracy and average accuracy stay 

constant at 100% and 99.94% respectively. The minimum 

accuracy for each of the folds goes down proportionally with 

the number of folds. The constant average accuracy of 

99.94% shows that 1 data point consistency gets 

misclassified, but the rest of the points have separability. The 

k value does not affect the overall performance of the 

algorithm, so a k value of 5 is chosen to be similar to the 80-

20 testing to training split. 

 

Figure 7. Sensitivity Test for K-Fold Cross Validation. 

Table 3 shows the 5-fold cross validation accuracies for the 3 

scenarios. There is not any significant difference between the 

QDC and LDC, implying that there is enough separability 

between the degradation levels and a more complex boundary 

is not needed. The LDC and QDC boundaries for scenarios 2 

and 3 are shown in Figures 8 to 11. In the text by Webb and 

Copsey (2011), an implementation of principal component 

analysis (PCA) suggests that the coefficients in the 

eigenvector of a components can be used as an indicator of 

feature importance based on relative magnitude.  The valve 

loss power features accounted for nearly 85% of the first 

principal component’s eigenvector direction. This analysis is 

verified as there is no significant difference between 

scenarios 1 and 3 implying that the valve loss power features 

are indeed the most significant in separating the classes. 

Other feature selection methods have been applied including 

an exhaustive search based on classification accuracy 

corroborating the selection of these two features.   

 

Scenario 2 does not have as high of a classification accuracy 

as the other scenarios, because it does not have a clear 

boundary between degradation levels 2 and 3 with a few data 

points on the wrong side of the boundaries. The feature space 

with DVLP and nC struggles to show complete separability 

with degradation levels 2 and 3, but DVLP with SVLP is 

enough to distinguish between the two leakage levels. As 

shown in Figures 8 to 11, the largest separation occurs 

between degradation levels 0 and 1 which correspond to the 

healthy dataset and the lowest amount of degradation. As the 

degradation level increases, the separation between the 

degradation levels decreases. The polytropic exponents do 

show a trend with leakage as shown in Figure 12 with the 

compression polytropic exponent positively correlating to the 

level of leakage while the expansion polytropic exponent 

negatively correlates to the level of leakage. The polytropic 

exponents do not have class separation, but the trends are 

promising for future work in prognostics. 

 

Figure 8. LDC classification boundaries for scenario 2. 

Table 2. The number of cycles in the training and 

testing data points for each degradation level. 

 

Degradation 

Levels 

Training 

Data 

Points 

Testing 

Data 

Points 

Total Data 

Points 

0, 1, 2, 3, 4 248 62 310 

Sum 1240 310 1550 

 

 

Table 3. The classification accuracy for 5-fold cross 

validation on all scenarios. 

 

 LDC QDC 

Scenario 
Accuracy 

(%) 

Accuracy 

(%) 

1 99.94 99.94 

2 96.69 96.62 

3 100 99.94 
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Figure 9. QDC classification boundaries for scenario 2. 

 

Figure 10. LDC classification boundaries for scenario 3. 

 

 

Figure 11. QDC classification boundaries for scenario 3. 

 

Figure 12. Expansion polytropic exponent vs. compression 

polytropic exponent. 

6. CONCLUSIONS 

The features extracted from the P-V diagram are sufficient 

for the classifiers to achieve a classification accuracy greater 

than 99%. The high level of accuracy stems from the 

discharge valve loss power and suction valve loss power. 

These two features achieve a high level of accuracy without 

the need for the polytropic exponent. The polytropic 

exponent does correlate to the level of leakage, but cannot be 

used to distinguish between small levels of leakage. Even 

though the leakages were seeded in the discharge valve and 

don’t directly impact the suction valves, the suction valve 

loss power was still affected by the level of leakage. Future 

work is to explore how well this method works with seeded 

faults in other locations, mixed faults, and how adjusting the 

back pressure regulator to maintain discharge tank pressure 

impacts the classifiers.  
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