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ABSTRACT

Automotive tire tread depth significantly influences a car’s
safety and must therefore be closely monitored. However,
there is currently no on-board solution that can measure tire
wear with an error of less than 0.6 mm in real-world condi-
tions. This corresponds to 37.5 % of the mandatory minimum
tread depth in most countries. In this paper we present the
concept of TireEye, which is an optical device mounted in-
side the wheel well and facing the road. This device records
the cross-section of the longitudinal tread groove and extracts
its outline by using adaptive canny edge detection. The tread
wear indicators serve to calibrate the scale since they provide
the smallest allowed tread depth. We validate this technology
with several tires, various lighting conditions, and different
road surfaces. It provides a mean absolute error of 0.57 mm in
real-world conditions, which outperforms all other on-board
tire wear detection methods displayed in state-of-the-art. Al-
though the results are very promising, the hardware costs and
the susceptibility to dirt might make it difficult for automo-
tive companies to deploy. This can be counteracted with ad-
ditional use cases like tire pressure estimation, tire damage
detection, and road friction coefficient estimation.

1. INTRODUCTION

Tire tread wear is inevitable when driving a car. The tread
depth of new tires is about 8 mm, depending on the man-
ufacturer and tire model. The most minor permitted depth
is 1.6 mm in most countries. However, the General German
Automobile Club (ADAC) even recommends a minimum of
3 mm for summer tires and 4 mm for winter tires because
lower tread depths lead to decreased traction and significantly
increased stopping distances on wet or snowy road surfaces
(Kroher, 2021). In order to maintain a safe car behavior, the
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tire tread depth has to be continuously monitored. Usually,
this inspection is conducted with manual gauges by the vehi-
cle’s driver, at the workshop or at technical inspection associ-
ations.

In the dawn of autonomous vehicles, the driver transitions to
a mere passenger and thus considers himself less responsible
for the vehicle’s state of health. This aggravates with car-
sharing services, where each customer expects the vehicle to
be in a safe condition and does not want to be bothered with
monitoring activities. Tire inspection combined with regular
vehicle service at the workshop may be sufficient for internal
combustion engine vehicles (ICEV) that demand service in-
tervals of about 30,000 km. Battery electric vehicles (BEV)
have longer service intervals due to fewer moving parts in
the motor and are thus more susceptible to worn tires (Tesla,
2022). Although vehicle owners in Germany are obliged to
visit a technical inspection association for vehicle inspection
every two years, driving high mileages per year can lead to
late detection of critical tire wear. Furthermore, many coun-
tries worldwide do not have this requirement for regular ve-
hicle inspection at all.

The above mentioned points motivate the need for an auto-
mated tread wear detection system. However, existing solu-
tion are either inaccurate or inconvenient. With TireEye we
present an optical tire wear detection system that features four
main advantages which are our main contributions for this pa-
per:

1. The systems provides a mean absolute error of less than
0.6 mm, which enables valuable remaining useful life
(RUL) predictions.

2. TireEye is an on-board measurement without the need
for custom tires.

3. We display an adaptive Canny edge detection algorithm
to compensate for varying lighting conditions.
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4. Multiple additional use cases that may redeem the sensor
costs (e.g. tire pressure estimation, tire damage detec-
tion, road friction coefficient estimation).

The remainder of this paper is structured as follows: After
highlighting related work in Section 2, Section 3 presents the
developed approach. A summary of the results is given in
Section 4, followed by their discussion in Section 5. The pa-
per concludes with a summary of the most important findings
and an outlook for further research in Section 6.

2. RELATED WORK

Approaches for tire wear detection can be divided into meth-
ods based on series sensors and methods that require dedi-
cated sensors additionally.

2.1. Tire Wear Detection Using Series Sensors

Signals from series sensors include wheel speed, vehicle body
accelerations, and mileage. The most basic approach is as-
suming a constant wear across mileage. However, tread
wear is strongly dependent on tire model (summer/winter,
make, dimension), vehicle (driven axle, power, load), driving
style, and environmental factors (road surface, temperature)
(Continental, 2022). Thus, this approach may only be used as
additional plausibility check for other methods.

Steidel, Halfmann, Bäcker, and Gallrein (2016) take into ac-
count these variabilities by creating a catalog of load cases
and their corresponding tire energy losses, which correlate
with tread wear. Total tread wear can then be computed by
partitioning all drives in segments of constant load and sum-
marising across energy losses. Methodologically, this ap-
proach is load spectrum-based, a common practice in me-
chanical engineering use cases. However, the resulting ac-
curacy is questionable since not all environmental factors can
be accounted for. In addition, if the tire is changed, it must be
manually registered to reset the tread wear counter.

An obvious approach to indirectly measure tread wear with-
out additional sensors is exploiting the relationship

Re =
Vx

ω
, (1)

for the tire’s effective rolling radius Re with the longitudi-
nal vehicle speed Vx and the angular wheel speed ω. Equa-
tion 1 only holds true under the condition that there is no
longitudinal wheel slip. Re is defined to be the tire’s radius
when rolling with no external torque applied and it decreases
with progressing tread wear. Since the tire flattens in the con-
tact patch, this value lies somewhere between the tire’s un-
deformed radius and its static loaded radius. Vx is measured
using a global navigation satellite system (GNSS), whereas ω
is provided by the electronic stability control (ESC) system.
Miller, Youngberg, Millie, Schweizer, and Gerdes (2001),
Ryan and Bevly (2012), and Lundquist, Karlsson, Ozkan,

and Gustafsson (2014)—among others—exploit Equation 1
for tire radius estimation. However, the use case in focus of
these publications is not tread wear but pressure loss detec-
tion. This indicates that the influence of tire pressure on Re

is significantly bigger than tread wear. Additionally, Re de-
pends on wheel load, tire design (radial steel-belted or bias
ply), and vehicle speed (Pacejka, 2006). There may also be
influences based on tire model and tire age, which would be
even harder to account for.

2.2. Tire Wear Detection Using Dedicated Sensors

Regarding off-board sensors, Nevin and Daoud (2014)
present a drive-over machine-vision sensor and compare
its accuracy to traditional mechanical gauges. They em-
phasize the higher repeatability of the automated drive-over
solution. Deviations of less than ±0.8 mm have been reported
for both, the automated and the manual solution. Wang et
al. (2019) even report an absolute error of less than 0.2 mm
for their laser-based drive-over solution. Borgen, Mott, New-
camp, and Abrecht (2022) also use an optical sensor for tire
condition and damage monitoring. Their Light Detection and
Ranging (LIDAR) sensor achieves accuracies of ±1 mm in
indoor environments and ±2 mm in outdoor environments.
An increase in background infrared noise generated from
the sun is mentioned to be the main cause of the decreased
accuracies outdoors.

Tire manufacturers have been promoting intelligent tires for
years. These tires are equipped with additional sensors to
measure tread wear amongst other tire parameters. Of course,
this leads to additional costs for the customer. There is no uni-
versal communication protocol between tire and vehicle yet.
Consequently, customers cannot mount any intelligent tire but
only those approved by the vehicle manufacturer. The man-
ufacturers have given no exact information on the measure-
ment errors of intelligent tires.

Tyrata (2022) provides an internal tread sensor that they
claim to be evolved from electric field reflection of carbon
nanotube-based sensing electrodes. InWheelSense (TDK,
2022) is a retrofittable sensor setup for multiple purposes.
It communicates with an external receiver via Bluetooth and
features its own energy harvesting module for power gener-
ation from wheel movements. The built-in sensors include
a 6-axis inertial measurement unit (IMU) and pressure and
temperature sensors. Other potential use cases are tread wear
measurement, road surface condition detection, and loose
wheel indication. However, no further explanation on specific
implementations is given. Lastly, Continental (2020) claims
to be able to predict tire tread depth with sub-millimeter ac-
curacy using a fusion of proprietary tire sensors and teleme-
try data. No further information on the sensors being used is
given.
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Prabhakara, Singh, Kumar, and Rowe (2020) use millimeter
wave radar sensors placed in the tire wells to measure tire
wear with an error of 0.68 mm. They exploit the tire’s rota-
tion with inverse synthetic aperture radar to enhance the range
resolution. If road debris gets caught in the tire grooves, the
perceived tread depth would be lower than the actual depth.
To compensate for this effect, they embed metallic strips in
the grooves. These strips have a much higher reflectivity
than debris and thus their reflections dominate. Additionally,
their approach can locate harmful foreign objects like nails or
screws.

Acoustic emissions could also be used as means to assess
tire wear. Tong, Wang, Yang, and Wang (2013) report that
tire wear is the main single tire-related influential factor on
tire noise. Other factors include tire pressure and vertical
load. Jha, Prasenjit, Karthikeyan, Madhav, and Mukhopad-
hyay (2019) investigate artificially worn tires on a test rig
and find that sound pressure levels decrease with progress-
ing wear. They point out that ageing effects have not been
considered and may also influence acoustic emissions. Also,
there is a high dependency on vehicle speed and pavement
type (Masino, Foitzik, Frey, & Gauterin, 2017) that would
need to be compensated for. No implementation of an audio-
based tread wear detection system is known, yet.

3. METHODOLOGY

This Section presents the basic idea for tire tread wear detec-
tion as well as its specific implementation.

3.1. TireEye Setup

TireEye is a camera device mounted vertically inside of the
wheel well (Figure 1).

Figure 1. Position of the camera inside the wheel well. The
vehicle’s driving direction is indicated with v

There are no special requirements on the technical properties
of the camera and in the scope of this paper, a smartphone
camera (Samsung Galaxy A3 2017) has proven to be suffi-
cient. To reduce computation times, the resolution has been

set to 1920×1080. The position of the camera is chosen to
be perpendicular to the road and tangential to the tire. This
way, the outline of the longitudinal main tread groove can be
detected since it provides a high contrast to the road surface
(Figure 2). The tread depth d is then measured as the distance
perpendicular from the groove to the tread bar. Canny edge
detection is being used to provide the groove’s outline.

Figure 2. Tread depth d as detected from the camera’s per-
spective

3.2. Adaptive Canny Edge Detection

To detect the tire tread we apply Canny edge detection
(Canny, 1986) which is widely used in computer vision ap-
plications. The algorithm typically consists of four stages:

1. Use Gaussian filter to smooth images and remove noise.
2. Compute intensity gradients for each pixel.
3. Thin multi-pixel wide ridges down to single pixel width

(non-maximum suppression).
4. Apply upper and lower threshold for edges.

The upper and lower thresholds are tuneable parameters and
control the algorithm’s sensitivity. Intensities above the upper
threshold are used to start an edge curve. If the neighboring
pixels are above the lower threshold, the edge is continued.
Intensities below the lower threshold are discarded as noise.
Experiments have shown that in our case an additional me-
dian filter beforehand leads to better results.

Since the optimal thresholds depend on the lighting condi-
tions, which are constantly changing, we developed an adap-
tive Canny edge detector that automatically parameterizes it-
self. To this end, an edge’s intensity is defined as the ratio
of edge pixels over the total number of pixels. The edge de-
tection is repeated with varying thresholds until the edge in-
tensity lies in a predefined range. Figure 3 shows the results
for different edge intensities. With the configuration in Fig-
ure 3c, the outline of the tire is separable from the road and
the tread groove can be further processed.

3.3. Tread Depth Measurement

After extracting the edges, the main tread groove has to be
localized and measured. Since there are still many edges
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(a) Original

(b) Edge intensity too high

(c) Edge intensity appropriate

Figure 3. Adaptive Canny edge detection

that correspond to dirt or irregularities on the road, all edges
whose length is below a defined threshold are removed. To
compensate for discontinuous lines due to mistakes, a tol-
erance is considered as to which extent two points may be
apart and still form a line. Then, the tread groove is localized
by taking advantage of its U-shaped form (Figure 2). A few
heuristics are applied to achieve this:

• The region of interest shows a high vertical extent.
• It is adjoined by horizontal lines that constitute the tread

groove and the tread bar.
• It is symmetrical relative to a vertical axis.

After these constraints, the region with the highest vertical
extent is chosen for further processing. Everything above the
upper horizontal line and below the lower horizontal line is
deleted. Finally, the vertical distance between the horizon-
tal lines can be measured, which yields the tread depth dp in
pixels.

3.4. Calibration

To obtain a tread depth in millimeters, a calibration of the
measurement is required. Since the distance between camera
and tire is constantly changing due to road excitations and
vehicle load changes, a constant conversion factor between
pixels and millimeters would not be feasible.

However, every tire has tread wear indicators (TWIs) with a
height of hTWI = 1.6mm to indicate the mandatory mini-
mum tread depth (Figure 4). These TWIs are placed inside
the main grooves and the radial distance between TWI and
tread surface is the remaining useful tread.

Figure 4. Tread wear indicators (yellow) located inside the
main tread grooves (Continental, 2002)

As the tire rotates, a TWI is regularly at a position where its
shoulder lies directly in the camera’s line of sight. This leads
to a significantly lower perceived tread depth dp,min than in
the adjacent frames. The TWI’s height in pixels results in

hTWI,p = dp − dp,min (2)

The actual tread depth d can then be computed as follows:

d = hTWI
dp

hTWI,p
(3)

4. RESULTS

We define three setups which are used to evaluate the tread
depth detection algorithm:

I Manually turning the wheel on a stationary demonstrator
(only rotational movement)

II Manually pushing a rear axle demonstrator across differ-
ent surfaces (rotational and lateral movement)

III Full vehicle test in real world

Table 1 shows three tires which have been used in these ex-
periments. They all have different dimensions and are of dif-
ferent makes. However, each tire has only been used for one
of the three setups. As a first outcome, the resulting tire tread
measurement deviations are depicted in Figure 5.

4



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

Table 1. Tires used in the experiments

Setup Make Model Dimension Tread Depth
I Continental ContiSportContact 205/50 R17 6.0 mm

II Dunlop SP Winter Sport 225/50 R17 3.2 mm
III Michelin Energy Saver+ 185/60 R14 5.0 mm

I II III
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Figure 5. Measurement errors depending on the experimental
setup

Setup I shows the lowest mean absolute error (MAE) of
0.07 mm due to the constant background. In setup II, the
MAE increases to 0.21 mm, since different road surfaces
have been used and the lateral movement induces vibrations.
Setup III is the most realistic, but also the most challenging
scenario. Additional vibrations from the vehicle engine, dirt
on the road and on the tires as well as varying lighting condi-
tions lead to a MAE of 0.57 mm.

5. DISCUSSION

The results in Section 4 indicate that TireEye’s accuracy is
sufficient for tread wear detection. In contrast to stationary
methods, the tire’s whole circumference is measured so that
unevenly worn tires cannot lead to false negatives. However,
there are still challenges which need to be addressed.

5.1. Challenges

The challenges include

• Debris on the camera: Dust and mud may accumu-
late on the lens and lead to blurry or black images. To
reduce soiling through dirt hurled up from the tire, the
camera is located at the front of the wheel. Also, protec-
tive plates might further reduce susceptibility to soiling.
Active cleaning systems comparable to headlight washer
systems could also be applied. If the system detects soil-

ing of the camera lens, measurements can be flagged as
invalid.

• Debris on the tire: Stones or snow stuck in the tread
groove lead to a smaller perceived tread depth, while de-
bris on the tread bar may imply too big depths. As tire
tread wear is usually a slow process that stretches across
several thousand kilometers, a step detection can be im-
plemented so that wear gradients above a defined thresh-
old are discarded. Normally, debris comes off after driv-
ing awhile and the correct tread depth can be measured
again. Additionally, a debris detection using advanced
computer vision methods, like convolutional neural net-
works, can be used to preventively discard measurements
with soiled tires.

• Lighting: Although TireEye is resilient to varying light-
ing conditions due to adaptive Canny edge detection, it
still relies on external illumination. Consequently, no
measurement can be conducted at night. If this is an un-
acceptable constraint, an infrared light source needs to
be added.

• Perspective: Although no special tires are required, they
need to feature a longitudinal main groove. This does not
apply to all tires and constitutes a major constraint of the
measurement principle. Also, the perspective needs to be
adjusted so that the groove in focus is centered. Adjacent
grooves cannot be measured with the same accuracy.

• Production tolerances: The calibration of the measure-
ments relies on the TWI’s exact height of 1.6 mm (Sec-
tion 3.4). Our investigations reveal an average error of
0.02 mm for the TWI, which corresponds to 1.25 %.

• Wheel speed: To measure the full height of the TWI, its
shoulder has to be perpendicular to the camera’s line of
sight. This poses additional constraints on the minimum
frame rate or the maximum wheel speed. Assuming a
fixed frame rate of 30 fps, the wheel speed should not
exceed 1 kmh−1. Since this range of speed is passed at
each setting off, stopping, and parking event, the restric-
tion can be sufficiently satisfied. The positive outliers in
Figure 5 indicate that in the respective experiments the
TWIs have not been captured in the instant of perpendic-
ularity and thus the perceived hTWI,p is lower than their
full height. According to Equation 3, this erroneously
leads to a higher tread depth and may provide a false
sense of security.
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• Steering: If TireEye is applied at a steered axle, it can
only be used when the steer angle is zero. Otherwise, the
main tread groove would not be positioned as expected.
This constraint is regularly satisfied, e.g., when stopping
at a red light.

• Costs: Although cameras are nowadays mass products,
automotive grade equipment is usually much more ex-
pensive. With the pricing pressure of the automotive in-
dustry, costs may be the biggest argument against mount-
ing cameras inside of each wheel well. One alternative
would be to only provide one camera per axle and as-
sume consistent wear for the other side. Another option
is to cover further use cases with these additional sensors
to amortise them faster (Section 5.2).

Table 2 shows how TireEye compares to other methods. Al-
though it stands out in accuracy, issues regarding robustness
and cost have to be addressed.

Table 2. Comparison of methods for on-board tread wear
measurement

Method Accuracy Robustness Cost
Mileage-based 		 		 ⊕⊕
Rolling radius 	 		 ⊕⊕
Intelligent tires ⊕ ⊕⊕ 		
Radar-based ⊕ ⊕ 		
Acoustic ? 		 	
TireEye ⊕⊕ # 		

5.2. Additional Use Cases

TireEye has the potential for a multitude of additional use
cases which will be presented in the following.

• Tire pressure estimation: Incorrect tire pressure may
lead to blow-outs and reduced traction. The curvature of
the tire’s outline in the images enables to infer its pres-
sure. If the outline is concave, the pressure is too low,
whereas a convex outline corresponds to excess.

• Punctures: Foreign objects like nails or screws punc-
turing the tire pose a high accident risk due to potential
sudden pressure loss. However, they could be detected
with computer vision by using their shape and color.

• Incorrectly adjusted chassis: Misaligned camber and
toe lead to unevenly worn tires. Even though the exact
tread depth cannot be measured across the width of the
tire, a high deviation between the two flanks could be
detected.

• Tire model identification: Knowledge of the mounted
tire model provides the benefit that its specific wear in-
dex can be used to check the measured tread depth for
plausibility. Each tire features a model-individual tread
pattern. This can be used like a fingerprint to identify

make and model. Convolutional neural networks trained
on a set of tire pictures are suitable for this purpose.

• Detection of worn rubber bearings: Worn rubber bear-
ings impair vehicle stability due to additional wheel
movements relative to the steering. This can be detected
by correlating the steering wheel angle with the wheel’s
steer angle. The steer angle is derived from the tire’s out-
line in the pictures.

• Side slip angle estimation: Side slip angle is an im-
portant factor for ESC systems. As the camera not only
captures the tire, but also parts of the road, the vehicle’s
movement relative to the ground can be estimated. This
basically constitutes a correvit sensor.

• Road friction coefficient estimation: Sudden changes
in road friction due to ice or snow can be detected by
color. As the camera is located in front of the wheel,
there is even the possibility to pre-condition the ESC sys-
tem. For smaller changes in road friction, the asphalt’s
granularity may be used as indicator.

• Animal detection: Autonomous cars have to be able to
observe their surroundings before setting off. Otherwise,
animals—like cats sleeping in front of the wheel—may
be run over. TireEye is able to observe these areas and
could prevent the car from starting.

6. CONCLUSION

This paper presents the concept of a novel method for camera-
based tread wear detection. As the measurements are con-
ducted on-board the vehicle, there is no need for inconve-
nient manual interventions. This increases safety not only for
the passengers but also for other traffic participants. Tracing
the tread depth across many drives enables extrapolating the
tire’s RUL. Fleet managers can then plan their workshop ap-
pointments accordingly and reduce vehicle downtime. Also,
the spare part management of vehicle manufacturers can be
optimized if the demand for new tires is known beforehand.

We are using three setups to evaluate the quality of this
method and use a stationary demonstrator, a manually pushed
demonstrator, and a full vehicle to conduct the experiments.
The newly developed adaptive Canny edge detection enables
to perform measurements resilient to varying lighting condi-
tions. During the full vehicle test, a detection accuracy of
0.57 mm has been recorded. This beats state-of-the-art for
on-board tire wear measurement. In the other two setups, the
accuracy was even higher.

For TireEye to be ready for series application, a few chal-
lenges have still to be mastered—the biggest of which is com-
ponent costs. In our future work we will cover additional use
cases with TireEye to redeem these costs.
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