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ABSTRACT 

Two challenges of current plant reliability approaches are the 
ability to integrate plant health data and to support decision-
making. Condition-based, diagnostic, and prognostic data are 
in fact not considered in plant reliability models to inform 
system engineers on the most critical components. Currently, 
the propagation of quantitative health data from the 
component to the system level is a challenge given the 
diverse data nature and structure. On the other hand, plant 
reliability methods (typically based on fault trees or 
reliability block diagrams) can effectively propagate data 
from the component to the system level, but values of failure 
rates or failure probabilities are an approximated integral 
representation of the past industrywide operational 
experience, and they neglects the present component health 
status (e.g., diagnostic and condition-based data) and health 
projection (when available from prognostic data). Our first 
claim is that system reliability models should propagate 
health information from the component to the system and 
plant level in order to provide a quantitative snapshot of 
system and plant health and identify the most critical 
components. Our second claim is that component health 
should be informed solely by that specific component current 
and historical performance data and should not be an 
approximated integral representation of the past industrywide 
operational experience. This paper is directly supporting 
these two claims by proposing a different approach for 
reliability modeling that relies on available component 
diagnostic, prognostic, and condition-based data to measure 
component health, and it propagates this information through 
fault tree models. The propagation of health data from the 
component to the system level is performed not in terms of 
probability but in terms of margins where margin is the 
“distance” between the present actual status and an undesired 
event (e.g., failure or unacceptable performance). Through a 

cause-effect lens, while classical reliability models target the 
effect associated with a component performance, a margin-
based approach focuses on the cause of an undesired 
component performance (i.e., component health). Hence, 
thinking of reliability in terms of margins implies decision-
making based on causal reasoning. We will show how fault 
tree models can be solved using a margin language and how 
this process can effectively assist system engineers to identify 
the most critical components. 

1. INTRODUCTION 

Typically, risk is defined by three elements: what can go 
wrong, what are its consequences, and how likely is it to 
occur. Although this definition makes sense in a regulatory-
based framework to estimate the potential public health risk 
associated with power plants (in terms of core damage 
frequency and large early release frequency), this approach 
does not provide a useful snapshot of the health of the plant 
based on its current condition and performance. Some 
observations to support this claim include that testing, 
maintenance, and surveillance operations are not completely 
integrated into a plant probabilistic risk assessment (PRA) 
model, at least on a frequency that reflects current condition 
of significant plant structures, systems, and components 
(SSCs). Second, a probability value associated with an event 
is an approximated integral representation of the past 
operational experience for such an event, and it neglects the 
present component health status (e.g., diagnostic and 
condition-based data) and health projection (when available 
from prognostic data) of anticipated changes in SSC 
condition and performance in the near future. 

2. RISK IN A PLANT OPERATION CONTEXT 

Given these conditions, the decision-making process related 
to health and asset management is not well suited to being 
evaluated and managed using classical PRA tools. A possible 
alternate path can start by redefining the word “risk” to 
encompass a broader meaning that better reflects the needs of 
a system health and asset management decision-making 
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process. Rather than asking how likely an event is to occur 
(in probabilistic terms), we ask how far this event is from 
occurring. 

This new interpretation of risk transforms the concept from 
one that focuses on the probability of occurrence to one that 
focuses on assessing how far away (or close) an SSC is to an 
unacceptable level of performance or failure. This 
transformation has the advantage that it provides a direct link 
between the SSC health evaluation process and standard plant 
processes used to manage plant performance (e.g., the plant 
maintenance and budgeting processes). The transformation 
also places the question into a more familiar and readily 
understandable form for plant system engineers and decision 
makers. 

The concept of margin is well suited to provide information 
about how close an SSC is to an unacceptable level of 
performance or failure. More precisely, an SSC margin 𝑀" 
can be defined (Mandelli, 2021) as the “distance” between 
the present and actual status and an undesired event (e.g., 
failure) for an SSC (see Figure 1). 

At this point, we identify how to measure SSC margins as a 
distance of occurrence between the SSCs existing condition 
and the point where its performance or condition becomes 
unacceptable (i.e., action is required). Note that the concept 
of “distance” does not necessarily need to be measured in 
terms of time as we will clearly show in the next sections. 

 
Figure 1. Graphical representation of margin to failure. 

The application of this framework to system health as 
proposed here is centered on the integration and evaluation of 
available data to assess SSC condition and performance. 
Thus, this framework requires the definition of: 

• Space: The “space” definition should be based solely on 
the type and dimensionality of the available equipment 
reliability (ER) data that can be directly measured and 
obtained by the system engineer. 

• Distance metric: Once the space is defined, it is 
necessary to provide a measure of the “distance” 
between two points located in this space. 

As indicated by Mandelli (2021), throughout this paper, we 
follow the convention where the component margin 𝑀"  is 
defined in the [0,1] interval where: 

• 𝑀" = 1 indicates component perfectly healthy 

• 𝑀" = 0  indicates component at limiting conditions or 
failed. 

3. INTEGRATION OF ER DATA 

While a detailed description on the mathematical 
determination of component margin can be found in previous 
research (Mandelli, 2021), this section focuses on few 
practical examples of how the component margin can be 
assessed from practical situations. 

3.1. Condition-Based Data 

As indicated in Section 2, the margin can be calculated as the 
distance between actual and limiting conditions. In practical 
settings, limiting conditions can be represented by technical 
specifications specific to the component. As an example, for 
induction motors, oil viscosity must be below a specified 
limiting condition to ensure proper motor function. Oil 
viscosity can significantly change as a function of motor 
rotation speed. Hence, the margin can be calculated as the 
difference between the specified limiting condition and 
currently measured oil viscosity. 

For rotating components (e.g., centrifugal pumps), a typical 
degradation process affects pump mechanical seals. The 
pump vibration signal is constantly monitored, and statistical 
indicators, such as the root mean square (RMS), of the signal 
are determined (Luo, 2021). In such scenarios, RMS analyses 
observed when seals are degraded beyond their limit are 
available from the manufacturer for different pump rotation 
speeds. In this case, margin could be defined as the difference 
between the manufacturer-specified acceptance level and 
observed RMS data. 

3.2. Anomaly Detection Data 

Anomaly detection methods (Nassif, 2021) are designed to 
identify unexpected behaviors (i.e., outside the normal 
operation boundaries). Hence, they provide binary 
information about the status and health of a particular 
component (it either works normally or abnormally). In a 
margin context, an anomaly identifies an unexpected 
behavior (or an unknown failure model) that requires 
immediate attention. In this scenario, the quantification of a 
margin value from an anomaly detection method can be as 
follows: 

𝑀" = )	1 for normal	conditions
	0 for abnormal behavior (1) 

Note that such an anomaly can be triggered by either an 
internal (e.g., degradation or rupture of an internal part) or 
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external (e.g., failure of another component that support a 
function of the monitored component) event. 

3.3. Prognostic Data 

For components where a prognostic analysis is available, it is 
possible to estimate the component’s remaining useful life 
(RUL) when component degradation starts to emerge. 
Typically, RUL is quantified in probabilistic terms where a 
probabilistic distribution function (PDF) defined over the 
time axis 𝑡 is generated, 𝑅𝑈𝐿~𝑃𝐷𝐹!"#(𝑡). In such a case, the 
margin can be estimated using two approaches. The first 
defines the margin as 𝑀" = 1 − 𝐶𝐷𝐹!"#(𝑡)  where 𝐶𝐷𝐹!"# 
indicates the cumulative distribution function corresponding 
to 𝑃𝐷𝐹!"#. The second approach estimates the margin as the 
distance between the actual component life and a point 
estimate of the RUL distribution (e.g., the 5th percentile). 

A graphical representation of the margins for both 
approaches is in Figure 2 for an estimated RUL that is 
normally distributed shown in red. Note that the proposed 
approach updates the margin value when component health 
is measured and when a better RUL estimation (i.e., less 
uncertainty associated with RUL) is available from the 
corresponding prognostic model. 

 
Figure 2. Margin values obtained from the two proposed 
approaches (green and blue lines) given an RUL estimate 

(red line). 

4. MARGIN-BASED RELIABILITY MODELING 

Current reliability models are based on Boolean logic 
structures (e.g., fault trees), which describe the deterministic 
functional relationship between SSCs and human 
interventions. Each basic event in a reliability model 
represents a specific elemental occurrence (e.g., failure of a 
component, failure to perform an action by the plant 
operators, recovery of a safety system), and a probability 
value is associated with each basic event, which represents 
the probability that the basic event can occur. However, 

maintenance and surveillance operations are typically not 
completely integrated into a PRA structure. 

The goal now is to solve the AND and OR gates in a fault tree 
by feeding margin values. The rationale is to propagate 
margin values from the component to the system level, where 
the system reliability model is still represented by classical 
reliability models (e.g., fault trees). We want to assess the 
margin at a level where the degraded SSC performance or 
failures would result in actual consequences to system 
performance or economics (i.e., at the system or train level). 
Even though the definition of margin results in a value 
between 0 and 1, note that it is not appropriate to interpret 
margin values as a probability. 

Consider now two components (𝐴 and 𝐵). The margin 𝑀" for 
both components can be visualized in a 2-dimensional space, 
as shown in Figure 3. Starting with brand-new components 
(i.e., 𝑀"$, 𝑀"% = 1), aging degradation that affects both can be 
represented by the blue line of Figure 3, which parametrically 
represents the combination of the normalized margins 
(𝑀"$(𝑡),𝑀"%(𝑡))  at a point in time 𝑡 . Note that, if no 
maintenance (whether preventive or corrective) was ever 
performed on either component, this path would move from 
the coordinates (1,1), components 𝐴 and 𝐵 at the beginning 
of life to the coordinates (0,0) where both components had 
failed. We can identify these regions in Figure 3: the 
occurrence of both events where 𝑀"$ = 0  and 𝑀"% = 0  and 
the occurrence of either event where 𝑀"$ = 0  or 𝑀"% = 0 . 
Now we can calculate the 𝑀"	for the events listed above by 
following the margin definition by measuring the distance 
between the actual condition of Components 𝐴 and 𝐵 and 𝑀" 
conditions identified by the event under consideration (e.g., 
the occurrence of both or either events): 

𝑀"(𝐴	𝐴𝑁𝐷	𝐵) = 𝑑𝑖𝑠𝑡[(𝑀"$, 𝑀"%), (0,0)] 

𝑀"(𝐴	𝑂𝑅	𝐵) = 𝑚𝑖𝑛@𝑀"$, 𝑀"%A 
(2) 

The function 𝑑𝑖𝑠𝑡[𝑋, 𝑌]  is designed to calculate the 
Euclidean distance between points 𝑋 and 𝑌. 

Hence, exact solutions can be obtained extremely fast. More 
precisely, reliability calculations using 𝑀"-based data can be 
performed by completing these four steps: 

1. Construct the fault tree; at this point, a fault tree only 
contains deterministic information about the system 
architecture under consideration (i.e., it simply models 
how the basic events are related to each other from a 
functional perspective). 

2. Generate the minimal cut-sets (MCSs) from the fault 
tree; as also indicated in Step 1, an MCS still represents 
the minimal combinations of basic events that lead to the 
top event of the fault tree (e.g., system failure). 

3. Assign a margin value 𝑀"	to each basic event. 

4. Calculate system margin 𝑀"	from each MCSs. 
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As part of system reliability modeling, it is always important 
to determine the importance of each basic event. In a PRA 
setting, this is performed by relying on risk-importance 
measures (Lee, 2011), such as Birnbaum or Fussell-Vesely. 
Given the different nature of 𝑀", it is possible to perform a 
risk-importance ranking by relying on a classical sensitivity 
measure (derivative based) for each basic event 𝐵𝐸 defined 
as: 

𝑅𝐼𝑀%& =
𝜕	𝑀"'('
𝜕	𝑀"%&

 (3) 

where 𝑅𝐼𝑀%& indicates the risk importance measure for basic 
event	 𝐵𝐸 . Simply stated, 𝑅𝐼𝑀%&  indicates how a small 
variation of 𝑀"%&  (e.g., improving the health of Component 
𝐵𝐸) directly affects system margin 𝑀"'('. 

 
Figure 3. Graphical representation of event occurrences 

based on a margin framework. 

Common reliability analysis methods are designed to work in 
the “failure space” where the goal is to identify the 
combination of events that yield adverse consequences. 
These combinations of events are typically represented as the 
MCSs as the logic product of basic events (e.g., failure of 
components or failure to perform recovery actions). 

However, from a system engineer perspective, we are 
interested to work in the “success space” where the objective 
is to identify combination of events that guarantee system 
operation. These new combinations of events are represented 
by the minimal path sets (MPSs) (Youngblood, 2001) of the 
system under consideration. In formulating a safety case for 
a facility, it is beneficial to do a “prevention analysis” to 
identify combinations of success paths that (together) provide 
the required levels of functional reliability, redundancy, and 
diversity. In addition, if something goes wrong and we need 
to compensate for it lest we lose the function, it is useful to 
understand what success paths remain available and which of 
them are more reliable than the others (see the example in 
Section 5). 

5. EXAMPLE OF MARGIN RELIABILITY ANALYSIS 

This is an example of margin-based reliability calculation is 
for the system shown in Figure 4 (Youngblood, 2001) 
composed of seven components, A–G. An estimation of each 
component’s RUL is available and it is shown at the top plot 
of Figure 5. RUL estimation is represented here 
probabilistically, that is RUL is represented by a PDF 
designed to represent uncertainty associated with RUL 
estimate (in terms of RUL mean and variance). In this 
scenario, we represent system reliability in terms of MPSs 
rather than MCSs. System margin is calculated considering 
the MPSs of the system in Figure 4 and by applying the 
margin rules indicated in Section 4 using the following 
setting: 

• The margin of each component is calculated form its 
RUL using the model of Approach 1 described in Section 
3.3 and shown in Figure 2 

• Distance metrics for 𝑀(𝐴	𝐴𝑁𝐷	𝐵): Euclidean. 

 
Figure 4. Example of system architecture represented in 

terms of block diagrams (Youngblood, 2001). 

The obtained temporal profile of system margin is shown in 
the bottom plot of Figure 5. From this plot, note that: 

• Even though the component margin is defined in the 
[0,1] interval, system margin can be higher than one (but 
still cannot be negative). A system margin greater than 
one implies that there are redundancies that can 
compensate for component failures. In other terms, when 
there are more than one MPS, the system margin is 
greater than one. At time 𝑡 = 0, there are four MPSs and 
the margin for each component is set to 1 since the 
margin model employed for each component is 
calculated using the model of Approach 1 described in 
Section 3.3. Hence the system margin can be calculated 
as √1 + 1 + 1 + 1 = 2.0. 

• When components are approaching their own RUL, their 
margin decreases to zero until they are considered failed. 
Hence the number of available MPSs decreases and 
system margins decrease as well to a value equal to 
square root of the number of available MPSs. 
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• At time 𝑡 = 8	𝑚𝑜𝑛𝑡ℎ𝑠 , Component E fails and, even 
though Components B and G are working properly, there 
are no available MPSs, and consequently, the system 
margin value drops to 0. 

 
Figure 5. Example of margin-based calculations using 
prognostic data for the system indicated in Figure 4, with the 
top plot showing a RUL for each of the seven components, 
A–G. Corresponding quantification of system margin is 
indicated in the bottom plot. 

Next is the quantification of the reliability measures indicated 
in Section 4 (see Eq. 3). Given component margin values at 
each time instant and the obtained system margin (see Figure 
5), these measures were calculated and plotted in Figure 6 for 
all seven components. In order to show the type of 
information generated by these plots, let’s consider the two 
regions of these plots highlighted in red: 

• The first region is located at the beginning of the plot 
where all components have a margin value of 1 (i.e., all 
components are healthy). However, note that the 
𝑅𝐼𝑀%& values are not equal among the seven 
components. This is due to the fact that each component 
directly supports a different number of MPSs. As an 
example, Component B supports three MPSs (i.e., BCD, 
BEG, BFG) while Component A supports one single 
MPS (i.e., A). Hence, improving the margin of 
Component B is more beneficial at the system margin. 

• The second region is located toward the end on the time 
axis where only one MPS is available (i.e., BEG). In this 

case, Components B and G are still healthy (i.e., their 
margin is still one) while Component E is approaching 
its RUL. Thus, the importance of Component E is greater 
than the importance of Components B and G. 

 
Figure 6. Plot of 𝑅𝐼𝑀%&measures for the seven components 
of the system of Figure 4 given the provided prognostic data 
(in terms of RUL) indicated in the top plot of Figure 5. 

6. LINKS BETWEEN MARGIN AND CLASSICAL RELIABILITY 
APPROACHES 

At this point, it is relevant to present the structural differences 
between classical reliability models (i.e., based on probability 
of failure) and a margin-based approach. These differences 
can be described though a cause-effect lens, as in Figure 7. 
Classical reliability models focus on the effect node (i.e., to 
model component failure) where component reliability data 
are used to assess the system failure probability. Such models 
monitor plant risk (as currently done by plant risk monitors) 
and set “offline” decisions, such as setting periodic 
surveillance and maintenance activities, or set the duration of 
planned system maintenance outages (either as part of a plant 
configuration risk-management program or a plant risk-
managed technical specification program). 

Over the past several decades, plants have been moving from 
a reliance on periodic to more comprehensive predictive 
maintenance strategies where the goal is to only perform 
intrusive maintenance operations when needed. Advanced 
monitoring and data analysis technologies are essential to 
support predictive strategies. This is where margin-based 
reliability approaches can support this type of “online” 
decision-making where, based on current condition-based 
data, component health data are employed to assess 
component and system health (i.e., the focus is now shifted 
to the cause node of Figure 7). 
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7. NUMERICAL COMPARISON BETWEEN MARGIN AND 
CLASSICAL RELIABILITY APPROACHES 

The goal of this section is to provide a more concrete bridge 
between margin and classical reliability approaches in 
support of the statements provided in Section 5. A common 
ground for these two kinds of reliability approaches can be 
established if ER data is composed solely by component 
failure time values. In this scenario, we are considering the 
failure time value for each component, and the objective is to 
determine system failure time for the most common system 
configurations: series, parallel, stand-by, and KooN. 

 
Figure 7. Comparison between margin-based and 

probability of failure-based reliability modeling approaches. 

Given the failure rate for the considered components, the 
corresponding meant time to failure (MTTF) values can be 
calculated. Using the set of equations provided by Rausand 
(2020) (which are summarized in Table 1), it is possible to 
determine system failure time of the considered system 
configurations using classical reliability theory basis. From 
Table 1, we moved forward on calculating the system failure 
time provided the failure time of two components (i.e., 𝑇), 𝑇*) 
for the considered configurations (see central column of 
Table 2). 

Table 1. Summary of reliability and MTTF equations for 
several configurations (Rausand, 2020). 

Config. Reliability MTTF 

Series O 𝑅+(𝑡)
,

+-)
 

1
∑ 𝜆,
+-)

 

Parallel 
1

−O @1 − 𝑅+(𝑡)A
,

+-)
 

)
.
 ∑ @,+ A

(0))!"#

+
,
+-)  

Stand-
by 𝑅)(𝑡) + 𝜆	𝑡	𝑅*(𝑡) 

1
𝜆 +

1
𝜆 =

2
𝜆 

KooN R S
𝑁
𝑖 T

,

+-2
𝑅(𝑡)+(1

− 𝑅(𝑡)),0+ 

𝑀RS
𝑁
𝑖 TU 𝑅(𝑡)+(1

3

4

,

+-2
− 𝑅(𝑡)),0+ 

 

Similarly, component MTTF values can be translated in 
terms of margins with the goal of determining system margin 
for considered system configurations using the equations 
provided in Section 4. In this situation, a margin is basically 
the distance between actual component life and its predicted 
failure time (i.e., the component MTTF). The system margin 
𝑀'(' for considered system configurations are presented in 
the right column of Table 2. 

The goal now is to translate 𝑀'('  values back into time 
values to compare with 𝑇'('. We expect that this comparison 
process will provide identical outcomes from classical and 
margin reliability methods. At a first look at Table 2, the 
mathematical expressions for 𝑇'('  and 𝑀'('  for the series, 
stand-by, and KooN configurations are very similar. 

Recall that components margin values are defined over the 
time axis and quantified based on component MTTF value; 
hence, the translation from 𝑀'(' to system failure time in a 
margin-based reliability context gives these outcomes: 

• Series: given that 𝑀'('  is defined over a minimum of 
two component margins, the system failure time derived 
from margin calculation corresponds to 𝑚𝑖𝑛(𝑇), 𝑇*) (see 
Figure 8). 

• Parallel: in this configuration, 𝑀'('  follows the path 
shown in Figure 9 where components fail at two different 
time instances while system fails when the latter failure 
occurs (i.e.,	𝑚𝑎𝑥(𝑇), 𝑇*)). 

• Stand-by: in this configuration, the sum of two margin 
values (i.e., 𝑀) +𝑀* ) is translated into the sum of 
failure time of both components (i.e., 𝑇) + 𝑇* ). Note 
that, in this configuration, 𝑀'(' = 𝑀(𝐴	𝐴𝑁𝐷	𝐵); if the 
Manhattan distance is used, 𝑀'(' = 𝑀) +𝑀*  (see 
Figure 10). 

• KooN: similar to the series configurations, only 𝐾 
components with highest margin values are considered 
(and consequently the highest failure times). The 
minimum out of these 𝐾 values gives the same outcome 
as 𝑚𝑖𝑛(first	𝐾	highest	𝑇+). 

Table 2. Comparison between system failure time and 
system margin for four system configurations. 

Config. System Failure 
Time, 𝑇'(' 

System Margin, 𝑀'(' 

Series 𝑚𝑖𝑛(𝑇), 𝑇*) 𝑚𝑖𝑛(𝑀), 𝑀*) 

Parallel 𝑚𝑎𝑥(𝑇), 𝑇*) 𝑑𝑖𝑠𝑡[(0,0), (𝑀), 𝑀*)] 

Stand-by 𝑇) + 𝑇* 𝑀) +𝑀* 

KooN 𝑚𝑖𝑛(first	𝐾	highest	𝑇+) 𝑚𝑖𝑛(first	𝐾	highest	𝑀+) 
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8. DECISION-MAKING 

As indicated in Sections 4 and 5, a margin-based reliability 
modeling is able to quantify component health given 
available ER data and provide insights about the most critical 
components that might negatively affect system operation 
(through the reliability measures described in Section 4, 
Eq. 3). The next step is to decide which operations should be 
performed to guarantee future system operation. This step 
requires an additional piece information regarding the timing 
aspect associated to a component failure. Such an aspect is 
captured by the concept of urgency, which is here defined as 
the amount of time available between now and when 
restoration operations need to be started to avoid component 
failure (see Figure 11). 

 
Figure 8. Evolution of 𝑀'(' for two components in a series 

configuration. 

 
Figure 9. Evolution of 𝑀'(' for two components in a 

parallel configuration. 

 
Figure 10. Evolution of 𝑀'(' for two components in a stand-

by configuration. 

From a practical standpoint, the estimation of component 
urgency requires two variables: 

• Estimated failure time estimated from prognostic data 
(i.e., through RUL) or from margin calculations (see 
Section 4) 

• Time required to restore component health. If the 
restoration process requires the substitution of the 
component, this time value can include time values to 
obtain the new component (procurement time), replace 
the old component, and install the new one. If the 
restoration process requires activities that can be 
performed onsite (e.g., chemical treatment of corroded 
portions of the component), restoration time can include 
the time values to take the component offline, time to 
perform restoration activity, and time to take the 
component back online. 

At this point, we can select the most critical maintenance 
operations based on their urgency and the reliability 
importance of the components by plotting all operations in an 
urgency vs. RIM importance (see Eq. 3) plot as indicated in 
Figure 12. Depending on the industrial and decision-making 
context, this 2-dimensional plot can be partitioned in multiple 
regions where the range of each dimension is divided into two 
or three intervals. The selection of the operations that should 
be performed to guarantee future system operation can be 
performed by choosing the ones landing in selected partitions 
of the urgency vs. importance plot. As an example, for the 
case shown in Figure 12, the operations landing in the red, 
dark orange, and light orange sectors should be chosen. 
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Figure 11. Graphical representation of urgency given 
estimated component failure and required restoration time. 

9. CONCLUSION 

This paper complements previous work (Mandelli, 2021) that 
presents a new way to perform reliability modeling. This 
margin-based method allows for a complete integration of 
several types of ER data (from condition to prognostic data), 
and it directly supports decisions that plant system engineers 
make regularly through plant lifecycle. As indicated 
throughout the paper, this approach is not intended to contrast 
classical reliability models. On the other hand, it is designed 
to support a different kind of reliability questions and support 
dynamic decisions rather than static ones (i.e., design related) 
(see Figure 7). A margin-based interpretation of reliability 
transforms the concept from one that focuses on the 
probability of occurrence to one that focuses on assessing 
how far away (or close) an SSC is to an unacceptable level of 
performance or failure (Zio, 2013). This transformation has 
the advantage that it provides a direct link between the SSC 
health evaluation process and standard plant processes used 
to manage plant performance (e.g., the plant maintenance and 
budgeting processes). The transformation also places the 
question into a more familiar and readily understandable 
form for plant system engineers and decision makers 
(Xingang, 2021). When dealing with condition-based data 
(actual and archived data), margin 𝑀" is defined here as the 
distance between actual SSC observed conditions (e.g., oil 
temperature, vibration spectrum) that lead to failure. 

 
Figure 12. Selection of the most critical components in an 

urgency-importance diagram. 

Note that margin values change with time. As an example, 
when new component condition data that indicate component 
degradation are observed, the component margin decreases. 
Similarly, when maintenance operations are performed to 
such component, its health is restored, and margin increased. 

Lastly, note that this margin-based method relies on a failure 
mode and effects analysis (FMEA) method to identify 

component failure modes and their impact on the system level 
(which is then translated into a fault tree). Note that an 
additional step is required here: the identification of the ER 
data that monitor component degradation that might lead to 
such failure modes. 
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