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ABSTRACT

High voltage converter modulators (HVCM) provide power
to the accelerating cavities of the Spallation Neutron Source
(SNS) facility. HVCMs experience catastrophic failures,
which increase the downtime of the SNS and reduce beam
time. The faults may occur due to different reasons including
failures of the resonant capacitor, core saturation due to the
magnetic flux, insulated-gate bipolar transistor (IGBT) fail-
ures, and others. We recently have setup a HVCM test stand
to develop and test machine learning models for anomaly de-
tection and fault prognostics. In this work, we propose binary
classifiers and autoencoder architectures based on convolu-
tional (CNN) and feedforward neural networks (FNN) to fa-
cilitate distinguishing normal from faulty waveforms coming
from the HVCM during operation. The results indicate that
the CNN binary classifier is the best model among the four
showing very stable performance in the training and testing
sets with impressive precision and recall metrics, reaching up
to 99% with a very small uncertainty. The FNN classifier
shows the least performance with a large uncertainty in its
metrics. The performances of the two autoencoders based on
CNN and FNN were in between, showing very good perfor-
mance nonetheless.
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1. INTRODUCTION

The Spallation Neutron Source (SNS) at Oak Ridge Na-
tional Laboratory (ORNL) accelerates protons to high ener-
gies which are used to produce a neutron beam used for neu-
tron scattering (Henderson, 2014). The beam is accelerated in
a linac consisting of a Radio Frequency Quadrupole (RFQ)
section, a Drift Tube Linac (DTL) section, a Couple Cav-
ity Linac (CCL) section and a Superconducting Linac (SCL)
section. The accelerating cavities in each of these sections
are fed by high power microwave amplifiers or klystrons.
The klystrons are in turn powered by High Voltage Converter
Modulators (HVCMs) which convert 3ϕ, 13.8 kVAC into a
maximum of 135 kV, 1.3 ms long pulses at 60 Hz. The
HVCMs can drive as many as 10 klystrons, depending on the
klystron type and which section of the linac the klystron is
located. There are a total of 15 HVCMs for SNS operations.

The HVCMs have been a significant source of lost user time
at the SNS, as was shown by (Radaideh, Pappas, Walden, et
al., 2022). The HVCM continues to experience system fail-
ures due to various reasons including IGBT switch failures,
magnetic flux anomalies, and failures in the resonant capac-
itors. With these system failures, HVCM is ranked among
the top sources of downtime for the SNS (Radaideh, Pappas,
Walden, et al., 2022), which have led to several interruptions
to the SNS user program. One of the solutions to improve
the reliability of the HVCMs is to apply statistical or ma-
chine learning algorithms to detect impending failures or sys-
tem anomalies in the waveforms collected from the HVCM
controller. For example, previous study on using discrete co-
sine transform for anomaly detection in HVCM waveforms
was done by (Pappas, Lu, Schram, & Vrabie, 2021), while
(Radaideh, Pappas, Walden, et al., 2022) developed advanced
recurrent neural network autoencoder models for time series
anomaly detection in the HVCMs powering the RFQ section.
Further efforts on applications of machine learning for fault
detection in particle accelerators include application of vari-
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ety of binary classifiers (Rescic, Seviour, & Blokland, 2020),
Siamese neural networks (Blokland et al., 2021), adaptive
neural networks for time-varying beam control (Scheinker,
2021), and similar others (Edelen et al., 2016). Overall, neu-
ral networks have demonstrated a promising potential in the
field of fault identification and diagnosis as described in this
comprehensive survey (Mohd Amiruddin, Zabiri, Taqvi, &
Tufa, 2020).

The operating history with lost user time along with the large
amount of data available make the HVCM a good candidate
for machine learning. The major goal of the overall project is
to be able to predict failures before they occur, and warn the
SNS control room of impeding failures and long term degra-
dation of components such as metalized film capacitors which
degrade over a period of years. In particular, this paper is a
building block to achieve the primary project goal, where this
paper focuses on the application of different neural network
models to distinguish normal from faulty signals, which can
be used to predict impending failures. The fundamental dif-
ference between this work and the previous studies (Pappas et
al., 2021; Radaideh, Pappas, Walden, et al., 2022) is that we
established an HVCM test stand instrumented to collect large
amounts of waveform data to develop and test machine learn-
ing algorithms, which offers more data and more continuity in
data streams than what was available before. Machine learn-
ing models are trained and tested to distinguish normal from
faulty waveforms based on real data from the test stand. The
models investigated in this work include two binary classi-
fiers based on convolutional (CNN) and feedforward fully-
connected neural networks (FNN). Based on CNN and FNN,
two autoencoder (AE) models are also proposed and tested in
this study (CNN-AE and FNN-AE).

2. EXPERIMENTAL SETUP

A simplified schematic of a HVCM is shown in Figure 1.
Three-phase 13.8 kVAC line power is converted to ±1300
VDC by the transformer T1 and a six pulse controlled rec-
tifier circuit. This voltage is filtered with capacitor C1 and
C2 which store sufficient charge to produce 1.3 ms pulses
without excessive droop. The DC voltage is supplied to three
IGBT based H-bridge circuits operating at a nominal switch-
ing frequency of 20 kHz (Reass et al., 2001). The three phases
are switched with a 120◦ phase shift between the phases,
and the high power pulses are stepped up to high voltage us-
ing pulse transformers. The leakage inductance of the pulse
transformers form a resonant circuit with the secondary ca-
pacitors Ca to Cc in Figure 1, giving the circuit a gain which
is frequency dependent. The high voltage bipolar pulses from
the resonant capacitors are recombined and rectified by the
diodes Da1 to Dc2, forming the output pulses with an appar-
ent switching frequency of 120 kHz which is filtered by C3,
C4 and L1 and applied to the cathode of the klystrons. The
HVCMs are operated with the IGBT switching frequency be-

low resonance of the H-bridges, allowing for compensation
of output pulse droop from the storage capacitor voltage and
the magnetizing inductance of the pulse transformers. This is
done by modulating the IGBT switching frequency from low
to high during the pulse and can flatten the top of the pulse to
better than ±1% full scale.

The HVCMs use PXI-based controllers to control the tim-
ing of IGBT gating and ensure some signal values such as
IGBT peak, commutating currents, and volt-seconds of the
pulse transformers stay in a safe range. The controller also
is used to set warning and trip levels for a variety of signals,
digitize and save waveforms and communicate via ethernet to
the SNS control system. Tuning the HVCMs is done manu-
ally at present and involves setting start and stop frequencies
for IGBT gating to minimize droop, varying the start timing
of the initial gate signals to minimize the likelihood of satu-
rating the magnetic transformers. There are precision timing
controls to correct for ripple on the flat top, but this is not
normally required for SNS operation. Tuning is performed
by experienced technicians and involves making incremen-
tal changes at reduced power while monitoring multiple sig-
nals such as klystron voltage, IGBT currents and core flux
to ensure they meet pulse requirements and remain within
preestablished safe values. Tuning is normally done after
maintenance on a particular HVCM and is not re-tuned un-
til further maintenance.

In addition to the 15 modulators used for operating the SNS,
three RF test stands are used for testing various high power
RF systems such as the klystons, accelerating cavities and
different HVCM configurations. One of these test stands,
the Radio Frequency Test Facility (RFTF), was chosen in
this study to install an upgrade of the HVCM data acquisi-
tion system to be able to stream and save data for the ma-
chine learning effort. The Normal/Fault files archived for the
SNS HVCMs require storage of approximately 30 MB of data
when decimated to 2.5 MS/s. Because of hardware limita-
tions with the present controller, the rate we can stream this
data, and the massive amount of disk space required to store
streamed data, the number of waveform channels was reduced
from 32 to 12, and the record length was reduced from 3.6 ms
to 1.5 ms. This reduced the size of each waveform file from
30 MB to approximately 540 kB.

Out of the 12 channels being saved, 10 of them are used in
this work, which are the six IGBT current waveforms in the
phases (A+, A+*, B+, B+*, C+, C+*), three magnetic fluxes
in the three phases (A-flux, B-flux, C-flux), and the modu-
lator current (Mod-I). Plot of 20 selected A-flux waveforms
is shown in Figure 2 for normal cases and in Figure 3 for
faulty cases. The waveforms are randomly selected from a
large pool described in the next section. The fault data come
from two main sources: (1) real fault events in the RFTF and
(2) data collected during the HVCM tuning phase (fault-like
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Figure 1. Simplified schematic of an HVCM

data). The second source dominates the faulty data given
that real faults in the HVCM/RFTF do not occur very fre-
quently and we recently started streaming data from the ma-
chine. As described before, HVCM tuning is done manually
by the operators following a HVCM startup. This process
involves tweaking the HVCM settings to different values to
optimize the waveform shapes, and our data acquisition sys-
tem is programmed to record pulses at the maximum saving
rate (1 pulse per second) during the tuning process. These
tuning waveforms deviate from normal operating ranges and
can serve as a great source of abnormal conditions to increase
the sample size of the fault data. In Figures 2-3, we can notice
that the normal waveforms are quite similar, while the faulty
ones could have shapes close to normal or absolutely erratic.
In order to not magnetize the cores of the pulse transformers
and avoid turning off at high current, the last IGBT current
pulse is allowed to complete the conduction period, which
means that an extra 1/2 cycle at the end of the pulse may oc-
cur at higher frequency to complete the cycle. This justifies
why some pulses in Figure 2 have positive tails while others
have negative ones.

Although some of those waveforms can be easily detected
by eye by an expert, the rate and the time scale (1.5 ms) at
which these pulses are saved make it extremely difficult to
perform fault detection without an automated system like ma-
chine learning.

3. METHODOLOGY

The methodology is described in 3 subsections: the data-
prepossessing procedure is described first, then the proposed
machine learning models are described, followed by the per-
formance metrics used to evaluate the models.

3.1. Data Preparation

We have collected a dataset containing about 20,000 normal
waveforms and 5,000 faulty waveforms. Although it is eas-
ier to collect more normal data, collecting faulty data is much

Figure 2. Normal magnetic flux waveforms in phase A

Figure 3. Faulty magnetic flux waveforms in phase A

more challenging until fault scenarios occur or when the oper-
ators perform HVCM tuning. The waveform data are parsed
from a CSV format into numpy arrays.

To provide a solid testing of the proposed models, we with-
held 2000 normal pulses and 2000 anomaly pulses as a test
set. This leaves us with 3000 anomaly samples and about
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18,000 normal samples for training. To remove the class
imbalance between the normal and anomaly pulses, we ran-
domly picked 3000 normal samples from the 18,000, and use
them for training. As will be shown later in this study, the cur-
rent data split ensures an excellent performance where larger
datasets did not provide additional improvement.

The input data (X) represents the waveforms/pulses, which
are a 3D tensor with the shape

shapeX = (Npulses ×Ntimes ×Nfeatures), (1)

where Npulses is the number of different pulses/samples col-
lected from the system, Ntimes = 3753 is the number of time
steps for each pulse, and Nfeatures = 10 is the number of
different features or waveform types recorded for each pulse,
which were described in the previous section. The input data
is scaled using a min-max scaler to locate between [0,1] to
facilitate the training process.

For the classifiers (CNN, FNN), the label of the pulse (Y )
is a binary vector of 1 or 0, referring to whether the pulse
is normal or anomaly, respectively. For the AE (FNN-AE,
CNN-AE), the labels are not explicitly provided to the model.
Instead, the normal and anomaly pulses are separated in two
independent datasets, where the AE is trained with the nor-
mal pulses to determine the reconstruction error threshold,
and evaluated by the anomaly pulses to determine if the AE
prediction exceeds that threshold.

3.2. Proposed Models

We propose and compare the performance of four different
neural network models with four different architectures. The
models are: (1) classical fully-connected feedforward neu-
ral network classifier (FNN), (2) convolutional neural net-
work classifier (CNN), (3) feedforward neural network au-
toencoder (FNN-AE), and convolutional neural network au-
toencoder (CNN-AE). These models are described briefly,
where grid search was used to determine the optimal config-
uration for each model.

3.2.1. FNN

The FNN classifier consists of fully-connected and dropout
layers. The input shape to the network is a 2D flattened ver-
sion of shapeX , where the time step and waveform axes are
flattened to a single axis. The output is a binary prediction of
the probability of a sample being normal or anomaly pulse.
The architecture of the FNN classifier is as follows:

1. Dense layer with 64 nodes, ReLU activation, followed
by 0.2 dropout.

2. Dense layer with 32 nodes, ReLU activation, followed
by 0.2 dropout.

3. Dense layer with 16 nodes, ReLU activation, followed
by 0.2 dropout.

4. Dense layer with 8 nodes, ReLU activation, followed by
0.2 dropout.

5. Dense layer with 2 nodes, Softmax activation.

3.2.2. CNN

The CNN classifier consists of Conv1D, max pooling, and
fully-connected layers. The input shape to the network is a
3D tensor of shapeX . The output is a binary prediction of
the probability of a sample being normal or anomaly pulse.
The architecture of the CNN classifier is as follows:

1. Conv1D layer with 32 filters, 6x6 kernel, ReLU activa-
tion, followed by max pooling of size 2x2.

2. Conv1D layer with 32 filters, 4x4 kernel, ReLU activa-
tion, followed by max pooling of size 2x2.

3. Conv1D layer with 16 filters, 3x3 kernel, ReLU activa-
tion, followed by max pooling of size 2x2.

4. Conv1D layer with 8 filters, 2x2 kernel, ReLU activation,
followed by max pooling of size 2x2.

5. Flatten layer.

6. Dense layer with 64 nodes and ReLU activation.

7. Dense layer with 16 nodes and ReLU activation.

8. Dense layer with 2 nodes and Softmax activation.

3.2.3. FNN-AE

The FNN-AE consists of fully-connected and dropout layers,
with layer/node size consistent with the FNN classifier. The
input and output shape are identical for FNN-AE, which is
a 2D flattened version of shapeX , where the time step and
waveform axes are flattened to a single axis. The architecture
of the FNN-AE is as follows:

1. Encoder: Four dense layers with 64, 32, 16, and 8 nodes,
respectively. Each layer has ReLU activation and is fol-
lowed by a 0.2 dropout layer.

2. Bottleneck: Dense layer with 4 nodes, ReLU activation.

3. Decoder: Four dense layers with 8, 16, 32, and 64 nodes,
respectively. Each layer has ReLU activation and is fol-
lowed by a 0.2 dropout layer.

4. Output layer: A dense layer with 37530 nodes (i.e.
Ntimes ×Nfeatures) and linear activation.

3.2.4. CNN-AE

The CNN-AE consists of Conv1D layers with kernel/filter
size consistent with the CNN classifier. The input and out-
put shape are identical for CNN-AE, which is a 3D tensor of
shapeX . The architecture of CNN-AE is as follows:

1. Encoder: Three Conv1D layers with 32 filters 6x6 ker-
nel, 32 filters 4x4 kernel, and 16 filters 3x3 kernel, re-
spectively. Each layer has ReLU activation.
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Figure 4. Training curves (mean ± 1σ) for the four proposed models

2. Bottleneck: Conv1D layer with 8 filters, 2x2 kernel,
ReLU activation.

3. Decoder: Three Conv1DTranspose layers with 16 filters
3x3 kernel, 32 filters 4x4 kernel, and 32 filters 6x6 ker-
nel, respectively. Each layer has ReLU activation.

4. Output layer: A Conv1DTranspose layer with 10 filters,
6x6 kernel, ReLU activation.

3.3. Performance Metrics

We evaluate the performance of all fault detection models us-
ing four different metrics. All of them have a maximum value
of 1, and they are desired to be larger. The first is precision

Precision =
TP

TP + FP
, (2)

where TP is the number of true positive predictions, FP is
the number of false positive predictions, TN is the number
of true negative predictions, and FN is the number of false
negative predictions. The second is recall, which indicates
the true positive rate

Recall =
TP

TP + FN
. (3)

The metric F1 provides a harmonic mean of both precision
and recall

F1 =
2TP

2TP + FP + FN
. (4)

Lastly, the ROC (receiver operating characteristic) curve
shows the relationship between the true positive rate against
the false positive rate at various threshold settings. The area
under the curve (AUC) of the ROC curve provides an indi-
cation about model performance. AUC can be defined as
(Fawcett, 2006)

AUC =

∫ 1

0

TPR (FPR) dFPR, (5)

where TPR is the true positive rate and FPR is the false
positive rate. AUC = 1 is a perfect model with a zero false
positive rate, while AUC = 0.5 is a baseline random detector
with 50/50 detection probability.

4. RESULTS

4.1. Test Settings

To test the model stability, we train each of the proposed four
models 20 times, each time with a different random seed for
the network parameters and with a different training and test-
ing sets (i.e. size remains the same). The training and testing
data are randomly sampled from the large pool. Therefore,
the network performance is reported based on the statistics of
the metrics achieved by the 20 models.

In each round, the four network models are trained with
similar hyperparameters which include: validation split of
0.2, batch size of 32, 20 epochs, and Adam optimizer with
5 × 10−4 learning rate. The loss function for the autoen-
coders (CNN-AE, FNN-AE) is the mean squared error, while
for the classifiers (CNN, FNN), the loss function is the sparse
categorical crossentropy.

The hyperparameters of the four models (nodes, learning
rate, batch size, etc.) were determined by running a paral-
lel grid search, where networks with different architectures
are trained and tested and the best configuration is selected.

We have used Tensorflow with GPU support using CUDA
and CuDNN libraries for the implementation of all proposed
models. All training and analyses were conducted on a GPU
cluster with 8 NVIDIA A100 SXM4 40GB GPUs available
at the Spallation Neutron Source of the Oak Ridge National
Laboratory.

4.2. Training Results

The training/validation curves for the four models are shown
in Figure 4, where each curve shows the mean as well as 1
standard deviation of the metric based on the 20 independent
training rounds. The results clearly show a stable and very
good performance for CNN, CNN-AE, and FNN-AE as their
training metric (accuracy, MSE) converges to an acceptable
value with a small error bar. Also, the training/validation sub-
sets show consistent results, implying no overfitting. How-
ever, this is not the case for the FNN classifier, as it can be
inferred from the large error bars in both the training and val-
idation accuracy. This implies that the FNN classifier is less
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Figure 5. Confusion matrix (mean ± 1σ) for the four proposed models (numbers are rounded to the nearest integer)

Figure 6. Performance metrics with uncertainty for the four proposed models

stable than the other three models, and could be dependent on
the dataset being sampled as well as the initialization of the
network parameters.

4.3. Testing Results

Applying the trained models on the test set to predict the pulse
label gives the results in Figure 5 in the form of confusion
matrix. The results are reported as the mean and 1 standard
deviation of the class prediction (normal or failure). The con-
fusion matrix shows that the CNN classifier is indeed the best
among all four models predicting TP and TN with impressive
accuracy, while maintaining FP (8±9) and FN (2±5) to very
small numbers.

The next two best models are the two autoencoders (CNN-
AE, FNN-AE), both with comparable performances. The TP
and FP rates look very acceptable, which is not surprising,
due to the autoencoder thresholding at 1% FP rate. However,
the two autoencoders struggle at the FN, tagging close to 300
anomaly pulses as normal, also coming with a significant er-
ror margin (e.g. 293± 309).

The worst performing model in this study seems to be the
FNN classifier, as we already observed from its unstable
training in Figure 4. The confusion matrix in Figure 5 shows

high variability in predicting all four categories: TP, FP, TN,
FN. This could imply that using the FNN classifier could lead
to unreliable predictions.

4.4. Model Comparison

Based on the test set, the metrics described in section 3.3 are
estimated and reported with uncertainty in Figure 6, while
the numerical results are reported in Table 1. The metrics
confirm the observations we noticed, the CNN is again show-
ing the best performance for all metrics: precision, recall, F1,
and AUC, with values close to 0.99 along with a very small
uncertainty. Although FNN still shows fair metric values in
average, their uncertainty is a bit large. Both autoencoders
show comparable metrics, except that FNN-AE has slightly
better AUC than CNN-AE, which is also with a smaller error
bar.

In terms of computing time, when using the same GPU, the
autoencoders (CNN-AE, FNN-AE) are slower to train than
the binary classifiers (CNN, FNN) by a factor of 2, mainly
because of the additional layers needed to have a symmetric
encoder/decoder architecture. The CNN and FNN classifiers
(and CNN-AE and FNN-AE) have comparable training times
when compared to each other, with the CNN variant being
slightly slower than the FNN variant (by 5-10 seconds).
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Table 1. Model metrics with uncertainty (in parenthesis) as reproduced from Figure 6

Method Precision Recall F1 AUC
CNN 0.998 (0.002) 0.998 (0.002) 0.998 (0.002) 0.998 (0.002)
FNN 0.88 (0.272) 0.917 (0.18) 0.892 (0.241) 0.917 (0.18)
CNN-AE 0.941 (0.056) 0.927 (0.08) 0.925 (0.085) 0.909 (0.105)
FNN-AE 0.937 (0.052) 0.922 (0.079) 0.92 (0.085) 0.969 (0.002)

We found that the effects of model hyperparameters on the
performance are not significant, especially for hyperparame-
ters like learning rate and batch size, which justify why we
fixed them across all models. This can be explained mostly
because of the quality and large amount of the data available
to all models, which can reduce model sensitivity to hyper-
parameters. As a result, we should explain here that the poor
performance of FNN has to do with the FNN classifier itself
rather than its hyperparameters, since we observed that for a
certain round for a given data split, the FNN classifier can
perform well, while for another round and another data split,
the same architecture can perform poorly.

4.5. Discussion

In this study, it is worth highlighting that the data were col-
lected from the system and the model training and testing
were done offline. Even though the data acquisition system
was upgraded later after this work was conducted to facilitate
near real-time data streaming, the topic of online training will
be kept to when we extend this work to perform fault prog-
nosis, i.e., predicting the fault ahead of time by tracking fault
precursors (e.g., system degradation). Accordingly, this pa-
per focused primarily on demonstrating the potential of ma-
chine learning for fault detection which could be helpful to
improve HVCM reliability. The output signal from machine
learning is restricted to a warning message sent to the opera-
tors once an abnormal waveform is identified. No automatic
decision is made by machine learning at this stage since ad-
ditional efforts are needed to install the trained models on the
system either internally within the FPGA or externally after
the data are streamed, while ensuring that these models do
not interfere with the HVCM operation. In either case, the
implementation part is currently under investigation by the
team.

Given the previous model results, it is obvious that the sub-
sampling we performed in section 3.1 to remove class im-
balance between the normal and fault data had a small ef-
fect. This is explained by the fact that the CNN classifier
has already achieved an excellent performance (see Figure 6),
which implies that providing additional normal data will not
improve the performance that much. In addition, collecting
more normal data is much easier than collecting fault data, so
adding more normal events to the dataset has never been an
issue to the authors.

The results of this work provide a promising potential for
the usage of machine learning to detect anomaly signals that
can lead to catastrophic failures in the HVCM; resulting in a
downtime for the SNS. This study is based on a test HVCM
(RFTF) and not based on the main 15 HVCMs powering the
SNS. The main observation found in this study compared
to the previous study with RNN/LSTM (Radaideh, Pappas,
Walden, et al., 2022) is that this study shows the effect of
having large amount of streaming data on the performance of
machine learning, where accuracy can reach up to 99% using
less complex and less hyper-parameterized models. On the
other hand, using limited waveform data such as the data used
for the RFQ module, advanced and complex RNN models
along with significant tuning were needed to achieve promis-
ing results by (Radaideh, Pappas, Walden, et al., 2022).

Therefore, it is worth highlighting an important difference be-
tween the data we used here (from the RFTF) and the data we
published recently from the main 15 HVCMs powering the
SNS (Radaideh, Pappas, & Cousineau, 2022). The previously
published data (Radaideh, Pappas, & Cousineau, 2022) have
many fault events recorded from multiple modules, however,
the data are not continuous in time as only the pulse before the
fault event is available, i.e., that data cannot be used for prog-
nosis applications but can be used for multi-class fault clas-
sification. The current RFTF data are steamed with a much
better time continuity, where system configuration and set-
tings remain almost the same, which make them a good fit for
prognosis even though the number of fault sources/varieties
is very limited, i.e., cannot be used for multi-class classifica-
tion. The team plans to share the RFTF dataset used in this
work with the community very soon after our extended work
on prognosis is approved.

5. CONCLUSIONS

We have established a test facility in the spallation neutron
source (SNS) to explore machine learning models for fault
detection in the high voltage converter modulators that power
klystrons in particle accelerators. Four models are investi-
gated including two binary classifiers based on convolutional
(CNN) and feedforward (FNN) neural networks, and two au-
toencoder models (CNN-AE, FNN-AE) based on the same
network types. The results indicate that the CNN binary clas-
sifier is the best model among the four showing very stable
performance in the training and testing sets with impressive
metrics of precision and recall reaching up to 99% with a
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very small uncertainty. The FNN classifier shows the least
performance with a large uncertainty in its metrics, illustrat-
ing sensitivity to the data being selected for training and the
initialization of the network weights (i.e., overfitting). The
performances of the two autoencoders were in between.

The extension of this work will include a field application
of the proposed models, where the authors will test the pre-
trained models in predicting the impending failure of the sys-
tem earlier by detecting some anomalous waveforms in ad-
vance to the fault event, and notifying the operators (i.e., fault
prognosis). This will highlight the value of machine learning
in impending fault detection by utilizing the trained models
over real-time data streams.
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