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ABSTRACT

This paper reports empirical investigation for the feasibil-
ity of micro-electromechanical systems (MEMS) sensors, ac-
celerometers and microphones, for prognostic health man-
agement(PHM) application in monitoring of ground vehicles
on the use case of diesel engine monitoring. The failure mode
was injector leakage with four seeded levels of damage. MEMS
and piezoelectric accelerometers were mounted in close prox-
imity, following the usual good practices of sensor place-
ment to enable fair comparisons. The process of computing
both engineered and data-driven condition indicators was re-
peated for the data captured by the type of sensors. In ad-
dition to the empirical study, the article includes elementary
economic analysis to compare the cost of the MEMS-based
solution to that of the traditional vibration data acquisition
channel. The results suggest that data-driven models seem
to be agnostic to the sensor source, but feature engineering
may require additional tuning.Also, economic analysis will
show that MEMS-based sensing could cheaper than piezo-
based sensing for low-cost health and usage monitoring sys-
tems(HUMS).

1. INTRODUCTION

Adding a complete vehicle HUMS can be costly, however
with many ground vehicles, the lack of condition and usage
data limits the feasibility of implementing predictive and pre-
ventative maintenance. Also, in the lack of this data, the op-
portunities presented by advanced analytics cannot be tapped.
HUMS applications have been deployed traditionally on air
vehicles, such as fix-wing aircraft and rotor craft (Gordon,
1991; Ellerbrock, Shanthakumaran, & Halmos, 1999). Ground
vehicles are generally not equipped with HUMS because HUMS
adds cost and complexity (with potential decrease in reliabil-
ity), but it has been explored in various research and demon-
stration studies, e.g. (Heine & Barker, 2007). A scalable
HUMS system architecture with short distance wireless net-
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working can facilitate solutions for different vehicle platforms
that are based on a common technology footprint.

Employing MEMS sensors in PHM is not new (Lee, 2011;
Bechhoefer, Wadham-Gagnon, & Boucher, 2012), but only
relatively recently low-cost high-frequency MEMS sensors
became commercially available. The potential of lower-cost
MEMS sensors have been grabbing the attention of PHM re-
searchers: instrumenting planetary gearbox with MEMS ac-
celerometers (Mones et al., 2017); showing the promised of
use piezoelectric MEMS accelerometers for PHM in indus-
trial applications (Xuewen Gong, Wu, Liao, & Gong, 2020);
and investigating fault detection using capacitive MEMS ac-
celerometer array (Watson & Reichard, 2021). The feasibility
of using microphones for Engine diagnostics has been dis-
cussed by (Mathew & Zhang, 2020).

In addition to being lower cost, MEMS sensor have the poten-
tial to further reduce the cost as the manufacturing improves.
With low-impedance output, they are easier to integrate into
data acquisition (DAQ) systems because they do not require
charge amplifiers. Although MEMS sensors need power sup-
ply, each power supply can support multiple sensors. Easier
integration and the absence of the charge amplifier not only
reduce the cost of the system, but increased simplicity typi-
cally improves overall reliability of the monitoring system.

2. EXPERIMENT DESCRIPTION

Vibration and acoustic monitoring systems were employed to
detect changes in performance of a 6 cylinder diesel engine
across varying levels of seeded failure of a diesel injector nee-
dle valve. The damage was induced by grinding a flat on the
sealing face of a fuel injector needle valve as shown in Fig-
ure 1. The failure mode causes additional fuel to leak into the
cylinder across the entire compression cycle. In an effort to
detect the progression of the failure, the data was collected
across a series of baseline runs with new injectors, followed
by replacement of a single injector in cylinder 2 with injectors
with 4 progressively larger leak values, subsequently labeled
Damage Level 1 (DL1) through Damage Level 4 (DL4). The
specific flow rates of each injector including the healthy in-
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Table 1. Injector health states and associated flow rates

Injector state Flow rate [mm3/stroke]

Baseline† 218.7
DL1 229.5
DL2 230.2
DL3 245.2
DL4 318.0

† Nominal healthy injector: 220 ± 9.9 mm3/stroke

jector used for baseline tests are shown in Table 1.

Figure 1. Modification of the sealing face of the injector nee-
dle

Figure 2. Vibration Monitoring Schematic

For these experiments the vibration monitoring system uti-
lized ± 50 g accelerometers connected to a data acquisition
system collecting data at 51.2 kHz. As shown in Figure 2,
the piezoelectric accelerometers (PCB 603C01) were con-
nected to a NI-9231 vibration module with integrated charge
amplifier, while the MEMS accelerometers (Analog Devices
ADXL1002) were connected to a NI-9220 voltage module.
The accelerometers were mounted to a mounting block on
the side of the engine adjacent to cylinder 2, as seen in Fig-
ures 3 & 4 measuring the 2 axes perpendicular to the axis of
rotation for the crankshaft. Similarly for acoustics monitor-
ing, 3 pairs of microphones were placed over the valve cover

Figure 3. Wide view of the engine and vibration sensor place-
ment

Figure 4. Close up of vibration sensor placement and mount-
ing

along the length of the engine, with 2 pairs at 4” above the
valve cover and the third in the middle of the engine at 12”
as shown in Figures 5 & 6. Each pair of microphones was
composed of a Piezoelectric (PCB 130a23) and a MEMS (In-
vensense 40618) microphone placed as closely as possible to
one another. The microphones were connected to a NI-9234
vibration module with integrated charge amplifier and a NI-
9220 module, respectively, collecting data at the same 51.2
kHz rate as the accelerometers.

The early presence of fuel in the cylinder gave rise to an in-
crease in vibration magnitude during the combustion window,
which changed the overall shape of the vibration signal. This
change was captured in condition indicators(CIs) discussed
in the next section.
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Figure 5. Microphone Locations

Figure 6. Close-up of Piezo and MEMS Microphone Mount

3. CONDITION INDICATORS AND RESULTS

We computed and performed side-by-side comparisons of en-
gineered and data-driven CIs, using data captured by piezo
and MEMS sensors. This article focuses on comparison be-
tween the performance of the models as a function of the
sourcing sensors: classical piezo and MEMS. The two type
of CIs are discussed in turn. Only accelerometers mounted
on Cylinder 2 and Microphones at position 1 will be used to
derive the comparison.

3.1. Data-driven CIs

A data-driven condition indicator was computed using an au-
toencoder topology, with fully-connected layers, operating
on time-synchronous averaged (TSA) signal θ(t), computed
from accelerometer data a(t) (see (Bechhoefer & Kingsley,
2009) for a review of TSA algorithms). The TSA signal was
generated using the crank shaft position sensor and validated

Figure 7. Autoencoder with fully-connected layers

with an optical encoder. The TSA helped averaging out the
random noises, accentuating engine events signals. The acti-
vation function of the hidden layers was ReLU and activation
function at the output was sigmoid. The autoencoder has 11
layers, other dimensions are as illustrated in an abbreviated
form (not all layers were shown) in Figure 7. During the train-
ing dropout of 10% was used. The model was implemented in
TensorFlow framework(Abadi et al., 2016), with Keras appli-
cation programming interface (API) (Chollet, 2018; Géron,
2019).

The data-driven CI was the autoencoder encoder’s error met-
ric; specifically, the mean-squared error (MSE). Figure 8 com-
pares the CIs computed for multiple tests. Thin blue traces
correspond to estimated histograms of MSE associated with
individual runs and the thicker green/orange traces correspond
to histograms of MSE associated with data from all runs for
the given state of health or damage. All histograms were esti-
mated using kernel density estimation (KDE). At a high level,
KDE estimates probability distribution p̂(x) as the scaled sum
of kernels g(.), centered at individual N data points xn:

p̂(x) =
1

N∆x

N∑
n=1

g

(
x− xn

∆x

)
, (1)

where x represents for MSE for data-driven CIs, or energy
for engineered CIs, while ∆x is the smoothing parameter, or
bandwidth. The implementation employed SciPy’s (Virtanen
et al., 2020) Gaussian KDE, gaussian kde() from SciPy’s
statsmodule, with bw method and weights parameters
both set to ’None’(default parameters).

It is important to emphasize the need for multiple test runs
for a given test condition: as the KDEs of Figure 8 show,
the distribution of the collection of test runs (e.g. baseline)
is considerably wider than the distribution of a single test
run. Comparing individual test runs can give rise to unre-
alistic separation among distributions.

Figure 8a shows the results obtained processing accelerome-
ter data sensed by piezo sensors aP (t), and Figure 8b shows
the results corresponding to MEMS accelerometers aM (t).
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(a)

(b)

Figure 8. Data-driven autoencoder CI from for baseline and
4 damage levels (a) piezo sensor (b) MEMS sensor

Figure 9. AUC comparison of data-driven autoencoder CI for
four damage levels compared to the baseline aith accelerom-
eter data

Visual inspection suggests that the distributions are very sim-
ilar.

Area under the curve(AUC) is an useful means to evaluate

(a)

(b)

Figure 10. Data-driven autoencoder CI from for baseline and
4 damage levels (a) piezo microphone (b) MEMS microphone

performance of a prognostic system (Bradley, 1997). Figure 9
shows the quantitative comparison using AUC of the receiv-
ing operating characteristic (ROC) of damage levels (DL1-
DL4) relative to the baseline. The implementation employed
the standard roc auc score from module metrics of
the Scikit-learn Python package (Pedregosa et al., 2011). The
results corresponding to aM (t), as measured by AUC, were
better than their piezo counterparts. It is important to note
that autoencoder models were trained separately for aP and
aM data.

Figure 10 shows the same application of autoencoders to the
PCB and MEMS microphones. Similarly, Figure 11 shows
the comparison of the AUC of the ROC for the two types
of microphones. Similar to the accelerometers, the MEMS
microphones perform better than the piezo sensors, relative
to their AUC.

3.2. Engineered CIs

An engineered CI was generated by computing the energy
of the vibration signal within the window of 460-500 crank
angle degrees (CAD) and 1200-2500 Hz vibration frequency
range ∆f , see Figure 12. The CAD window covers 20 de-
grees before and after the top dead center and includes the
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Figure 11. AUC comparison of data-driven autoencoder CI
for four damage levels compared to the baseline with micro-
phone data

Figure 12. Frequency Spectra of MEMS sensor

start of combustion. CAD and ∆f were selected to maxi-
mize the discriminability between baseline and damage runs.
Discriminability d is defined as (Duda, Hart, & Stork, 2001)

d =
|µB − µDL|√
σ2
B + σ2

DL

, (2)

where µB and σB are mean and standard deviation of the CIs
associated with the baseline and µDL and σDL are mean and
standard deviation associated with damage.

Visual inspection of the energy distributions reveals similar
trends between the two sensors, see Figure 13. The quantita-
tive comparison using area under the curve (AUC) of the re-
ceiving operating characteristic (ROC) of damage levels rel-
ative to the baseline is shown in Figure 14. Performance of

(a)

(b)

Figure 13. Engineered CI from for baseline and 4 damage
levels (a) piezo sensor (b) MEMS sensor

Figure 14. AUC comparison of Engineered CI for four dam-
age levels compared to the baseline

MEMS sensor was worse than PCB for engineered CI. It is
important to note that the CIs were engineered using piezo
data and just applied to inputs from MEMS sensors.
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4. ECONOMIC ANALYSIS

One of the downsides of vibration and acoustic analysis in
PHM has been the high cost of entry. Therefore, typical PHM
systems utilizing vibration or acoustic analysis have been lim-
ited to high value assets or assets that have a significant risk
to human life, e.g. wind turbine or helicopter gearbox moni-
toring. MEMS sensors decrease the cost to entry by lowering
both the sensor cost and the data acquisition system costs.
The system utilized for collecting data in this experiment is
not ideal for a cost comparison as this system utilized more
expensive equipment than was necessary due to additional ex-
periments that were to be performed. Therefore for the pur-
pose of an economic analysis, components have been selected
that could be utilized for a more simple vibration or acous-
tic monitoring system. Additionally, this analysis assumes a
sunk cost for the computer to perform the analysis, therefore
the major difference between the systems is sensor cost and
data conditioning/acquisition costs.

To meet the previously stated requirements of the applica-
tion, the sensors will remain the same. However, alternatives
for the data conditioning and acquisition equipment were se-
lected to simplify the data collection to a USB based, single
data acquisition device. The PCB accelerometers and micro-
phones require an ICP sensor signal conditioner that also pro-
vides an excitation voltage. For this analysis, a PCB 485B39
Dual-Channel, USB powered, ICP Sensor Signal Conditioner
with USB output was chosen. Alternatively, the MEMS ac-
celerometers and microphones require a data acquisition de-
vice with a differential voltage analog input and a power sup-
ply. A Measurement Computing USB-1608G could be uti-
lized to collect data from up to 5 MEMS accelerometers or
microphones, or a USB-1608GX for up to 8 MEMS sensors.
The MEMS accelerometers and microphones have differing
voltage and current requirements, but are both extremely low
power. The ADXL1002 requires 1 mA at 5 volts per senso,
and thus a single power supply (Linear Technology DC2458a)
was chosen with a 1.5 Amp capacity, allowing for dozens
of vibration sensors. The EV ICS-040618-FX requires up to
190 µA at 2.75 volts, for which a DC1507A power supply was
chosen, providing up to 20mA at 1.8 or 3.3 volts for multiple
sensors.

Table 2 provides the individual component costs for the mon-
itoring options.

Figure 15 provides a comparison of the cost for up to 8 sensor
channels.

Although the costs of an integrated vibration or acoustic mon-
itoring solution will be lower than a lab grade demonstration
system, the cost comparison for the lab grade system should
provide an understanding of relative costs. With our demon-
stration, a single sensor application would decrease acqui-
sition costs by almost 50%. Also of note, MEMS sensors

Table 2. Vibration Monitoring Component Costs

Component Cost
PCB 603c01 ICP Accel. $99
PCB 485b39 Signal Conditioner $970
PCB 130A23 ICP Electret Array Mic $370
Analog Devices ADXL1002 Accel Eval Board $84
TDK InvenSense EV ICS-040618-FX Eval Board $40
Linear Technology DC2458a dc-dc Eval board $83
Linear Technology DC1507A dc-dc Eval board $154
Measurement Computing USB-1608G (≤ 5 accels) $459
Measurement Computing USB-1608G (≤ 8 accels) $689

Figure 15. Comparison of Sensor Costs

can be integrated into many applications compared to the uti-
lization of the demonstration boards utilized in these exper-
iments. In addition, historically the cost of MEMS sensors
have been decreasing, because the technology is relatively
new whereas piezoelectric sensors have been perfected for
decades.

5. CONCLUSIONS

This paper investigated feasibility of using MEMS sensor for
vibration and acoustic health monitoring in the context of
seeded failures in ground-vehicle’s diesel engine. The de-
termination was based on performance comparison of data-
driven and engineered CIs computed from data generated by
piezo and MEMS sensors. Data-driven CIs computed from
MEMS data slightly outperformed their piezoelectric coun-
terparts, demonstrating that MEMS sensors are adequate for
this application. It is important to note that machine learning
models that produced CIs were trained separately for MEMS-
and piezo-generated data to put them on equal footing. The
engineered CIs, on the other hand, were optimized for piezo
sensors and only applied on the MEMS sensors, to save con-
siderably labor cost associated with CI hand-crafting. The
lack of consideration of MEMS data during feature engineer-
ing is probably the reason why MEMS sensors fared worse
when their engineered CIs were compared to the related piezo
CIs. In addition, economic analysis showed that MEMS-
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based sensing could be more than 50% cheaper than piezo-
based sensing, making them a very attractive option for a
lower-cost HUMS.
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NOMENCLATURE

a(t), aP (t),aM (t) acceleration signal, piezo and MEMS
AUC area under the curve of ROC
CAD crank angle degrees
d discriminability
∆f frequency range of engineered CIs
µB CI mean associated with baseline runs
µDL CI mean associated with damage runs
σB CI standard deviation of baseline runs
σDL CI standard deviation of damage runs
θ(t) TSA signal sequence
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