
Increasing the dependability of critical safety systems through
Reinforcement learning with Petri net model

Ali Saleh1, Manuel Chiachio2

1,2 Andalusian Research Institute in Data Science and Computational Intelligence, University of Granada, 18071 Granada, Spain
alisaleh@ugr.es

mchiachio@ugr.es

ABSTRACT

Infrastructure safety, operation, and management are directly
affected by operation strategy which directly influence the life
cycle and have a tremendous impact on operation costs. Man-
agement strategies can be branched to unrelated decisions
which are typically difficult to be formulated mathematically.
Reinforcement Learning serves as an adequate tool to account
for unrelated decisions and optimize them in accordance with
a final goal. Besides, it allows for a strategy to be flexible by
autonomously changing with the variation of the system con-
dition without the need for any user intervention. On the other
hand, Petri nets are a suitable tool for maintenance modeling,
as they can deal with heterogeneous information, parallel op-
erations, and synchronization, and provide a graphical inter-
pretation for the processes. Also, they allow for formulating
RL problems based on their standard components (namely,
places and transitions) which makes them suitable for form-
ing a hybrid tool with the RL. In this work, an intelligent
tool for modeling and optimizing maintenance has been de-
veloped by combining high-level Petri net (HLPN) and Re-
inforcement Learning (RL). RL actions are modeled by cre-
ating a special type of PN transitions, and rewards are given
in terms of the running revenues and costs. The method was
used to model a safety-critical system (SCS) and optimize its
maintenance schedule in order to avoid the catastrophic con-
sequences of failures while reducing the running costs. The
results show that the proposed approach is capable of provid-
ing an intelligent management tool for SCS operation under
flexible, yet unveiled policies, and also allows assessment of
the safety of the system based on the simulated system states.

1. INTRODUCTION

The assessment of the system’s safety, reliability, and risk
are important tasks performed through the life-cycle of any

Ali Saleh et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

system to avoid undesired consequences. These tasks have
special importance in safety-critical systems (SCS) because
of the severe harm or damage that can be caused to people,
the environment, or equipment/property in case of damage or
malfunction. These systems are spread out now a day in many
industries including automotive, medical, energy, aerospace,
nuclear, and process industries which make them an impor-
tant part of everyday life in modern society. For this, analysts
have to understand the behavior of such systems to reach high
dependability levels; which means understanding how they
work to avoid failures that are more severe and/or frequent.

Several classical approaches have been used over the years for
doing this job like Fault Tree Analysis (FTA) (Stamatelatos
et al., 2002), Bowtie diagrams (De Dianous & Fiévez,
2006), Hazard and Operability Analysis (HAZOP) (Dunjó,
Fthenakis, Vı́lchez, & Arnaldos, 2010), Failure Modes Effect
and Criticality Analysis (FMECA) (Standard, 1980). How-
ever, these approaches require making unrealistic assump-
tions such as binary states, statistically independent, and un-
repairable components, a single mode of operation for the
system, availability of failure data, and focusing only on the
technical part of the system. Some work was done to improve
the classical approaches like extending the FTA to dynamic
fault tree analysis (DFT) (Dugan, Bavuso, & Boyd, 1992) or
to Temporal Fault Trees (TFTs) (Palshikar, 2002). Moreover,
Markov chains, PNs, and simulations (e.g. Monte Carlo)
have been applied to overcome the classical approaches in
this field. Markov chains are limited to systems with expo-
nential distributions lifetime and suffer from state-space ex-
plosion (Kabir & Papadopoulos, 2019). On the other hand,
simulations can work with different kinds of distributions and
can be used when it is difficult to analyze state-space, but it re-
quires more memory (Kabir & Papadopoulos, 2019). PNs can
overcome the limitations of the aforementioned models by
being applicable for concurrent, asynchronous, distributed,
parallel, nondeterministic, and/or stochastic systems while
combining graphical representation of the system’s dynamics
with a well-defined mathematical theory. They also provide
a one-to-one interface that cannot be handled with other for-

1

An Assessment of Different Reinforcement Learning Methods for
Creating a Decision Support System Based on the Petri Net Model

Annual Conference of the Prognostics and Health Management Society 2022

malisms, such as formal specification and verification(Kabir
& Papadopoulos, 2019). This made them widely applied
to system safety, reliability, and risk assessment domain
(N. G. Leveson & Stolzy, 1987; N. Leveson, Dulac, Marais,
& Carroll, 2009; Kabir & Papadopoulos, 2019).

One of the main goals of SCS is trying to minimize the like-
lihood of potential risks after identifying them. This requires
knowing the optimal actions at each of the system’s states that
lead to reducing the risk. PNs are able to perform stochas-
tic simulations to reveal all the possible states of a system
and assess its reliability under one or more policies. How-
ever, complex systems can result in a huge number of avail-
able strategies and states, which requires intelligent tools to
explore important areas of the search space. Reinforcement
learning (RL) is an adequate tool for finding an optimal pol-
icy, where a policy is an identification of the actions taken
at each of the system’s states. This can be done by interact-
ing with the system’s environment by performing number of
PN simulations after defining the goal of the problem. RL
is a group of machine learning methods that rely on the con-
cept of teaching an agent from experience, trying to mimic
the nature of organisms (Sutton & Barto, 2018). RL can help
PN not only identify the possible existing scenarios and as-
sess risk but also find the optimal behavior that minimizes
risk and increases the system’s safety. This works by giving
rewards or punishments as positive or negative values to an
agent experiencing the environment as a consequence of its
chosen actions. Then, evaluate a value function (section 2.1)
for taking an action at a given state based on the sequence of
the resulted rewards after that action.

RL was used with PN model for few applications includ-
ing manufacturing scheduling (Drakaki & Tzionas, 2017) and
the designing mechatronical systems with adaptive behavior
(Koch, Rust, & Kleinjohann, 2003). In this paper, the use
of RL with PN model is extended to create an expert deci-
sion support system (DSS) that performs reliability analysis,
namely, for modeling an SCS and optimizing its maintenance
schedule to reach high dependability levels. Section 2 gives a
brief overview of the RL, PN model, and the way the two
methods are combined. Then, Section 3 describes a case
study of an SCS that is modeled and optimized using the pro-
posed method. Results and discussion on the outcome of the
described case are shown Section 4. Then, concluding re-
marks are provided in Section 5.

2. METHODOLOGY

2.1. Reinforcement learning

RL is a way to teach machines from interaction with the en-
vironment. The main elements of RL are the agent, envi-
ronment, reward, value function, and policy. The agent is
the learning element that interacts with the environment. The
learning process happens when the environment gives posi-

tive and negative rewards for the acts the agent is doing. The
goal of these rewards is to help the agent evaluate how good
it is to take an an action at a given state. This evaluation is
known as the value function of the state which is a represen-
tation of long-term rewards coming after it. It is needed to
evaluate the values to teach the agent an optimal policy that
can increase its long-term rewards. One way to formalize the
RL problem is by using Markov Decision Processes (MDPs)
which assume that the probability distribution of future states
is only a function of the current state and action. At each time
step, the agent take an action, At from a state St; then the en-
vironment is changed to state St+1 and gives a reward Rt+1.
The sequence of rewards given after a state is known as the
expected return:

Gt = Rt+1+�Rt+2+�2Rt+3+· · · =
TX

k=t+1

�k�t�1Rk (1)

where � = [0, 1] is the discount rate parameter with 1 mean-
ing no discount. RL problems can be continuous or episodic,
and they are distinguished by that the episodic task has a ter-
minating state (end) while the continuous task can continue
without an end. The learning process in episodic tasks is
formed of several episodes, with each episode identified by
its terminating state. � can’t be specified to be equal to 1 in
continuous tasks, otherwise, the summation of future rewards
can diverge to Gt = ±1 (Sutton & Barto, 2018). Q-learning
can be used to calculate the value function of each state-action
pair according to the following update equation (Watkins &
Dayan, 1992):

Q(St, At) =Q(St, At) + ↵[Rt+1+

�max
a

Q(St+1, a)�Q(St, At)]
(2)

where ↵ is called the learning rate parameter. This parameter
should be always between zero and one, and it represents how
much it is required to keep knowledge from previous updates
when updating the value function. If it is equal to 0 then no
learning will occur after experiencing the environment, and if
it is equal to 1 then no knowledge will be kept from old expe-
riences. Q-learning use bootstrapping which is truncating the
summation terms of Equation 1 at the second term and using
the value function of the next state instead of Gt+1. This en-
ables calculating the expected return Gt before the end of the
episode which makes online updating of the value function
possible. Besides, Equation 2 enables updating Q(St, At) as
an expected value of calculated returns without the need to
save all them all.

Q-learning updates Gt based on the value of the action that
has the highest return as shown in the equation. Now, the pol-
icy improvement step can be implemented by acting greedy
with respect to the Q-values which means choosing the ac-
tion that has the highest Q-value in each state. However, the

2

Annual Conference of the Prognostics and Health Management Society 2022

knowledge at the beginning of the problem is not reliable,
and choosing the decision that seems to be optimal can pre-
vent updating other actions that may be better than the cho-
sen one. This makes exploration and exploitation both es-
sential for the process of reaching an optimal policy, but they
can’t also happen at the same time. This is known as the
exploration-exploitation dilemma that exists in almost all RL
methods. To solve this, an "-greedy strategy can be followed.
This strategy keeps a probability of " for exploration each
time a decision is taken:

At =

(
argmaxa Q(S, a), with probability (1-")
A 2R A(s), with probability "

(3)

where " is the exploration rate parameter that should be spec-
ified between 0 and 1. Exploration is maximum when " is
equal to 1 and minimum when it is equal to 0. This approach
ensures that each Q-value will be updated infinite times as
the number of iterations approaches infinity which ensures
the convergence of Q-values while exploiting the knowledge.
At the beginning of the problem, there is no knowledge to ex-
ploit, so " can start with 1 and decrease gradually until the end
of the problem when exploitation becomes more important.

2.2. Petri net

A PN is a directed bipartite composed of two types of nodes
known as places and transitions. The places describe the state
of the PN and they are depicted by circles while transitions
are responsible for describing the changes in the system’s
state and are depicted by rectangles. Each place has a mark-
ing that is the number of tokens in that place; where tokens
are the abstract moving units of a PN and depicted by black
dots. The state of a PN is then described by a vector formed
from the markings of all places. Places and transitions are
connected by weighted arcs with a default weight equal to 1.
The weights of the arcs determine the number of tokens to be
generated or dissipated in the pre-set or post-set places of a
transition after it fires.

Mathematically, a PN is defined as a tuple N =⌦
P,T,F,W,M0

↵
, where P 2 Nnp , T 2 Nnt , F ✓

(P⇥T)[(T⇥P) represent the set of arcs connecting places
and transitions, W : F ! N>0 represent the set of weights
of the arcs, and M0 : P ! N is the initial marking of the
PN (Murata, 1989) . The dynamics of a PN are controlled by
the firing rule which determines when a transition can fire,
and what are the consequences of firing a transition (David
& Alla, 2010). This rule, in its simplest form, says that if the
number of tokens in the pre-set places of a transition is greater
than or equal to the weights of its pre-set arcs, the transition
can fire.

However, to account for the complexity of practical applica-
tions, the definition of Timed Petri net (TPN) is used which
gives delay time for the transitions before they fire. Transi-

tions with delays can describe processes that require time to
happen like degradation of a component. If the delay of tran-
sitions is based on stochastic distribution, the PN is called
Stochastic Petri net (SPN) which is the type of model created
in this paper. Also, the inhibitor and reset arcs that are spe-
cial types of arcs represented by unfilled and filled circular
tips respectively as shown in Figure 2 are used. The inhibitor
arc makes the opposite effect of the normal arc by disabling
the transition once a token exists in any pre-set place of the
transition. Whereas, the reset arc changes the marking of a
post-set place of a transition once it fires to a value defined by
the user. This value can be defined to be the initial marking of
the place, zero marking, or any other number. In this paper,
all the reset arcs are defined to change the markings of the
connected post-set places to their initial values.

After the firing of a transition, number of tokens equal to the
weights of the pre-set arcs will be consumed from pre-set
places, and number of tokens equal to the weights of post-
set arcs will be generated of the post-set places. Accordingly,
the firing of transitions causes the change in the markings of
the places, and this change can be described mathematically
using the state equation defined as:

Mk+1 = Mk +ATuk (4)

where Mk is the marking vector at time step k and uk =
(u1,k, u2,k, . . . , unt,k)

T is the firing vector. A is an nt ⇥ np

matrix representing the difference between weights of input
and output arcs connecting places and transitions. This matrix
is referred to as the incidence matrix, and is calculated as
follows:

A = A+ �A� (5)

where A+ =
⇥
a+ij

⇤
and A� =

⇥
a�ij

⇤
, i = 1, . . . , nt, j =

1, . . . , np are the incidence matrix and backward incidence
matrix respectively. The elements of the arrays a+ij and a�ij
coincides with the weights of arcs w+

ij and w�
ij connecting

transition ti 2 T to place pj 2 P respectively.

2.3. The use of Reinforcement learning with Petri net
model

RL is used as a teaching method for choosing between pos-
sible actions. PN transitions are used to define RL actions
by introducing a new finite set G = {g1, g2 . . . , gng}, named
action groups. Each action group contains a number of transi-
tions that represent possible choices at a certain state. These
transitions should be able to satisfy the enabling conditions
at the same state for them to be choices of the same action
group. Once a transition in an action group satisfies the con-
ditions to be enabled, the action group is enabled and not the
transition. Then, the RL agent chose one of the transitions
in that group to be enabled based on the policy. The action
group is kept enabled until the chosen transition is fired to
avoid choosing another action before finishing the first one.

3

Annual Conference of the Prognostics and Health Management Society 2022

Figure 1. Illustration of the CSS showing the effect of degra-
dation and maintenance on the state of each component and
the condition of the system

It is important to distinguish between the state of the RL en-
vironment and the state of the PN. The RL environment can
be defined based on any information available that may affect
the choice of the agent. In the case of the PN model, the en-
vironment can include part or all of the places’ markings, the
status of the transitions whether they are disabled, enabled,
or fired, the simulation passed time, or any other information.
Thus, the two types of states are called the RL state and PN
state to differentiate between them, and the RL agent takes
decision based on the RL state. Defining the RL environment
separately from the PN markings can have a great advantage
in reducing the number of possible RL states which can sig-
nificantly reduce the computational cost because each state
needs to be experienced a lot of times to converge to its ac-
curate value function. A PN with 15 binary places can have
1’048’576 different states. If the markings of only 5 places
are important for RL decisions, the RL environment can be
reduced to 5 places which results in 32 states.

3. SAFETY CRITICAL SYSTEM INTELLIGENT PETRI
NET MODEL

A PN model is created to simulate the degradation and main-
tenance, and optimize the maintenance strategy to form a reli-

able DSS for any system of any number of components. The
model is used to simulate the case of a SCS that its failure
can cause severe damage to the equipment with significant
losses. The values used to describe the different processes
of the system are based on assumptions, but the same model
can be used for any other real case example by only chang-
ing the transitions and rewards values. The simulated system
is illustrated in Figure 1, which is formed of 5 components
and the failure of any of them can cause the system’s failure.
Each of the components can be in a normal, degraded, criti-
cal, and failed states. It is assumed that the components are
condition monitored with no errors, and the maintenance ac-
tions are taken based on the component’s revealed condition.
Thus, the only followed maintenance technique is condition
based maintenance.

The PN shown in Figure 2 represent part of the model, with
the nodes in the shaded area is to model component 1, and
this is repeated for all other components, while other nodes is
to model the system common parts. The hanging arcs repre-
sent the connections to the other unshown components. The
nodes’ names for each component is followed by the com-
ponent index, so for the component presented, the names are
followed by the index ’-1’. Places p1, p2, and p3 that are out-
side this area are to model system’s functions and they repre-
sent the working system state, the non-working system state,
and the number of system’s failures respectively. For a com-
ponent of index n, the marking of place p1�n represents the
state of the component. A marking equals to 3, 2, 1, or 0 rep-
resents the normal, degraded, critical, or failed states. Once
the marking reaches 0, t6�n fires to add a token to the sys-
tem’s number of failures counter represented by p3. Transi-
tion t1�n represents the degradation processes of the compo-
nent. Since the degradation transition from a state to the fol-
lowing is function of the current state, the firing delay of the
transition t1�n is linked to the marking of place p1�n. Thus,
every time t1�n is enabled, a delay will be chosen based on
the marking of p1�n. The values of delay for t1�n at each
state of each component are presented as transition functions
based on probability distributions in Table 1.

The firing of t1�n changes the state of the component which
changes the state of the system. At the same time, the deci-
sion to repair a component should be done based on the over-
all state of the system that represent the RL environment, not
on the individual state of the component. Thus, it is required
to take a decision for every component every time any compo-
nent’s state changes. For this, the firing of t1�n marks places
p2�i8i = 1 · · ·nc, where nc is the total number of compo-
nents. Then, if component n is in the normal state, t3�n fires
to dissipate that token since no need for making any decision.
Whereas, if it is in a deteriorated state, t2�n fires to mark p2
that stop the system functioning and consider the downtime
of the system, and to mark p3�n that activates action group
gn to make a decision regarding the repair of the component.

4

Annual Conference of the Prognostics and Health Management Society 2022

Component State Transition Maintenance Maintenance
function cost $ time

(years) (days)
1 Degraded W(1.2, 3.4) 1’200 1

Critical W(1.2, 8.2) 1’700 2
Failed W(1.2, 5.1) 1’300’000 10

2 Degraded W(1.2, 3.3) 900 1.5
Critical W(1.2, 7.8) 1’400 2.5
Failed W(1.2, 4.0) 2’000’000 10

3 Degraded W(1.2, 3.5) 2’000 2
Critical W(1.2, 7.5) 3’000 2.5
Failed W(1.2, 5.0) 1’200’000 10

4 Degraded W(1.2, 3.2) 1’300 0.5
Critical W(1.2, 8.4) 1’800 2
Failed W(1.2, 2.0) 1’600’000 10

5 Degraded W(1.2, 3.4) 1’000 1.5
Critical W(1.2, 8.3) 1’500 3
Failed W(1.2, 5.0) 1’000’000 10

Table 1. Transition function, maintenance cost, and main-
tenance time for each component at each state. W(�, ⌘) is
Weibull distribution with shape � and scale ⌘.

The action group gn includes the transitions t4�n and t5�n

that represent the repair and don’t repair decisions respec-
tively. Transition t4�n is a delayed transition with a delay
function related to the marking of place p1�n to represent
the time of different repair types required at each state of the
component. These delays at each of the components’ states
are presented as maintenance time in Table 1.

The rewards of the RL are represented in monetary terms for
the considered case. These rewards include the losses of the
system in case it is in a failed state, and the costs of perform-
ing maintenance for each component at each of its state. The
losses of the system are assumed to have a rate equal to $
5’000 per year when the system in a failed state. On the other
hand, the maintenance costs are summarized in Table 1 for
each component at each of its deteriorated states. It should
be noted that the maintenance costs at the failed state of each
component is much greater than the other two states, and this
to represent the catastrophic consequences occurring for the
equipment if the system fails. An additional $ 3’000 that rep-
resent the rent of the equipment needed to perform mainte-
nance is required each time a maintenance is performed. This
rent can be common for more than one component if they un-
dergo maintenance at the same time, and this type of mainte-
nance is known as opportunistic maintenance. The losses are
considered by giving a negative rewards with the mentioned
rate as long as p2 is marked, and the costs are considered by
giving a negative reward as soon as the maintenance transi-
tion t5�1 fires. To model the different maintenance costs as
shown in Table 1 through only one transition for each com-
ponent, the reward is linked to the state of the component
by assigning a reward function of the marking of p1�n. It
is assumed that the maintenance of a component returns its
state to its pristine condition. It is assumed that the lifespan

g1

p3

t6-1

p4-1p1-1

t1-1

p2-1

t2-1t3-1

p3-1

t4-1t5-1

p4 t3

p1

t2

t1

p2

33O
thercom

ponents

C
om

ponent1

Figure 2. Maintenance actions Petri net, with shaded part of
the model represent the nodes of one specific component, and
other nodes are common for all components

of the system is 80 years, so the learning process is episodic
task. The total number of episodes is chosen to be equal to
100’000 with the length of each episode equal to the lifespan
of the system.

As mentioned in Section 2.1, the used RL method requires
choosing three parameters that are the discount rate, �, the
learning rate, ↵, and the exploration rate, ". Since that the
delayed and current rewards are of the same importance in the
considered problem, it is preferable to calculate the expected
return without discounting the delayed rewards in order for
the agent not to be biased toward current ones. For this, the
discount rate was chosen to be equal to 1, and to ensure the
convergence, the value function of the terminating state of
each episode was always 0 (Sutton & Barto, 2018). On the
other hand, ↵ and " were chosen to decay gradually starting
by 0.1 and 1 and ending by 0.005 and 0.001 at the end of the
learning process respectively.

4. RESULTS AND DISCUSSION

This section shows the results of the simulation performed for
the 5 components SCS, and a discussion about these results.

5

Annual Conference of the Prognostics and Health Management Society 2022

The results of the learning process (100’000 episodes) are di-
vided into intervals of 500 episodes each to calculate the aver-
age results and uncertainty bounds within each interval. This
is because the learning process is highly stochastic due to the
natural stochasticity of the problem and the high exploration
rate at the beginning of the learning process, and this makes it
inconvenient to plot the result of each episode. Exploration is
required at the beginning of the problem to discover the envi-
ronment. Besides, the agent doesn’t have information about
the environment to exploit at that point. Whereas, the agent
should be able to reach the optimal policy before reaching
the end of the learning process, and this allows exploiting the
learnt knowledge. This explains the choice of the decay of "
between 1 and 0.001. Because of the stochasticity, it is es-
sential to have a low learning rate in order to keep previous
knowledge learnt about the environment. However, previous
knowledge at the beginning of the learning process is use-
less because it depends on a random policy. Also because the
value functions are updated by bootstrapping that uses the
values of other unconverged results. This is why ↵ was cho-
sen to decay gradually so that the weight of previous knowl-
edge increases as the solution converges.

Figure 3 shows the evolution of different results as a function
of the learning process. It can be noted from Figure 3a that
the average accumulated rewards have increased successfully
by 86.3% and that its uncertainty is highly narrowed. These
results indicate that the agent was able to learn how to act
optimally concerning the user’s input, but it doesn’t show the
effect on the real-case problem. For example, if the rewards
were assigned in the wrong way, the agent can still increase
the rewards by learning according to the wrong assigned in-
puts, but it doesn’t mean that the agent will be able to opti-
mize the real problem. For this, Figures 3b, 3c, and 3d that
show the average number of failures, average losses, and av-
erage maintenance costs respectively are presented to show
the real results that the agent was able to learn.

The agent was able to reduce the number of failures to al-
most zero, decrease the losses to almost zero, and optimize
the maintenance costs to decrease on average while staying
greater than zero. The number of failures was reduced be-
cause the consequences of failure in terms of maintenance
costs are catastrophic, and every component should be re-
paired after failure to avoid continuous losses that can be
great if significant time passed without repair. This drove the
agent to strictly avoid any failure, and the only failures that
exist at the end of the problem are because of the "-greedy
strategy that allows some exploration to keep learning. The
result of the reduced number of failures affected not only
the maintenance costs but also the downtime of the system
since the time required to repair a failed component is much
greater than the that required to repair a component in any
other state as shown in Table 1. The agent was able to find
a policy that reduces the downtime to almost zero and this is

reflected in the losses results that reached an average value
very close to zero as shown in Figure 3c. Lastly, the main-
tenance costs were optimized by making a trade-off between
costs and losses. It can be noted from the uncertainty bounds
at the beginning of the process that there are cases where the
maintenance costs are equal to zero, but these cases strictly
don’t exist by the end of the learning process. The reason
behind avoiding a zero maintenance costs policy is that this
policy follows the concept of work until failure while not re-
pairing which can result in zero maintenance costs but very
high losses due to the failed system. For this, the mainte-
nance costs are optimized and decreased on average while
never being equal to zero.

The final policy is represented in Figure 4 to demonstrate the
results obtained in Figure 3. This figure shows the 36 states
that occurred more than 450 times with their corresponding
actions when following the final policy without any explo-
ration for a simulation of 1000 episodes. The numbers listed
horizontally are indexes given to the states to ease referring to
them. The upper part of the figure describes the states of the
RL environment that are defined as combinations of the com-
ponent’s states. Whereas, the lower part describes the actions
corresponding to each state. For example, state number 16 is
defined by the states critical, normal, degraded, normal, and
normal for components 1 to 5 respectively. At this state, 4 ac-
tions as combinations of decisions for component 1 and 3 are
available and they are: (repair,repair), (repair, don’t repair),
(don’t repair,repair), and (don’t repair,don’t repair) with their
corresponding Q-Values equal to [-2.06e5, -2.31e5, -3.11e5,
and -2.91e5]. The highest Q-Value among the 4 is the first one
that corresponds to the action of repairing both components,
and this is why the chosen action by the agent is: repair, no
action, repair, no action, no action, and no action for compo-
nents 1 to 5.

The reason behind choosing to repair component 3 at state 16
although it is still in a degraded state is that the agent learnt
to do opportunistic maintenance and save the common costs
and time when more than one components are repaired at the
same time. It was found in the final policy figure that there are
no failed state for any of the components, and this compati-
ble with the results shown in Figure 3b. Also, it was found
that for the majority of cases it was better to wait until the
component reaches a critical state to repair it although the
maintenance costs at the critical state are higher than that at
the degraded state. The explanation of this is that the time
required for the component to reach a critical state is much
longer than that needed to reach a degraded state which makes
the maintenance costs per passed time less. For example, the
first component reaches the degraded state after around 3.4
years on average while reaches the critical state after around
11.6 years on average. Maintaining this component at the de-
graded state after each 3.4 years can result in costs equal to $
4080 in 11.6 years. Whereas, doing this at a critical state once

6

Annual Conference of the Prognostics and Health Management Society 2022

Figure 3. The evolution of different results during the RL
process

RL states defined in terms of components states
1 6 11 16 21 26 31

St
at

es
of

co
m

po
ne

nt
s:

1
2
3
4
5

RL actions as combination of different decisions

D
ec

is
io

ns
fo

r
co

m
po

ne
nt

s:

1
2
3
4
5

States Legend

Actions Legend

normal degraded critical failed

no action repair don’t repair

Figure 4. The most repeated RL states when following the
optimal policy and the corresponding decisions at each state
can result in costs equal to $ 1400 which is much cheaper.

The use of Q-learning was successful in optimizing the main-
tenance schedule of a SCS and avoiding the catastrophic
consequences. However, for more complex problems, the
method can be improved if n-step bootstrapping is used in-
stead of the one-step bootstrapping. The one-step boot-
strapping is good when major changes occurs between the
states and this is the case of the considered problem. How-
ever, n-step bootstrapping allows truncating the rewards after
n steps and this works better when changes are minor be-
tween consecutive states (Sutton & Barto, 2018). Also, n-step
bootstrapping forms a general method that unify the Monte
Carlo RL and the one-step bootstrapping and allows shifting
smoothly between them. On the other hand, the use of tabular
RL methods for problems with large number of states is not
always feasible because the problem converge only after hav-
ing enough iterations over all the states. Also, gained knowl-
edge can’t be extrapolated to account for new states in case
the environment of the problem is changed. An alternative
to overcome these limitations is the use of approximate solu-
tion methods that approximate the value functions in several
ways. One of these ways is to use artificial neural networks
to approximate the Q-Values in Q-learning and this method is
called Deep Q-learning method (Mnih et al., 2013).

5. CONCLUSION

The paper presents the method of combining Q-learning with
Petri net model that forms an expert DSS that can be used to
model and optimize SCS. The system was evaluated by con-
sidering a case study of SCS composed of 5 components that
can be in one of 4 health states. The method showed the abil-

7

Annual Conference of the Prognostics and Health Management Society 2022

ity to optimize the maintenance schedule in a way to avoid
catastrophic failures, reduce the maintenance costs, and re-
duce the system losses because of system’s down time. The
intelligent PN model created for the case study can be used
to other SCS since the number of conditions for each com-
ponent can be increased or decreased easily by changing the
initial marking of place p1�n of component n in Figure 2 that
represent the health of component. The number of compo-
nents of the system can be also changed by duplicating or
removing the copies of the shaded region in Figure 2.

ACKNOWLEDGMENT

This paper is part of the ENHAnCE ITN project
(https://www.h2020-enhanceitn.eu/) funded by
the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agree-
ment No. 859957.

REFERENCES

David, R., & Alla, H. (2010). Discrete, continuous, and hy-
brid Petri nets (2nd ed.). Springer-Verlag Berlin Hei-
delberg.

De Dianous, V., & Fiévez, C. (2006). Aramis project: A
more explicit demonstration of risk control through the
use of bow–tie diagrams and the evaluation of safety
barrier performance. Journal of Hazardous Materials,
130(3), 220–233.

Drakaki, M., & Tzionas, P. (2017). Manufacturing schedul-
ing using colored Petri nets and reinforcement learn-
ing. Applied Sciences, 7(2), 136.

Dugan, J. B., Bavuso, S. J., & Boyd, M. A. (1992). Dynamic
fault-tree models for fault-tolerant computer systems.
IEEE Transactions on reliability, 41(3), 363–377.

Dunjó, J., Fthenakis, V., Vı́lchez, J. A., & Arnaldos, J. (2010).
Hazard and operability (hazop) analysis. a literature re-
view. Journal of hazardous materials, 173(1-3), 19–
32.

Kabir, S., & Papadopoulos, Y. (2019). Applications of
bayesian networks and petri nets in safety, reliability,
and risk assessments: A review. Safety science, 115,
154–175.

Koch, M., Rust, C., & Kleinjohann, B. (2003). Design of
intelligent mechatronical systems with high-level Petri
nets. In Proceedings 2003 ieee/asme international
conference on advanced intelligent mechatronics (aim
2003) (Vol. 1, pp. 217–222).

Leveson, N., Dulac, N., Marais, K., & Carroll, J.
(2009). Moving beyond normal accidents and
high reliability organizations: A systems ap-
proach to safety in complex systems. Organiza-
tion Studies, 30(2-3), 227-249. Retrieved from
https://doi.org/10.1177/0170840608101478

doi: 10.1177/0170840608101478
Leveson, N. G., & Stolzy, J. L. (1987). Safety analysis using

petri nets. IEEE Transactions on software engineer-
ing(3), 386–397.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013).
Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602.

Murata, T. (1989). Petri nets: Properties, analysis and appli-
cations. Proceedings of the IEEE, 77(4), 541–580.

Palshikar, G. K. (2002). Temporal fault trees. Informa-
tion and Software Technology, 44(3), 137-150. doi:
https://doi.org/10.1016/S0950-5849(01)00223-3

Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minar-
ick, J., & Railsback, J. (2002). Fault tree handbook
with aerospace applications.

Standard, M. (1980). Procedures for performing a fail-
ure mode, effects and criticality analysis (Tech. Rep.).
MIL-STD-1629A.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning:
An introduction. MIT press.

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine
learning, 8(3), 279–292.

8

